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A CASE STUDY ON COMPARATIVE ANALYSIS OF 3D
POINT CLOUDS FROM UAV MOUNTED AND
TERRESTRIAL SCANNERS FOR BRIDGE CONDITION
ASSESSMENT

Varun Kasireddy?, and Burcu Akinci?

Abstract: Recent improvements in 3D laser scanning technologies enabled accurate
capturing of existing spatial conditions using point clouds. To leverage this progress
for a more accurate condition assessment, state Department of Transportations (DOT)
across the US have been utilizing scanning technologies through deployment of
terrestrial laser scanners (TLS) and more recently Light Detection and Ranging
(LIDAR) scanners fitted to UAVs. However, not much study thus far discusses the
potential of these 3D point clouds captured from these two different data collection
approaches for supporting automatic and detailed (element-level) condition
assessment of bridges. The goal of this study is to compare the utilization of 3D point
cloud generated from a terrestrial scanner with that from a UAV in supporting
element-level condition assessment of bridges. This paper presents recent results
from full scale deployment on a small/medium size highway bridge. An
important component of our effort is to explore how well the collected data supports
element level condition assessment as per National Bridge Inspection Standards
(NBIS). This study assesses the potential to incorporate these data collection
modalities into standard bridge safety inspection practice.
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1 INTRODUCTION

Recent ASCE Report Card for America’s infrastructure (ASCE 2013) indicated the average
grade for bridges to be C+. Given the sheer number of bridges in the US (>600,000) and
the substandard grade, it is necessary to emphasize the importance of assessing current
conditions and frequent monitoring of the health of bridges. Current routine inspection
requires sending inspectors to observe, measure and record defects manually, which is
labour-intensive and dangerous. Also, this inspection process usually requires shutting
down a portion of or even all of a bridge structure’s daily operation, which result in
inconvenience to surrounding communities (Koch et al. 2015; Zhu & Brilakis 2010).
Results recorded in this way can also be error-prone because they are subject to
transcription errors, measurement errors and they highly depend on personal judgement
of the inspector (Phares et al. 2004). To overcome some of these issues, there are ongoing
efforts to explore scanning technologies, ground based as well as those fitted to UAV, to
capture geometric information about bridges in addition to routine bridge inspection (Yan
et al. 2016). While there have been several applications for bridges using point clouds, such
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as assessing a bridge's surface flatness (Tang et al. 2009) and under clearance (Tang &
Akinci 2012a; Riveiro et al. 2013), and for supporting visual bridge inspection (Kasireddy
& Akinci 2015), there is currently no known initiative by the DOTs to exploit scan data
for in-depth element-level condition assessment.

Prior to attempting to use scan data for element-level condition assessment, it is
necessary to understand requirements of such an assessment as specified by NBIS. As per
these standards, an inspector assesses condition of quantities of bridge elements into one
of the four condition states (CS1 - Good; CS2 - Fair; CS3 - Poor; CS4 - Severe). These
standards provide a clear classification of defects based on material type. For example,
concrete elements have defects, such as cracks, spalling and eftlorescence; whereas, steel
elements have defects, such as section loss, rusting, and distortion. The standards also
specify what would constitute different condition levels of each of these defects.

In practice, during condition assessment, inspectors first identify all instances of
different types of defects present on all elements of a bridge. Then, they use several
characteristics of the defect instance, such as spatial extent, severity and colour, to
compare against reference values provided for each condition state in the element
inspection specifications to assign the defect instance to an appropriate condition state
(AASHTO 2013). Further, this procedure is repeated for all the instances to accumulate
quantities for different condition states of all bridge elements under consideration.

While point clouds can be leveraged to access information relating to characteristics
of a defect instance, manually extracting such information from point clouds can be
tedious and error prone (Tang & Akinci 2012a). Therefore, in the context of using scans
for condition assessment, if these specifications are formalized in a computer-interpretable
manner, then it can support automated element-level condition assessment. Here, it can
be either a complete condition assessment, or a sub task such as, preliminary analysis using
point cloud features to check if the collected scans can allow detection and assessment of
defects of certain types and of various condition state levels (when they are present).
Specifically, the focus of this paper is on the latter one. Such a preliminary analysis would
help get a quick sense of the quality of data at hand, before delving into a detailed condition
assessment of every defect instance. As TLS and UAV mounted scanners are increasingly
being considered for use in bridge inspection and assessment practice, we propose
quantitative approaches on scans collected from these scanners to understand their
suitability to condition assessment.

