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Abstract: Building Information Modelling is becoming increasingly used for Asset
Information Management in Facility Operations, where semantic and relational
information are of primary importance. "Big Data" analytics tools provide new
opportunities within this domain to classify and synthesize data, integrate it with
the Computer-Aided Facilities Management system, and develop predictive models
to assign priority and resources to address issues arising. The resulting information
integrated into building information models provides a powerful tool for facilities
management teams to prioritize and streamline operations and maintenance tasks.

This paper presents the development, comparison, and application of two
supervised machine learning models to classify and evaluate maintenance requests
generated both from within the maintenance team and occupant complaints. Three
algorithms: Term Frequency (TF), Term Frequency-Inverse Category Frequency
(TF-ICF), and Random Forest are used to analyse the text of the maintenance
request description and assign problem types to each. Approximately 150,000
historical maintenance requests were used for model development and the models
have overall prediction accuracies of 69%, 70%, and 90% for problem type prediction,
respectively.

Keywords: machine learning, building information modelling, visual analytics,
facility management, predictive models, big data.

1 BACKGROUND

Facilities Management (FM) activities generate significant quantities of building data and
information and there has been significant research in recent years to integrate it into
the Building Information Modelling (BIM) environment (Volk, et al., 2014; Ilter & Ergen,
2015). BIM has a relatively low adoption rate in this context, particularly when compared
to implementation in the design and construction phases (Bryde, et al.,, 2013) (Eadie, et
al., 2013), The majority of BIM-FM research has focused on improving the geometric
accuracy of BIM models, however some studies focus on relationship and trend
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identification to support root cause analysis, allowing for FM teams to prioritize and
nullify maintenance requests based on spatial and temporal patterns. One study
(Motamedi, et al., 2014) considered both the spatial and logical (systems) relationships
between equipment failures to analyse underlying causes, while another (Akcamete, et
al., 2010) maps maintenance and repair maintenance requests to inform root cause
analysis of such failures.

A case study at Ryerson University is underway in collaboration with the Campus
Facilities department to investigate how data analytics and BIM can be used to reduce
the time to resolution of maintenance requests. Two problems are addressed in this case
study. First, the collection and classification of such requests is often a bottleneck and a
means to automatically classify such requests provides value. Second, the visualization of
clusters - both spatially and temporally - is necessary to identify common problem areas
and seasonal trends to inform root cause analysis of maintenance issues. Machine
learning has the potential to address the former, while BIM visualization using the
outputs of the machine learning addresses the latter issue. Solutions developed within
both domains are thus presented herein. This forms the basis for a long-term research
project to not only classify and visualize maintenance requests, but also develop a
recommender system to collect additional information necessary to facilitate root cause
identification and analysis, assign priority and urgency levels, and prioritize FM response
to requests.

This research contributes to current discourse evaluating how BIM can be leveraged
throughout the building lifecycle and how Big Data analytics tools can be applied to
further enhance BIM use in the Facilities Management context.

2 METHODOLOGY

The development of the data mining and machine learning algorithms and the BIM
visualization of the resulting information was undertaken in four steps: data collection
and verification, data mining, machine learning algorithm development, and integration
of this data with the BIM models.

2.1 Data Collection and Verification

The data set used in this study was a collection of 146,252 maintenance requests
submitted to the Campus Facilities department at Ryerson University between January
2010 and December 2015. These requests were submitted through three means, listed
from most to least complete information typically provided: (1) reporting through an
online form with prescribed fields; (2) telephone calls to the help desk; and (3) emails
sent to the maintenance team through a designated email address, where information
collected was limited to the occupant-provided description of the problem, along with
their email address and email timestamp. All requests are analysed by help desk staff to
assign a problem type category (e.g. HVAC) and sub-category (e.g. "Too Cold"), before
the supervisor issues a work order based on this request to the relevant trade(s).

Because supervised learning algorithms were used, ensuring accuracy of the data set
was imperative to avoid training the models using incorrect labels (problem type
categories and subcategories). Mislabelled data would result in incorrect classification
and decision boundaries in the predictive model, thus it was necessary to review the
quality of the data available. A review of 45,000 maintenance requests found an error
rate less than 1% for data labelling - corrected during this review process - and
remaining dataset was deemed acceptable for use in initial model training.
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2.2 Data Mining

Data mining is the process to extract usable information from large quantities of data.
Typical activities include counting and classifying data entries frequency, date, keyword,
and/or location. The Map-Reduce algorithm (Dean & Ghemawat, 2008) is a commonly-
used approach for the sorting and classification of large data sets, and was used to sort
keywords associated with each problem type. This algorithm was used to mine the
following data trends in work requests: (1) total frequency by month and year, (2)
frequency by problem type, (3) frequency by building, and combinations thereof.

For integration within the BIM model, building, level and room parameters were
created to store and display maintenance requests by period (currently open, rolling 30-
day window, rolling 6-month window, rolling yearly window) as well as room-specific
complaints for thermal, noise, and leak-related issues, which were determined most
likely to identify underlying equipment or system problems.

