
Automatic BIM filtering using Model View Definitions 

Ken Baumgärtel, ken.baumgaertel@tu-dresden.de    
Technische Universität Dresden, Germany 

Stephan Pirnbaum, stephan.pirnbaum@tu-dresden.de  
Technische Universität Dresden, Germany 

Hervé Pruvost, herve.pruvost@tu-dresden.de  
Technische Universität Dresden, Germany 

Raimar J. Scherer, raimar.scherer@tu-dresden.de  
Technische Universität Dresden, Germany 

 

Abstract 

Interoperability between multiple software applications used in the construction domain and 
based on Building Information Modeling (BIM) should support common common stable 
technical interfaces and standardized data formats, like for example the Industry Foundation 
Classes (IFC). Moreover, interoperability can be enhanced by using so called model view 
definitions (MVDs) for exchanging building information in several BIM domains between 
different participants. While model views are currently mainly used for documentation and 
checking of building exchange data the need of transferring partial building information 
models between participants is raising. For example, in the context of building energy 
performance analysis an energy point-of-view on a building is needed. Therefore, this 
information expressed through MVDs must be present and level of details can help to 
optimize building simulations. In this paper, we present a concept how MVDs can be used to 
check and respectively reduce building information. 

Keywords: BIM, IFC, MVD, mvdXML, Validation, Filtering, ifcQL 

1 Introduction 
A model view is an excerpt of a specific data set in a predefined structure and it expresses 
data requirements in a building information model. For that purpose, buildingSMART 
introduced model view definitions and the related data format mvdXML which is based on 
XML schema. They allow the declaration of particular IFC types, attributes and data types 
required by a software application. For example, with the help of a MVD it can be defined 
that a specific property like the thermal transmittance has to be linked to every wall, or that 
space boundaries between walls and rooms must exist. 

Software applications use these MVDs to check if required information is provided in the 
building information model. For creating MVDs there exists a tool called ifcDoc 
(buildingSMART International Ltd. 2016) from buildingSMART which allows domain users to 
specify MVDs, to generate subsequent mvdXML documents and to validate a given IFC file 
based on that. These requirement checks are an essential task especially because building 
information increases considerably in time and information gaps too. Besides the different 
design and construction domains need very specific data which are not relevant for every 
BIM participant. For this reason, this paper presents an innovative concept which allows 
checking BIM data, but also filtering with model views on the basis of mvdXML.  

The concept extends the validation of a building information model with the possibility of 
reducing provided information to a new partial building information model and consists of 

mailto:ken.baumgaertel@tu-dresden.de
mailto:stephan.pirnbaum@tu-dresden.de
mailto:herve.pruvost@tu-dresden.de
mailto:raimar.scherer@tu-dresden.de


Baumgärtel et al. 2016 Automatic BIM filtering using Model View Definitions 

Proc. of the 33rd CIB W78 Conference 2016, Oct. 31st – Nov. 2nd 2016, Brisbane, Australia 

three steps: (1) transformation of a mvdXML file to complex SQL-like queries, (2) check of 
the original BIM with the converted query commands and (3) reuse of the commands for 
extracting requested information from the original IFC file and export of a reduced IFC file. 

This paper addresses the conversion steps and the implemented prototypes with their 
algorithms for handling IFC and mvdXML files. First, we take a look on state of the art in BIM 
filtering and validation. After that we introduce the IFC Query Language (ifcQL) which 
enables a SQL-like syntax for selecting, updating, creating and deleting information in IFC 
files.  Then the mvdXML conversion process is presented and some examples are shown. 
Finally, we summarize the paper and highlight the advantages of our approach. 

2 Filtering and Validation in BIM 
With the IFC, all the domains in the construction industry are addressed. While this is good 
for interoperability reasons it also leads to some problems regarding level of details in each 
domain. Pauwels et al. (2011) describe that the schema is too general for most of the 
purposes. Because there exist many engineering domains, which influence partially each 
other, emerge necessarily optional data types that represent important information in a 
domain while in another domain they are not needed. For example, a valid BIM for structural 
analyses doesn’t need the declaration of building storeys or rooms, but load-bearing walls 
and slabs should be marked. This leads to redundancy in the data model, because it 
provides too many options instead of including constraints, which are needed in software 
development to implement stable application and interfaces. Therefore, many software 
developer are interpreting the schema in a wrong way and the data exchange is often 
erroneous (Sacks et al. 2010). For some tasks, such as thermal energy building calculations, 
the IFC scheme have limited semantics to define how information is declared and 
exchanged in the right way (Venugopal et al. 2012). Many optional attributes and the 
possibility to declare object properties with IfcPropertySet complicate a uniform expression 
and the preservation of model quality in the schema.  

