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ABSTRACT 
 
 Continuous condition monitoring and inspection of under-construction 
highway retaining walls is essential to ensure that construction performance criteria 
are met. The use of LIDAR systems by the construction industry has been 
significantly increased in recent years especially for recording the as-built and as-is 
conditions of facilities. The high-precision, dense 3-D point clouds generated by 3-D 
laser scanners can facilitate the process of Asset Condition Assessment (ACA). ACA 
involves preprocessing the point cloud data, for which point clouds have to be 
cleaned of any unwanted or occluding objects, and noises. As part of this research, 
the retaining wall point cloud data from an ongoing highway construction project was 
processed and analyzed. The project uses 3-D laser scanners for regular monitoring of 
mechanically stabilized earth walls that retain the soil supporting the highway 
alignment. The temporary steel and wooden brackets that hold formworks on top of 
the walls along with other construction materials are defined as unwanted objects. 
The authors have used a non-deterministic algorithm to remove the brackets and 
noises from the point clouds. Various settings of the algorithm have been analyzed 
using different sets of data. This paper presents the accuracy and performance of the 
tested algorithm and its evaluation when comparing the results with manually cleaned 
point clouds.    
 
INTRODUCTION 
 

With the advent of remote sensing technologies, 3-D laser scanners have been 
employed by the construction industry for several different uses such as 3-D as-built 
model reconstruction (Tang et al. 2010, Xiong et al., 2013), project control and 
progress monitoring (Turkan et al. 2012), MEP clash detection and as-built 
reconstruction (Tang et al. 2013, Bosche et al. 2013), 3-D thermal modeling (Wang et 
al. 2012), and infrastructure surveying and inspection (Tang et al. 2012, Olsen et al. 
2012). Laser scanners enable rapid and accurate data collection from under-
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construction facilities, which makes them a very useful tool for quality control 
purposes. Hashash et al. 2008, used 3-D laser scanner data to monitor ground 
movements caused by excavation. The precise and non-contact measurement ability 
of the laser scanners has facilitated monitoring of infrastructure systems such as 
bridges, and dams (Tournas and Tsakiri, 2008). Recent research studies have also 
focused on applying image processing techniques and laser scanner technology for 
highway asset data collection and road construction (Golparvar et al., 2012, Gong et 
al. 2012). Olsen et al. 2012, have used laser scanners for real-time change detection of 
landslides and earth movements for highway retaining walls. While laser scanners 
can provide precise geometry data, the utilization of point clouds without adequate 
preprocessing may result in erroneous assessments. Data preprocessing often includes 
manual or automated filtering and removal of unwanted or occluding data (Tang et al. 
2010). Occluding objects such as vegetation are usually filtered from the point cloud 
by identifying them based on their reflectivity or amplitude values (Schall et al., 
2005). Other researchers have looked into semi-automated methods for detection and 
removal of ground objects such as rock masses from point clouds (Gigli et al. 2011). 
In general, each scan dataset may have its own particular undesired objects and 
therefore, available solutions may not be suitable for every point cloud data set. More 
importantly, the geometrical parameters and features of a scan target have to be 
considered before the data preprocessing begins. Preprocessing of under-construction 
facilities is particularly challenging since construction sites are dynamic and usually 
occupied with laborers, materials, and construction equipment, much of which 
frequently changes positions.                

This paper focuses on point cloud cleaning and noise removal as an essential 
step of data preprocessing for Mechanically Stabilized Earth (MSE) walls. These 
walls are constructed with the purpose of retaining soils below the freeway alignment 
generally where right-of-way constraints preclude the use of a sloped embankment.  
The authors have studied the under-construction MSE walls on California Interstate I-
405 Sepulveda Pass Widening Project in Los Angeles, CA. The exterior of the wall 
consists of prefabricated concrete panels that are attached to reinforcing straps that 
extend into the reinforced soil mass below the freeway lanes.  