2.3 Machine Learning

Machine learning approaches are broadly classified into two categories: supervised,
where correct data labels are available and the machine learning algorithm is able to
develop sorting hypotheses based on the training data labels, test the hypothesis for
predicting labels for a test set, and compare these with the actual labels; and
unsupervised learning, where no labels are available for training.

Data consistent to all entries included the location of the problem, problem
description, and the contact information of the request submitter. Based on this data, the
help desk manually labelled this data with problem type and subtype. The historical
labelled data was thus available to support a supervised machine learning approach. One
year of data (2015) was set aside as a test set and further divided into two files: an
unlabelled data set and test labels. The remaining years were analysed as training data.

Data pre-processing preceded machine learning to remove unnecessary words and
improve accuracy. Next, a stemming algorithm was used to obtain root words.

Three learning methods were used to learn representative words for each problem
type category and classifiers for problem descriptions. In the Term Frequency (TF)
method, the set of work descriptions for each problem type was analysed and the most
frequently used words ("seed words") for each category were determined and used to
represent that category. Each unlabelled maintenance request was then scored against
each category based on the number of seed words from that category present and
assigned to the category with the highest score. In the Term Frequency-Inverse Category
Frequency (TF-ICF) model, the prevalence of seed words within the work description
were weighted in inverse proportion to overall category frequency -- ie. those words
occurring primarily in a single problem type category were weighted more heavily than
those occurring across all work description categories. In this method, the weight of the
frequency term 7in problem type category jis weighted using the log of the ratio of the
total number of problem type categories over the number of categories in which term 7
appears. The resultant seed sets were thus used to assign problem types to the unlabelled
test data. Finally, Random Forest (Breiman, 2001) was used, which develops multiple
decision trees from the training data, creating a "forest". Each tree is grown as follows: (1)
if the number of cases in the training set is N, sample N cases at random - but with
replacement, from the original training data. This sample will be the training set for
growing the tree; (2) if there are M features, at each node n features (where n<M) are
selected at random out of the M and the best features among these m features is used to
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split the node. Each tree is grown to the largest extent possible with no pruning. New
instances are classified by each tree and a class probability is assigned for each. These
probabilities are then used to develop an overall prediction. The Random Forest classifier
is built based on the seed words extracted from the TF-ICF method, which extracted 132
features (distinct seed words) from work descriptions. Dimensionality reduction was
necessary to reduce computational cost; to do so, a 10% sample of the dataset was used
with the full complement of seed words to identify those most significant. The top 20
seed words were used to build the random forest classifier on the full dataset. A total of
1000 decision trees, each with a maximum depth of 8 and the Gini index to measure split
quality for feature selection, were used.

2.4 BIM Integration

A virtual campus model of Ryerson University has been under development since 2014
and links computer-aided facilities management (CAFM) data to simplified geometric
models of all campus buildings, which are used for the BIM visualization.

3 EVALUATION
3.1 Data Mining

Several trends were noted from the data mining procedure, notably the seasonal pattern
of work requests, both in terms of quantity and type (Figure 1) and in the clustering of
specific work request types by building (Figure 2). The Pareto principal is illustrated in
this figure where 75% of maintenance requests are being caused by 21% of the buildings
on campus. Some building relationships are evident in this figure - for example, POD,
JOR, and LIB make up one building and KHE, KHW, KHN and KHS are quadrants of a
second, each with shared mechanical and electrical systems that trend together.
Problems in one of these buildings are often symptoms of a systemic problem, and these
buildings will be used in the next stage of research to develop root cause analysis
strategies for maintenance request relationships building upon this research.

3.2 Machine Learning Algorithm

The first two methods used in the machine learning model produced similar, albeit
different seed word fragments for each of the five most common problem types, while
the random forest technique applies bootstrap aggregating to decision trees in order to
obtain an average prediction of all decision trees to extract important features to use in
future predictions.

Through comparison of the machine-assigned problem types to actual problem types,
it was found that both methods used for seed word extraction produced reasonable
overall accuracy in problem type detection: 69% for TF, 70% for TF-ICF, and 90% using
problem types with the random forest model. Figure 3 presents the confusion matrices
for each algorithm while Table 1 summarizes their performance, showing significant
improvement of the Random Forest algorithm over both TF and TF-ICE. All models had
the highest prediction accuracy in the most specific categories; this was notable
particularly for the TF and TF-ICF methods. The Random Forest model significantly
outperformed the other models in all categories, particularly General Maintenance, and
had a weighted prediction accuracy of 95%.
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Figure 2 - Annual Work Requests by Problem Type and Building Code
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Figure 3 - Confusion Matrices for TF (left), TF-ICF (centre), and Random Forest
(right)
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Table 1 - Accuracy of Problem Type Prediction Based on Extraction Method