In the context of filtering, i.e. the reduction of information, of building information models 
raises the question which information is needed (information requirements). Katranuschkov 
et al. (2010) classified different information requirements with following types of model views: 
a) Domain model view, b) Ad-hoc model view and c) Multimodel view. The domain model 
view corresponds to the approach of buildingSMART by using Model View Definitions 
(Hietanen 2006), which define the information requirements of a specific exchange scenario 
based on Information Delivery Manuals (IDM) (Wix & Karlshoej 2010). For such reasons, 
Zhang et al. developed the mvdXMLChecker prototype to parse MVD on the basis of 
mvdXML and to check IFC models (Zhang et al. 2014; Zhang et al. 2015). When one or 
more checks fail, a report is generated and lists all potential problems. The Ad-hoc model 
view refers to information of a concrete model. The extracted information is specified on-the-
fly on the basis of the provided BIM. In the Multimodel view concrete information 
requirements are specified, like in the Ad-hoc model view, but they refers to additional 
information from different domain models, e.g. cost model, which are connected to the 
architectural model (for example linking costs to walls). 

The development and usage of model views as described above depend on time and 
model detailing aspects. The definition of (partial) data sets is often done preliminary, i.e. it is 
uncoupled with the actual data reduction of a concrete model, but it can be also carried out 
on the basis on the information in a concrete model (Windisch et al. 2012). For realizing the 
data reduction with model views, an implementation of different types of filter or filter layers 
is required. Windisch et al. (2012) presented four filter types: (1) filtering on schema level, (2) 
filtering on class level, (3) filtering on object level and (4) filtering on reasoning level. The 
possible detail level in Ad-hoc model views is higher than in domain model views, because 
of the knowledge of concrete instances and model-specific aspects (for example dimensions 
of building elements or used materials).  



Baumgärtel et al. 2016 Automatic BIM filtering using Model View Definitions 

Proc. of the 33rd CIB W78 Conference 2016, Oct. 31st – Nov. 2nd 2016, Brisbane, Australia 

3 The Query Language ifcQL 
For the definitions of MVDs and their application on IFC files a relational algebra is used with 
an own syntax. It is similar to SQL and is named ifcQL. The primary purpose is not only (1) 
validation of building information data, but also (2) extraction of a specified building 
information set and the creation of a new version of the building in IFC. In this sense, a 
reduced building information model can be created which can be exchanged with one or 
more software applications. The ifcQL complies with the CRUD principle: 

- Create Creating a new data set. 
- Read Reading an existing data set. 
- Update Modifying an existing data set. 
- Delete Deleting an existing data set. 
 

3.1 Structure of ifcQL 

An MVD defined with ifcQL can be specified in one or more files in which one command per 
line is stated and refers to one data set. It can be determined if one command is applied on 
the previous one or creates a new data set statement from the full building information. The 
ifcQL provides many functions to check, reduce, extend or modify a building information 
model. In ifcQL following commands can be used: 

- Filter to reduce a building information model. 
- Check to validate a building information model. 
- Add to add new entities to a building information model. 
- Insert to add new properties to existing entities in a building information model. 
- Update to modify existing entities of a building information model. 
- Delete to delete entities or properties in a building information model. 
- Load to import existing MVDs as part of a new MVD. 
 
The commands are defined in a custom syntax and each begins with the character “~”. 

The declaration of concrete entity types, attributes as well as constraints are each specified 
with a “-” on the line. The syntax diagram of the initial command declaration is presented in 
Figure 1. In a similar manner to SQL, building information data set can be queried using the 
commands SELECT, FROM and WHERE. The FROM refers to the set of IFC entities by 
declaring types and identifiers. The SELECT is one of the commands above and the 
WHERE refers to object attribute values, for example the “GlobalId” of IfcRoot objects and 
the target value. 