2 CASE DESCRIPTION

In this case study, we collected scan data at a bridge site using TLS and UAV mounted
scanners (UMS), and merged scans collected by these devices separately to get a complete
3D point cloud representation of the bridge. Then, we compared point clouds generated
from these two devices to determine how much they support element-level condition
assessment.

2.1 Overview of the bridge

Bridge A built over a creek in 1937 has a superstructure comprised of two simple steel
multi-girder spans. The reinforced concrete deck width measures 33.2 feet (10.12 meters)
outer-edge to outer-edge, with tar-and-chip overlay surface. The substructure consists of
two reinforced concrete abutments and one reinforced concrete pier. While examining the
condition commentary recorded in the inspection reports, we observed that this bridge
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contains instances of paint loss, concrete delamination/ spalling, and steel corrosion (with
or without section loss).

2.2 Scanner configuration and sensors

To collect scan data for this study, we used a medium range commercially available phase-
based scanner as the TLS option, whereas the UAV has been fitted with state-of-the-art
sensors that are required to enable both, mapping and localization. Figure 1 shows pictures
of both scanners and Figure 2a shows scanner locations and representative flight paths
during data collection of this bridge. For data collection, our goal was to position the TLS
in a manner to ensure capturing maximum amount of visibly exposed bridge element
surfaces. With similar data collection goals, UAV path included at least one pass under
each bay of the superstructure. The data collected by TLS are stitched together using
feature-based registration process, whereas the UAV scans are timestamped as they are
being captured, and on-board processing capabilities on UAV are leveraged to register
these scans. Overall, the size of the point cloud from TLS is about 12 million points. On
the other hand, the point cloud from the UAV scans had approximately 4.8 million points.
The top view of Span 1 in these registered scans is given in Figure 2b.
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Figure 2: (a) Figure showing TLS scanner locations and a representative UAV
flight path (b) UAV scan (top); Terrestrial Laser scan (below)
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3 APPROACH

3.1 Defect scale extraction

The main goal of this paper is to explore how well scan data supports element level
condition assessment as per NBIS. Therefore, to analyze the scan data as per these
specifications, we should first go through defect specifications for limit values at which
assessment of a condition changes from one state to another.

We use an example to explain these limit values. For instance, specifications for "Spall”
defects, shown in Table 1, provide a value for defect properties at which condition states
change. In this case, 1-inch threshold for depth of a spall decides if a condition is CS2 or
CS3. However, in some cases, specifications can be vague. For example, to designate a
condition as CS1, the specification does not provide any value, and it merely indicates
"None". This is also in overlap with the specification for CS2 assignment, which states that
any spall depth below 1-inch is to be designated CS2. At the same time, it is not practical
to assume 0-inch as the threshold for CS1 as site conditions are rarely perfect. To resolve
this overlap, we observed inspectors during a real bridge inspection, and found that
inspectors look for spall depth to be at least 1/16th of an inch to classify the condition as
CS2, anything below that to be CS1. Therefore, 1/16th of an inch is a limit value for CS1
and CS2. Similarly, for crack width, the limit values are 0.012 inch for CS1 and CS2, and
0.05 for CS2 and CS3. CS4 is a special condition that depends not just on the spatial extent
of the defect properties, but also on the defect context, such as the criticality of the element
it is present on, and whether it can cause a safety or a structural hazard.

Table 1: Table showing defect properties as per AASHTO Bridge Element
Inspection criteria (AASHTO 2013); limit values are highlighted (bold and italics)

Defects Reinforced Concrete Condition State (CS) Definitions
CS-1 CS-2 CS-3 CS-4
GOOD FAIR POOR SEVERE
Spalls/ None. Delaminated. Spall greater than I in.
Delamination/ Spall 1 in. or less |deep or greater than 6 in. The condition warrants a
Patch Areas deep or 6 in. or |diameter. Patched area structural review to determine
(1080) less in diameter. |that is unsound or showing the effect on strength or
Patched area that |distress. Does not warrant serviceability of the element or
is sound. structural review. bridge; OR a structural review
has been completed and the
Crack Width less than |Width 0.012-0.05 |Width greater than 0.05 defects impact strength or
(1130) 0.012 in. or in. or spacing of |in. or spacing of less than | serviceability of the element or
spacing greater |1.0— 3.0 ft. 1 ft. bridge
than 3.0 ft.

3.2 Plane extraction and point cloud assessment

To do comparative analysis of TLS and UMS scans, we use two features: Point-Plane
Distance (PPD) score and Grid Neighbourhood Distance (GND) score. The steps in the
process to compute these features from the scan data are shown in Figure 4. Comparing
these feature values of both the scans gives us a quick understanding of how well we can
do element-level condition assessment using the scans.