The walls were scanned by the project surveying group on a regular basis. The 
scanned data was then processed and post-processed for vertical settlement and 
lateral movement over time during and following construction of the MSE walls. The 
final stage of the construction includes the installation of barrier moment slabs on top 
of the MSE wall. Brackets are installed on top panels of the wall to hold the 
formwork before concrete is poured. The pouring of concrete for the moment slab 
takes place in different phases and on different dates, therefore, the as-built point 
cloud of the walls often contains the brackets and other construction materials 
occluding the wall’s surface.  
In order to accurately analyze the wall’s point cloud data and to avoid processing 
errors, the brackets and other occluding objects have to be manually trimmed out of 
the point cloud. This process is time consuming and labor intensive and often subject 
to human errors. Errors in trimming out portions of point clouds may result in loosing 
important data and consequently effecting the data computation during the post-
processing stage. In order to improve point cloud data preprocessing, there is a need 
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to automate the process of point cloud cleaning and noise removal to reduce human 
errors, and to decrease the time and cost associated with the manual process.  
RANSAC Algorithm for Cleaning Point Clouds. Random sample consensus 
(RANSAC) (Fischler and Bolles, 1981) is a non-deterministic method for robustly 
fitting a model to a data set that is outlier-contaminated. The algorithm is widely used 
especially in the field of computer vision for robust image feature detection, 
matching, and visual motion estimation (Brown and Lowe, 2002). The RANSAC 
algorithm has been also used in the literature for detecting different shapes and 
objects within the 3-D point clouds (Schnabel et al. 2007). The advantage of the 
algorithm is its high tolerance to outliers within a data set (Fischler and Bolles, 1981).  

The general steps that the algorithm goes through to fit the best model to the 
data set are: (1) Randomly selecting a subset of data; (2) Fitting a model to the data 
subset; (3) Classifying the data points as inliers (consensus set) and outliers based on 
the fitted model; (4) Repeating previous steps for N iterations; and (5) Selecting the 
largest set of inliers and re-estimation of the best model. The main variables that the 
algorithm works with are E (outlier ratio within the data set), p (probability of 
success in finding inliers only), N (number of iterations, which is calculated based on 
E and p values), and finally t (distance threshold for determining how close the datum 
should be to the model to be considered as an inlier). The number of required 
iterations depends on the value of p and E. The higher values of p and E result in 
greater numbers of iterations.  

This paper presents the results of deploying the RANSAC algorithm for 
removing noise and cleaning the MSE wall’s point clouds. RANSAC was chosen 
over other existing algorithms because of its capability of fitting a model to a data set 
and more importantly, its ability to consistently identify unwanted objects which have 
varying geometric features and therefore cannot be detected and eliminated using 
point cloud filters. The authors have analyzed the geometric features of the point 
cloud and have evaluated different settings of the algorithm to achieve the best 
cleaning performance. The brackets, formworks, fence, and ground were recognized 
as outliers and the wall data points as inliers.   
                     
MSE WALL POINT CLOUD 
 

Figure 1 is an image of the MSE wall along with its 3-D point cloud obtained 
from the laser scanner. The MSE walls along the I-405 highway vary significantly in 
terms of height, length, and other geometrical parameters such as wall’s orientation 
and curvature. The prefabricated concrete panels of the walls create near-vertical and 
generally horizontal joints on the façade. The sets of vertically stacked concrete fascia 
panels along the wall are referred to as columns. Each column of panels is 
approximately 1.5m wide. The vertical ridges on the surface of the panels are created 
for acoustic and traffic noise control as well as an aesthetic treatment. This study uses 
an MSE wall with the following parameters: Length= 240m, Height= 5m, Number of 
Columns= 158. The wall’s point cloud contains 25,583,981 points. 
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METHODOLOGY 
 
Point Cloud Segmentation. In order to evaluate the performance of the RANSAC 
algorithm, the authors have used different sizes of the wall’s point cloud. The point 
cloud was manually segmented into multiple columns using the vertical joints on the 
wall. The point cloud cleaning and noise removal process was evaluated for point 
clouds with 1 to 15 columns. 