 

 
Figure 1 ifcQL commands 

The most important commands are check and filter. They are shown in Figure 2 and 
Figure 3. In the validation phase, objects and their specific conditions (object semantics) on 
the one hand and relations between objects (relation semantics) to the other hand can be 
checked. This allows not only the declaration of attribute values, but also the classification of 



Baumgärtel et al. 2016 Automatic BIM filtering using Model View Definitions 

Proc. of the 33rd CIB W78 Conference 2016, Oct. 31st – Nov. 2nd 2016, Brisbane, Australia 

objects. For example, with the relationcheck it is possible to check the assignment of rooms 
to a specific building storey. The outcome is a Log file which contains all checks and their 
results written in a report.  

The result of the filtering task is instead a partial building information model whose 
information content correlates to the assigned sub schema defined in the MVD. Filtering on 
class level reduces, like the filtering on schema level, building information models on the 
basis of conditions defined in term of types and their relations. These conditions are applied 
during the filtering task on concrete models (e.g. filter all building elements of a specific 
type). The filter command can be followed by the declaration of a type (“-type”) to search and 
extract objects of that type, or by a specific “GlobalId” to search an exact object (“-guid”) or 
to exclude it from the partial set of the result. With the command “-recursive” it is additionally 
possible to include entities to the result set which are directly linked to the queried entity. The 
ifcQL provides more possibilities to work with building information, because it is based on the 
Java-based framework BIMfit which supports any STEP data format (any IFC version) and 
provides several functions to access BIM data (Wülfing et al. 2012; Technische Universität 
Dresden 2016).  

 

 
Figure 2 Check command in ifcQL 

 

 
Figure 3 Filter command in ifcQL 

4 Filtering and Validation using mvdXML 
In the definition phase of MVDs there still exists in principle no building information model. 
The exchange requirements are created through declaring classes and attributes. For doing 
so, the official software tool for MVDs from buildingSMART ifcDoc is used (buildingSMART 
International Ltd. 2016). With ifcDoc the MVDs can be exported in the mvdXML file format 
and can be used to validate any BIM by loading it into the tool. Another software application 
is mvdXMLChecker which was implemented for the BIMserver (de Laat 2016; 



Baumgärtel et al. 2016 Automatic BIM filtering using Model View Definitions 

Proc. of the 33rd CIB W78 Conference 2016, Oct. 31st – Nov. 2nd 2016, Brisbane, Australia 

opensourcebim.org 2016). It can also be used in other tools to check building semantics 
against requirements. Nevertheless, filtering is currently not possible with any of these tools. 
Because of that we developed the tools mvdXML converter and ifcQL processor to enable 
validations as well as filtering based on MVDs. 

4.1 Mapping Process 

Through a two-step process an mvdXML file can be used to extract partial building data from 
a BIM. Figure 4 shows the tool chain: 

(1) Usage of mvdXML converter to map an mvdXML file into the corresponding ifcQL 
syntax. During this step, it can be specified at application start-up if a validation or a 
filtering query should be made. 

(2) Executing the ifcQL processor with import of an IFC file and the created ifcQL file 
from step (1) that contain all the commands. The output is either a LOG file with the 
summary of checks (validation) or a reduced IFC file (filtering). 
 
 

 
Figure 4 Process chain in mapping process 

The second step was introduced in detail in section 3. Looking deeper in the first step, 
following tasks are performed: 
1. Parsing of mvdXML - The mvdXML converter parses the XML content of the given 
MVD. 
2. Instantiation of MVD objects based on their content - The XML elements are 
evaluated, mapped to corresponding Java classes and instantiated. The mvdXML structure 
Version 1.1 (Chipman et al. 2015) is used to create a Java object graph of exchange 
requirements. 
3. MVD objects are converted to ifcQL commands - After the initialisation of the object 
graph with exchange requirements, every node is transformed to the correct ifcQL command 
step by step. 
4. Export of ifcQL commands - Finally, the ifcQL commands are collected in the right 
order and exported to an ifcQL file which can be used to validate (check) or filter a building 
information model. 
 

The element <Templates> includes all rules which can be applied in validating or filtering 
a BIM. It can consist of several <ConceptTemplate> elements which can be separated in 
multiple <SubTemplates> to improve the overall structure. For each <ConceptTemplate> an 
ifcQL command is created (with command filter or check depending on the use case). 