3.2.1 Point-Plane Distance (PPD) score

For the computation of PPD score, the raw point cloud data is first imported into MATLAB.
Then, point cloud is segmented as per bridge element definitions, using techniques, such
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as the one described in (Tang & Akinci 2012b). These segmented regions were further
divided into separate planar sections. Thereafter, Maximum Likelihood Estimation
SAmple Consensus (MLESAC) estimator (Torr & Zisserman 2000), which is a
generalization of Random Sample Consensus (RANSAC) estimator, is used to fit a
computational plane to the points from these sections. In the next step, "out-of-plane”
perpendicular distance between each point and the plane is used to filter points when
compared against different defect size scale values. These defect sizes are the limit values
of the defect condition states as determined in Section 3.1 (see also Table 1). For each of
the scale, PPD score is computed, which is the proportion of points representing the
segmented plane that contribute to extraction of the computational plane. We observed
that if at least 90% of the point contribute, then it is possible to quantify defects below the
corresponding defect size scale. The results from the comparison of PPD score of TLS and
UMS scans are given in the next section. Overall, PPD score provides a measure for
checking the ability of scans to support element-level assessment of defects which are
primarily out-of-plane with the element surface.

Raw point cloud

=
S izt * """"""""""" i
D! Segment point cloud regions as per :
g : bridge element definitions
=
i
§ : Extract planes
=i | ¥ FJ FJ
m — (o] — (o]
%) = = D
= = = =
gl E] - gl & -
——————————————————————————— A:ViataVarrrrsaannnn TVt R

Ortho-project plane to x-y or y-z
planes depending on element
orientation

! Perform Point-Plane distance i
i| thresholding by varying defect size scales | |

!

Compute distance score at each
scale for each plane

Extract boundaries

Aggregate score of all the planes at Create grid points at different

Distance Metric Computation

each scale i defect scales
__________________________________________________ i - o
=3 D
=1 =
=3 || ooooccoo
< Q
Ay L (2] 4

Compute distance from each grid
point to the nearest true point

Calculate cumulative score as well
as confidence value from
histogram at each scale

uoyvinduio)) 214o POOYI0qYSIaN] pLD)

Figure 4: Figure showing the process for performing quantitative assessment of
point clouds

3.2.2  Grid Neighbourhood Distance (GND) score

In the case of GND score, we follow similar steps as in PPD score computation, until the
plane extraction stage. Depending on the orientation of the normal for an element (vertical
or horizontal), the points in the segmented plane are ortho-projected, i.e. vertical planes to
y-z plane and horizontal planes to x-y plane. Thereafter, the boundaries of the points on
these ortho planes are computed. Further, grid points, with spacing equivalent to different
defect scales, are created within this boundary. In the next step, distance between each
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grid point to the nearest true point is calculated. GND score represents cumulative distance
obtained for all the grid points. This means that higher the score, lower the point density,
which can hinder quantifying defects of certain scales. For comparing the score of TLS
and UMS scan data, it is necessary to normalize the score with the total number of points
in the segmented plane region. An important limitation that should be noted is the effect
of outlier points on the boundary computation. Sometimes, this can result in creation of a
large number of extra grid points, which can corrupt the estimate of GND score. Overall,
the main advantage of this feature is that, it provides a measure of in-plane checking for
granularity to support element-level condition assessment. Another way to compute GND
score could be by taking histogram of individual distances, which tells us how scattered
the true points are, which in turn implicitly indicates the quality of point cloud in its ability
to support quantification of different defect sizes. However, this alternate way is out of
scope for this paper, and will be discussed in detail in future publications.

4 RESULTS AND DISCUSSION

Due to space constraints, results have been demonstrated only for abutment and deck
elements taking the case of a spalling depth. However, the process is the same for other
elements and measurable defect properties. As discussed in Section 3.1 (see also Table 1),
while assigning condition ratings specific to spalling depth, we observed that 1/16 inch is
a limit point between CS1 and CS2, whereas, 1 inch is a limit point between CS2 and CS3.
For that reason, we used these values for grid sizes.