 
                      Figure 1. MSE Wall’s Point Cloud and Image 
 
RANSAC Variables. For the purpose of this study, the authors have used a fixed 
value of 0.99 as the probability of success of data modeling for the algorithm to get 
the most accurate results possible. For the MSE walls, an outlier, as defined earlier in 
the paper, is any object that is not located on the surface of the wall. The ratio of 
outliers is automatically computed by the algorithm. The calculated average ratio of 
the outliers for the point cloud described above is 0.30. The most important variable 
that needs to be carefully studied is the distance threshold value for inliers. The 
threshold value is generally subjective and dependent on the type of the data under 
study. As can be seen in Figure 1, the outliers have different Z values than points on 
the wall’s surface considering the project Cartesian axes. The other factor that has to 
be considered before determining the threshold value is the geometry of the wall. 
Figure 2 shows a top view of the wall’s point cloud. The face of the wall is made up 
of individual concrete fascia panels and therefore has a surface with variable 
indentations. The small indentations are fairly uniform and consist of the ridges on 
the individual concrete panels of the wall while the larger indentations are the vertical 
joints between the columns of panels along the wall alignment. Looking at the top 
view of the point cloud (Figure 2), if we take the centerline of the wall as the baseline 
for the best fitting model to the data (using planar model), we have to determine the 
right distance threshold value that eliminates the outliers while preserving the joints 
and data points on the wall surface. Subsequently, the algorithm was evaluated for 
five different thresholds: t=0.01m, t=0.02m, t=0.03m, t=0.04m, t=0.05m. Threshold 
values greater than 5cm were not considered since this depth generally encompasses 
the ridges in the concrete panels and the joints between columns. 
       
Algorithm Evaluation. The algorithm was tested on different sections of the wall 
composed of 1 to 15 columns of panels for five different threshold values (total 
number of tests= 5×15= 75). The runtime of the tests were recorded to determine the 
efficiency of the algorithm for different settings. In order to analyze the accuracy of 
the algorithm in eliminating the outliers and noises, the point clouds for different 
numbers of columns were manually cleaned and used as the ground truth. Guidelines 
were set for manual point cloud cleaning according the current industry practice to 
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verify that the automatically cleaned point cloud is close. The guidelines were as 
follows: 

- Trimming out the brackets using the side section view of the point cloud 
- Trimming out the ground points and formwork using the top view of the point 

cloud 
- Trimming out the wooden fence using the front view of the point cloud 

 
 
 
 
 
 
 

 
                     Figure 2. MSE wall’s point cloud top view 
 
Table 1 presents the duration of manual point cloud cleaning for point clouds with 
different numbers of columns. 
        
Table 1. Time duration of manual cleaning process. 

No. of Columns in the 
Point Cloud 

1 2 3 4 5 6 
 

7 8 9 10 11 12 13 14 15 

Cleaning Duration 
(minutes) 

1:15 1:25 1:29 1:40 1:53 1:58 
 

2:05 2:11 2:20 2:43 2:50 2:57 3:10 3:18 3:26 

 
In order to compare the RANSAC results with the ground truth (manual cleaning), 
the two point clouds were compared using the nearest neighbor algorithm (Samet, 
2005). The point clouds were associated with an octree data structure with level 9. 
The octree is a hierarchical data structure for representing spatial relationships of 
geometrical objects (Meagher, 1980). The octree level 9 was chosen by authors to 
improve computing speed for large size point clouds as well as to keep the computer 
memory consumption level down based on a 32-bit memory address. The comparison 
of two point clouds is based on a point-to-point comparison method, which finds the 
distance between nearest point neighbors within a voxel search. The manually 
cleaned point cloud represented the reference model with which, the results from 
RANSAC are compared. The points on both point clouds are then projected to a 3-D 
voxel map and the distances between the reference model points and the closest 
points from the compared model are calculated (Olsen et al. 2012). The low values 
for standard deviation of total existing distances would confirm the accuracy and act 
as indicators for algorithm’s performance. 
 