Method Parameter Elec. | Gen. Maint. | HVAC | Locksmith | Plumbing
Precision 0.57 0.55 0.79 0.68 0.61
Detection Rate 0.07 0.24 0.14 0.08 0.09
TF .
Detection Prevalence 0.12 0.44 0.18 0.11 0.15
Balanced Accuracy 0.69 0.66 0.83 0.80 0.75
Precision 0.39 0.52 0.78 0.72 0.59
Detection Rate 0.09 0.17 0.15 0.08 0.09
TF-ICF .
Detection Prevalence | 0.23 0.32 0.19 0.11 0.16
Balanced Accuracy 0.70 0.61 0.85 0.79 0.76
Random Precision 0.96 0.84 0.99 0.91 0.91
Forest )
Detection Rate 0.11 0.38 0.19 0.1 0.12
Detection Prevalence | 0.11 0.45 0.19 0.11 0.13
Balanced Accuracy 0.91 0.94 0.96 0.97 0.95

These results were presented to the Facilities Engineer at Ryerson University in
conjunction with a procedural change proposal to implement a recommender system
based on predicted problem type and cause code to solicit additional information during
the work order (online) reporting process through questions targeted to identify root
causes. This was seen as highly beneficial, as the quality of information obtained from
occupants is inadequate in 90% of cases to determine an underlying cause, resulting in
multiple trips to resolve each problem. This revised procedure is expected to streamline
identification of root causes and a case study is planned for summer 2017 to test this
revised procedure on 50% of the campus to quantify the impact on work order response
time and personnel cost.

4 BIM VISUALIZATION STRATEGY

One of the strengths of BIM is the ability to store, synthesize, and visualize both
semantic and relational information as well as geometric. The maintenance requests
were integrated into the BIM model through the use of shared parameters for each
problem type totalized over the desired capture window(s), in this case, both a rolling 30-
day window and 5-year historical period. These parameters are instance parameters
applied to each room, allowing display filters to show the relative frequency of problem
types at the room, floorplan, or building level. Finer granularity visualization is possible
where specific problem sub-types are of interest to the facilities management team. In
this case study, one of the key questions was how many of the maintenance issues were
related to thermal complaints. The Facilities Engineer wished to understand the
clustering of these complaints, particularly a) whether they were higher than usual
during the shoulder seasons (during heating-cooling switchover), and whether there
were any zones with atypically high comfort issues. Figure 4 shows a sample floorplan
with HVAC-2 | Too Cold category requests quantified in a month of particular interest.

118 | Proceedings JC3, July 2017 | Heraklion, Greece



Christopher Raghubar, Nima Shahbazi, Brandon Bortoluzzi, Aijun An, and ].J. McArthur

Not visible in this figure are linked files providing access to the complete maintenance
issue log at the floorplan level.
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F1gure 4- Floorplan showing Vlsuahzatlon of HVAC2 | Too Cold issues

To better consolidate this information across the campus, a dashboard was developed
using Pivot Tables that read the BIM information using Dynamo. This reflects live
building information and summarizes current building CAFM data. This dashboard
includes a full building view, summarizing issues by floor (Fig. 5), while subsequent tabs
contain floorplan views similar to that shown in Fig. 4. A time slider is being
incorporated into the dashboard to allow the FM team to scroll through historical data,
updating these floorplans with the parameter value associated with the selected time, and
thus providing a visualization of the spatiotemporal clustering of requests of each type,
to identify both priority areas and seasonal patterns of complaint.
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Figure 5 - Dashboard for sample building (full building view)

5 CONCLUSIONS

The case study presented above determined that machine learning algorithms can be
used to classify highly variable occupant-generated work requests and assign problem
types with a high degree of accuracy. Combined with data mining to identify trends in
the CAFM data and the visualization of those trends in BIM, this provides maintenance
supervisors with improved information regarding patterns of complaints, providing
insight into system performance issues and other root causes. The algorithm developed
in this research incorporated with a recommender system further provides the ability to
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tailor information collection during work order request placement, thus improving the
usability of information obtained through this process.

The key findings of the machine learning algorithm development are that the
accuracy of prediction is highest for the most specific problem type (subtype) categories,
and that the random forest provided the highest overall accuracy, exceeding 90%. The
accuracy of the predictive models could thus be further improved in future research
through the following: (1) elimination/refinement of General Maintenance category in
the training and testing sets and reassignment to more specific categories; (2)
elimination/refinement of all general and - Miscellaneous maintenance requests for
training and testing using problem subtypes, and (3) refinement of the algorithms with
enhanced work requests based on recommender-system prompted information

Three limitations have also been identified for this research. First, the study of a
single campus limits the application of results and replication of this research on other
facility datasets is necessary for generalization. Second, the number of parameters
necessary to visualize the synthesized data in BIM is onerous, thus the prioritization of
problem types and sub-types is a valuable topic of future research to determine which
information is of most value in facilities management and can reduce this burden.
Finally, the accuracy of these models must be improved prior to real-world deployment.

The next stage of research will implement the case study discussed previously and
will incorporate additional analysis to assign priority based on a combination of problem
type, specific trigger words, and density of issues (geographic or temporal).
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