Listing 1 shows an example of retrieving building façade elements in the model view 
“FacadeModelView”. The structuring of <Templates> and <ConceptTemplate> is presented 
in mvdXML. In particular the XML attribute applicableEntity is from importance. It declares 
the IFC type on which the query refers. Furthermore, the declaration of <Rules> is 
presented. The elements in it are used to create the query path starting from 
applicableEntity. The element <AttributeRule> consists of AttributeName which marks the 
corresponding IFC attribute. The attribute Cardinality is also processed and can be 0, 0:1, 1 



Baumgärtel et al. 2016 Automatic BIM filtering using Model View Definitions 

Proc. of the 33rd CIB W78 Conference 2016, Oct. 31st – Nov. 2nd 2016, Brisbane, Australia 

or 1:n. The representations are shown in Table 1. Like in Listing 1 an <AttributeRule> 
element can consist of multiple <EntityRule> elements which again consist of several 
<AttributeRule> elements. A <EntityRule> have the attributes EntityName and Cardinality to 
mark the IFC type(s). 
 

Table 1 Cardinality representations in mvdXML and ifcQL 

Cardinality mvdXML ifcQL 

1:n _asSchema ONETOMANY 

0 Zero ZERO 

0:1 ZeroToOne ZEROTOONE 

1 One ONE 

1:n OneToMany ONETOMANY 

 
For a better structuring it is possible to use <Views> elements with the specified 

<Templates>. Each <ModelView> element can include multiple <ExchangeRequirement> 
elements. For each combination of those elements the mvdXML converter creates one ifcQL 
file which is named like the model view. Figure 5 presents the relationships between 
<Concept> elements and <ModelView> elements. To each <Concept> a name, an IFC type 
(applicableRootEntity) and a <Template> have to be assigned. The attribute 
applicableRootEntity can be used to overwrite applicableEntity of a <ConceptTemplate> 
element. 

 

 
Figure 5 relation between Model Views and Exchange Requirements 

4.2 Use Case 

The simple MVD in Listing 1 can be used to check or filter façade elements. A path 
beginning from IfcBuildingElement with the IFC inverse attribute “ProvidesBoundaries” is 
declared to reach the connected space boundaries. The value for 
“InternalOrExternalBoundary” is set to “EXTERNAL” which means value “2” in the enum. 
This <ConceptTemplate> is assigned to the exchange requirement “FacadeElements” and 
attached to a model view called “FacadeModelView”. The transformation in the appropriate 
filter (left) and check (right) commands is presented in Listing 2. Together with the ifcQL 
processor arbitrary building information models can be loaded and reduced respectively 
checked. Figure 6 shows an example building before and after the filtering task based on the 
MVD. Only the façade elements, rooms, storeys and the building entity are exported in a 
new IFC file. 

 
 

Listing 1 example of a mvdXML for checking or filtering building façade elements 

1 
2 
 
 
 
3 
4 
 
5 

<?xml version="1.0"?> 
<mvdXML xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
  uuid="6080" status="sample" xsi:schemaLocation="http://buildingsmart-tech.org/mvd/XML/1.1 http://www.buildingsmart-
tech.org/mvd/XML/1.1/mvdXML_V1.1_add1.xsd"  
xmlns="http://buildingsmart-tech.org/mvd/XML/1.1"> 
  <Templates> 
    <ConceptTemplate uuid="6a0d" name="FacadeTemplate" applicableSchema="IFC4" applicableEntity="IfcBuildingElement"> 
      <Rules> 
        <AttributeRule AttributeName="ProvidesBoundaries"> 



Baumgärtel et al. 2016 Automatic BIM filtering using Model View Definitions 

Proc. of the 33rd CIB W78 Conference 2016, Oct. 31st – Nov. 2nd 2016, Brisbane, Australia 

6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

          <EntityRules> 
            <EntityRule EntityName="IfcRelSpaceBoundary"> 
              <AttributeRules> 
                <AttributeRule AttributeName="InternalOrExternalBoundary"> 
                  <EntityRules> 
                    <EntityRule EntityName="IfcInternalOrExternalEnum"> 
                      <Constraints> 
                        <Constraint Expression="Value='2'" /> 
                      </Constraints>                               
  <!-- ...Closing Tags... --> 
    <ConceptTemplate uuid="fea4" name="RoomTemplate" applicableSchema="IFC4" applicableEntity="IfcSpace" /> 
    <ConceptTemplate uuid="5e8a" name="StoreyTemplate" applicableSchema="IFC4" applicableEntity="IfcBuildingStorey" /> 
    <ConceptTemplate uuid="0efe" name="BuildingTemplate" applicableSchema="IFC4" applicableEntity="IfcBuilding" /> 
  </Templates> 
  <Views> 
    <ModelView uuid="2fe8" name="FacadeModelView" applicableSchema="IFC4"> 
      <ExchangeRequirements> 
        <ExchangeRequirement uuid="efc8" name="FacadeElements" applicability="both" /> 
      </ExchangeRequirements> 
      <Roots> 
        <ConceptRoot uuid="c7ec" applicableRootEntity="IfcBuildingElement"> 
          <Concepts> 
            <Concept uuid="367e" name="FacadeTemplate" override="false"> 
              <Template ref="6a0d" /> 
              <Requirements /> 
              <TemplateRules operator="and" /> 
            </Concept> 
          </Concepts> 
        </ConceptRoot> 
        <!-- ...more references and closing Tags... --> 
</mvdXML> 