RESULTS AND DISCUSSION 
 
Analysis. Figure 3 illustrates the raw point cloud and the automatically cleaned point 
cloud. The scattered points on the top of the wall in Figure 3a are the remaining parts 
of the fence. These points are not identified as outliers as they are close to the fitting 
plane defined by the algorithm. However, this is not a concern for pre-processing of 

Façade Ridge 

Vertical Joint 
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point clouds since these outliers can be easily trimmed out manually in less than 10 
seconds. The results indicate that the brackets, formwork and the ground were taken 
out from the point cloud and only shadows of them were left. Considering the fact 
that the remaining parts of the fence (areas not in the shadow of a bracket or other 
obstruction) would cause error during the point cloud comparison process, the authors 
trimmed them out manually which took less than 10 seconds. In order to further 
analyze what data points are considered as outliers, the authors studied the histograms 
of the X, Y and Z coordinates for the raw and cleaned point clouds. The histograms of 
the X and Y coordinates for both point clouds are very similar, however the 
histograms for the Z coordinate of the point clouds are quite different. The reason is 
that most of the outliers are located outside the wall’s surface plane and therefore, 
they have different Z coordinates. Most of the outliers in this data set have Z 
coordinates ranging from 8 to 9 meters. According to the histograms, the Z points 
within the approximate interval of (8, 9) meters are considered as outliers and are 
eliminated by using the RANSAC algorithm.  
 

 
 
 

              
Figure 3. a) Raw point cloud    b) RANSAC result 

 
Determination of Optimal Distance Threshold and Number of Columns. Table 2 
provides results from the comparison of the ground truth point clouds (manually 
cleaned point cloud) with ones cleaned by the RANSAC algorithm for different 
distance thresholds. The low standard deviation (sigma) values indicate that the two 
point clouds are quite similar. Figure 4 represents a visualization of the sigma 
changes for different number of columns (point cloud sizes) and threshold values. For 
all threshold values except t=0.01, the standard deviation follows the same trend. 
All threshold graphs have minimum values when given one column and get 
maximum values for number of columns: 8, 11 and 15. This fluctuation is most 
probably due to the reason that the wall is not completely straight and is curved at 
some points. Defining best fitting plane on a curved wall is quite challenging and 
may result in losing some of the inlier data points. The authors plan to study the 
effects of a wall’s curvature on automated point cleaning process in their future work. 
The minimum sigma among different distance thresholds occurred with t=0.05 and it 
is equal to 0.002395 for one column. The second smallest sigma is for the same 
threshold for the point cloud with three columns. Additionally, based on Figure 4, the 
sigma value has remained small up to point clouds with three columns, therefore, for 
this type of wall, an acceptable accuracy can be achieved with the number of columns 
ranging from 1 to 3.  
 
Run Time. The total time required for the algorithm to process a point cloud with one 
column of panels is 5 seconds for t=0.05, whereas the manual cleaning process takes 
about 75 seconds (Computer’s configuration: Core i5 2.4GHz Processor, 8 GB 
RAM).  

971COMPUTING IN CIVIL AND BUILDING ENGINEERING ©ASCE 2014 



 
CONCLUSION 
 

Post-processing of the 3-D point clouds for monitoring and inspection of 
highway retaining walls requires high quality and reliable data. Manual cleaning of 3-
D point clouds necessitates spending excessive amounts of time and labor and it is 
often erroneous. The authors evaluated an automated method for point cloud cleaning  

Table 2. Cloud comparison results (σ=standard deviation) 

 
 
And noise removal. The results showed that the algorithm is promising in terms of 
removing outliers from the MSE walls’ point clouds without sacrificing the inliers. 
This paper focused on automated point cloud cleaning for one type of MSE walls. 
The current findings are based on results from one wall. 

Future work will include analysis of various types of MSE walls and 
evaluation of the algorithm’s performance for walls with curvatures and changing 
orientations. In addition, the current methodology requires manual segmentation of 
the point clouds. The future research will investigate a methodology for automatically 
segmenting point clouds using the wall features. The goal of this research is to 
improve the quality of point clouds and more importantly to eliminate human errors 
by automating the point cloud data processing.          
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Figure 4. Results for different distance thresholds and number of columns 
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