From Table 2, it can be observed that for both abutment and deck elements, when a
grid size of 1 inch is tested, for TLS, the PPD score is consistently above 90%, which
indicates the possibility of detection of CS2, CS3 as well as CS4 condition state defects for
spalling. The premise for this is that if most of the points fall under the tolerance limit,
any defect greater than the limit can stand a chance for detection. However, if significant
number of points fall outside the limit, it is likely the case that the points representing the
actual defect will be overshadowed amongst the points representing non-defect surface
that are affected by noise. On similar lines of argument, for UMS data, it is possible to
detect only CS3 and CS4 level defects, given that PPD score is around 80% for all the planes.
In addition to implying that setting a higher tolerance limit naturally sees increase in the
PPD score, setting higher limit also signifies that we are now evaluating for defects at
higher severity, i.e. CS3 and CS4. That said, it is also important to note that local effects
(e.g. small local regions having no points as opposed to sparse distribution of point across
the plane) are not effectively highlighted by this metric. In summary, UMS scans have
potential to detect only CS3 and CS4 level out-of-plane defects. On the other hand, we can
also detect CS2 level out-of-plane defects with TLS if their dimensions are closer to the
limit value separating CS2 and CS3.

Table 3 shows results of GND score computation for Abutment and Deck elements
(shown for 1/8" grid size). As discussed in Section 3.2, higher the GND score, lower is the
potential to detect and quantify defects from that point cloud. Clearly, for the Abutment
section, UMS scan has much higher GND score, as compared to that of TLS scan. This is
possibly because, even though spatial distribution of points in the UMS scan was uniform
across the element when compared to TLS scan, the point density was much lower than
in the case of UMS scan. Conversely, though TLS scans had more occlusions (as seen in
Figure 2b) where points representing cross bracings are missing), where points were
actually present, and the point density was much higher than that for UMS scans. As a
result, we observed lower cumulative distances between the scan points and the grid points.
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Overall, the results indicate that higher the PPD score better are the chances of
detecting out-of-plane defects of different scales. Likewise, in the case of GND score, lower
score indicates easier detection of in-plane defects, as well as, better distinction among
different condition states. These features give an opportunity to quickly test any scan data
for feasibility to do element-level condition assessment for different defects and scale
levels, and this has been demonstrated using scan data from TLS and UMS.

Table 2 - Results from PPD tests

TLS UAV
Detectable Detectable
Element | Plane |Unit Defect Grid size |PPD score L. PPD score| Condition
Condition States
States
Abutment| LF |Spalling Depth
Wing 1 1/16 inch 36.32%|- 8.50%|-
1 inch 94.45%|CS2, CS3, CS4 78.98%|CS3, CS4
Wing 2 1/16 inch 36.44%|- 10.00%-
1 inch 98.02%|CS2, CS3, CS4 83.60%|CS3, CS4
Center 1/16 inch 27.19%|- 8.20%-
1 inch 93.63%|CS2, CS3, CS4 80.49%|CS3, CS4
Deck SF |Spalling Depth
Top 1/16 inch 34.85%|- 9.01%|-
1 inch 92.19%|CS2, CS3, CS4 81.59%|CS3, CS4
Table 3 - Results from GND tests
TLS UAV
Element Plane Unit | Defect Grid size Cumtlative GND | Cumulative GND
score score
Abutment LF Spalling Depth
Wing 1 1/8 inch | 0.0795 0.1012
Wing 2 1/8 inch | 0.0390 0.0859
Center 1/8 inch | 0.0103 0.1409
Deck SF Spalling Depth
Top 1/8 inch | 0.0303 0.0014

5 CONCLUSIONS

Current manual approach for inspection and condition assessment are tedious and error
prone, and these issues can potentially be addressed with reality capture technology, such
as laser scanning. This paper describes a case study to do a comparative analysis to
understand the feasibility of TLS and UMS scans for element-level condition assessment.

To quickly compare the scans obtained via TLS and UMS in a quantitative manner,
two features were used: PPD score for out-of-plane defects and GND score for in-plane
defects. Results from the analysis suggest that UMS scans are currently capable of
supporting only CS3 and CS4 level defects. TLS scans additionally help distinguish
between CS2 and CS3 level defects.

The limitation of this study is that the potential of scans is judged based solely on 3D
spatial data. In other situations, information such as colour and intensity can provide
valuable insights about the potential to defect and quantify certain type of defects, such as
rusting and efflorescence among others. In the future work, we will focus on these aspects
to achieve a more complete evaluation of point clouds. In addition to that, we will do
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process analyses of using these two modes of scanning to better quantify the benefits and
impact on condition assessment of bridges. The limitations of the scans (e.g. occlusions
and outlier points near scan boundaries) notwithstanding, the results presented
demonstrate the potential of scans to be used for automatically detecting and quantifying
defects of higher condition state levels, and serve as complement to human inspections.
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