 
 

Listing 2 Filter (left) and Check (right) command in ifcQL of the mvdXML example above 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

#FacadeTemplate(367e) 
~filter -type "Ifcbuildingelement" -with path 
ONETOMANY 
"ProvidesBoundaries"("Ifcrelspaceboundary") 
:(((("InternalOrExternalBoundary" EQUALS "2")))) 
#RoomTemplate(f8ca) 
~filter -type "Ifcspace" 
#BuildingTemplate(3f77) 
~filter -type "Ifcbuilding" 
#StoreyTemplate(7283) 
~filter -type "Ifcbuildingstorey" 

#FacadeTemplate(367e) 
~check entity -type "Ifcbuildingelement" having path ONETOMANY 
"ProvidesBoundaries"("Ifcrelspaceboundary"):(((("InternalOrExternalBoundary" 
EQUALS "2")))) 
#RoomTemplate(f8ca) 
~check entity -type "Ifcspace"  

#BuildingTemplate(3f77) 
~check entity -type "Ifcbuilding"  
#StoreyTemplate(7283) 
~check entity -type "Ifcbuildingstorey" 

 

  
Figure 6 BIM example before (left, with interior) and after (right, without interior) using the mvdXML converter and ifcQL 

processor – the roof is visually hidden to provide a better insight into the building 

5 Summary 
The importance of MVDs is continuously increasing, while the complexity and amount of 
information grows in BIM permanently. The domain experts own different perceptions on 
building information and a homogeneous way to exchange different building data in a BIM 
project should be supported. In this paper, we introduced the concept of using model view 
definitions based on mvdXML for validation and for filtering of building information models. 
The validation with mvdXML was already presented by Zhang et al. (Zhang et al. 2014; 



Baumgärtel et al. 2016 Automatic BIM filtering using Model View Definitions 

Proc. of the 33rd CIB W78 Conference 2016, Oct. 31st – Nov. 2nd 2016, Brisbane, Australia 

Zhang et al. 2015). But the filtering with mvdXML files was not provided up to now. Beside 
checking and providing required data to a specific software application, it is conceivable that 
MVD based filtering could in the future become interesting for certification purpose. 
Following the intention of buildingSMART to develop MVDs for certification purpose, more 
than checking compliance of IFC models against certain standard MVDs, such MVDs or 
specific new ones could be used for producing an IFC file that complies with a specific 
quality standard. In view of that, different simulation tools could for example use filtering for 
importing one reduced IFC model that is conform to a simulation model view recognised for 
best practice. More specifically a MVD could be produced as a certification standard that 
guaranty a simulation expert to use a filtered IFC model of high quality, thus reducing 
simulation errors due to building information inconsistency.   

IFC is suitable for exchanging partial building information models. Therefore it is possible 
to transfer only required building data sets between domain experts to fulfil their tasks. This 
minimizes data transfers and simplifies partially the building information which is a big 
advantage in the context of building simulations. Hence, particular building storeys or rooms 
can be passed over to thermal energy simulation tools without sending the whole IFC data. 
For the implementation of this process we developed a two-step conversion. First, the 
mvdXML converter imports an mvdXML file and translates the contents to corresponding 
ifcQL commands. With the SQL-like syntax of ifcQL it is very easy to create, read, update or 
delete BIM data. Hereby, the user has to specify if the result should be used for validation or 
filtering. In a second step the application of the MVD on a building with the tool ifcQL 
processor is carried out. The output is a validation report or a reduced building information 
model in IFC (currently IFC2x3 and IFC4 possible). In an example we show the reduced BIM 
which can be used in any other BIM-based software application. The Java programs ifcQL 
processor and mvdXML converter can be integrated in any software application. The 
documentation and the prototypes itself can be found on https://openeebim.bau.tu-
dresden.de/bimfit.html. 

Acknowledgements 
We kindly acknowledge the support of the European Commission to the projects 
HOLISTEEC (Grant Agreement No. 609138, http://www.holisteecproject.eu) for the 
development of the mvdXML converter, Design4Energy (Grant Agreement No. 
609380, http://www.design4energy.eu) for the development of ifcQL and ifcQL processor 
and eeEmbedded (Grant Agreement No. 609349, http://eeembedded.eu) for the extension of 
the developments. 
 

References 
buildingSMART International Ltd., 2016. ifcDoc. online. Available at: 

http://www.buildingsmart-tech.org/specifications/specification-tools/ifcdoc-tool/ifcdoc-
download-page [Accessed July 15, 2016]. 

Chipman, T., Liebich, T. & Weise, M., 2015. mvdXML - Specification of a standardized 
format to define and exchange Model View Definitions with Exchange Requirements 
and Validation Rules, 

Hietanen, J., 2006. IAI Official IFC Model View Definition Format, 
de Laat, R., 2016. mvdXMLChecker. online. Available at: 

https://github.com/opensourceBIM/mvdXMLChecker [Accessed July 15, 2016]. 
opensourcebim.org, 2016. BIMserver.org. online. Available at: http://bimserver.org 

[Accessed July 15, 2016]. 
Sacks, R. et al., 2010. The Rosewood experiment - Building information modeling and 

interoperability for architectural precast facades. Automation in Construction, 19(4), 
pp.419–432. Available at: http://dx.doi.org/10.1016/j.autcon.2009.11.012. 

Technische Universität Dresden, I. of C.I., 2016. BIMfit - BIM filtering and integration toolbox. 



Baumgärtel et al. 2016 Automatic BIM filtering using Model View Definitions 

Proc. of the 33rd CIB W78 Conference 2016, Oct. 31st – Nov. 2nd 2016, Brisbane, Australia 

online. Available at: https://openeebim.bau.tu-dresden.de/bimfit.html [Accessed July 19, 
2016]. 

Venugopal, M. et al., 2012. Semantics of model views for information exchanges using the 
industry foundation class schema. Advanced Engineering Informatics, 26(2), pp.411–
428. Available at: http://dx.doi.org/10.1016/j.aei.2012.01.005. 

Windisch, R., Wülfing, A. & Scherer, R., 2012. A generic filter concept for the generation of 
BIM-based domain- and system-oriented model views. In G. Gudnason & R. Scherer, 
eds. eWork and eBusiness in Architecture, Engineering and Construction. Reykjavik, 
Iceland: CRC Press, pp. 311–319. Available at: 
http://books.google.com/books?hl=en&lr=&id=z1z83fcH4zMC&oi=fnd&pg=PA311&dq=
A+Generic+Filter+Concept+for+the+Generation+of+BIM-based+Domain-+and+System-
oriented+Model+Views&ots=T3N-1hEf3S&sig=BIp2DESSr1N-LDnhNrWsJDxzpiY 
[Accessed December 8, 2014]. 

Wix, J. & Karlshoej, J., 2010. Information Delivery Manual Guide to Components and 
Development Methods, 

Wülfing, A., Windisch, R. & Baumgärtel, K., 2012. BIMfit – Ein modulares Softwarewerkzeug 
zur Abfrage und Filterung von Gebäudeinformationsmodellen. In Proceedings des 
Forum Bauinformatik 2012. Bochum, Deutschland. 

Zhang, C., Beetz, J. & Weise, M., 2015. Interoperable Validation for IFC Building Models 
Using Open Standards. Journal of Information Technology in Construction, 20(2015), 
pp.24–39. 

Zhang, C., Beetz, J. & Weise, M., 2014. Model view checking: automated validation for IFC 
building models. In Mahdavi, ed. eWork and eBusiness in Architecture, Engineering 
and Construction: ECPPM 2014. Vienna, Austria, p. 123. Available at: 
http://books.google.com/books?hl=en&lr=&id=tw7NBQAAQBAJ&oi=fnd&pg=PA123&dq
=“models+are+the+pre-
condition+for”+“supports+a+full+range+of+data+exchanges”+“dominant+citizens,+and+
the+model+instances”+“needed+for+these+processes+is+contained+in”+&ots=1edn5m
he. 

 
 


