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BIG DATA APPLICATIONS IN BUILT ENVIRONMENT:
TOWARDS A USE FOUNDATION MODEL
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Abstract: The term ‘big data’ is increasingly permeating the current debate over the
present and the future of our built environment. There are heightened expectations
about the role big data may or can play in enabling new applications and decisions
across the whole lifecycle of assets, from early design phase through construction to
operation and end-of-life. It is therefore necessary to analyse the state-of-the-art in
big data applications in built environment. This paper presents a structured and
systematic literature review on this emerging theme. The results are quantitatively
analysed using network and clustering techniques.

The research identified distinct clusters within two lenses: (1) the project
lifecycle (i.e., design/planning, construction, and operation), and (2) the built
environment hierarchy scale (i.e., component/product, building/facility, site,
neighbourhood, region and city). Six clusters of big data applications across the two
lenses were identified: energy management, traffic management, design & planning,
onsite construction activities, city-wide services, and smart cities.

The clusters show the level of research intensity around each of their nodes and
the connections between the nodes which indicate the emergence of new avenues of
investigations. These results represent the first steps towards developing a
descriptive ‘Use Foundation model' for big data applications in built environment.
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1 INTRODUCTION

The built environment encapsulates the entire natural and the artificial assets that
humans have constructed for their use. It includes villages, towns and cities,
infrastructure (i.e. railways, roads, bridges, energy and utility networks), and public
spaces such as parks and other urban spaces. The built environment is increasingly
pervaded by sensors that track almost everything around its users and constituents
enabling the generation of significant amounts of data. This growing generation and
availability of data has instigated industry and academia to investigate how such data
can be leveraged to simultaneously explore new opportunities and address emergent
built environment challenges. Strenuous discussions around ‘data revolution’ brought a
range of new terms and concepts: ‘big data’, ‘smart data’, ‘smart world’, ‘Internet of
Things’ (IoT), and ‘linked data’. However, the understanding of the impact this data
revolution on our built environment is still limited and there is a dearth of structured
reviews on this topic. This paper aims to address this gap by presenting a systematic
literature review on the applications or uses of big data in built environment. Frist, the
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paper will clarify the different terms and present a 'visual definition' of Big data. Then, it
will illustrate and analyse the results from the systematic literature review using
quantitative methods such as network analysis and clustering.

2 KEY TERMS AND DEFINITIONS

Data can be descriptions, counts, or measures, of anything, in any format. Initially, the
term ‘big data’ referred to large data sets that traditional technologies were not sufficient
to collect, store and process (Mishra 2016). There is still no universally accepted
definition for Big data. According to Boyd and Crawford (2012) Big data is defined as a
cultural, technological, and scholarly phenomenon that rests on the interplay of: (1)
Technology: maximizing computation power and algorithmic accuracy to gather,
analyse, link, and compare large data sets; (2) Analysis: drawing on large data sets to
identify patterns in order to make economic, social, technical, and legal claims, and (3)
Mythology: the widespread belief that large data sets offer a higher form of intelligence
and knowledge that can generate insights that were previously impossible, with the aura
of truth, objectivity, and accuracy. Big data is broadly used for two purposes, for
exploration and description, to understand trends in current and historical data; and for
predictive purposes, using current and historical data to help predict future trends and
make decisions in advance (Bilal et al. 2016). In recent years, closely related terms such
as 'smart data' and 'Internet of Things' emerged. According to (Pavliscak 2014, pp. 13),
smart data is data with a layer of intelligence. Smart data harnesses the challenges posed
by volume, velocity, variety and veracity of big data to provide actionable information
that improve decision making (Sheth 2013, pp. 17-18, and Lenk et al. 2015, pp. 1749).
The IoT focuses on the ability of all devices to communicate with one another or with
humans, either in real life or in the virtual world (Isikdag 2015). [oT gives objects the
ability to see and hear things that are constantly taking place around it, and at the same
time, communicate that data to a processing centre for analysis (Rathore et al. 2016).

A review of the numerous available definitions for big data (i.e., Al Nuaimi et al. 2015;
Chandler 2015; Gandomi and Haider 2015; Khan et al. 2014; Kitchin 2014; Marr 2015;
Mishra et al. 2016; Nativi et al. 2015; Qi and Wayne 2014) was performed. The only
difference between the available definitions was the inclusion of further Vs (e.g. Volume,
Velocity, Variety, etc.) as distinct characteristics of big data. Following the mapping of
all available definitions against all Vs, this research presents the nine Vs model as a
visual definition for big data (Figure 1). The nine Vs are explained in Table 1.

Some further characteristics of big data were identified in other authors' definitions
but were not included in the nine Vs model. For example, Kitchin (2014) adds the
characteristics of exhaustivity; resolution and indexicality, and relationality and
flexibility. However, upon the examination of these characteristics, it was found that
these either overlap or derive from the nine Vs. Therefore, it can be argued that the nine
Vs model exhaustively represents the 'current' concept of ‘Big data’ and congregate all
possible characteristics. However, it should be noted that the relative importance of the
characteristics can vary between different applications and uses of big data.
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Big Data:
9 Vs Model

Variability

Figure 1: The nine Vs Model: a visual definition of Big data
Table 1: The nine Vs of Big data.

Volume Size of the big data set.

Velocity Speed at which data is generated and requires processing.

Variety Numerous formats in which data exists (e.g. text, images, audio, videos,
messages, tweets, sensor data) resulting into heterogeneous data that is
often unstructured, uncategorised and unordered.

Veracity Authenticity of the data as significant amount of data within the big data
is often anonymous and unverified hence, affecting the significance of
the results in aiding in the decision-making process.

Value Value (e.g. economic, social, environmental) attainable from collecting,
storing and processing the data.
Variability Temporal and spatial variances in the streams of incoming data (e.g. ebbs
and flows) inducing a complexity in connecting, matching, cleansing and
transforming the data received from different sources.
Volatility Policy issues affecting the retention of the data collected from different
sources (e.g. retention time, access rights, cyber-security) that could
significantly affect the maintenance cost.

Validity Correctness and accuracy of the data in relation to the anticipated use —

it differs from above ‘Veracity’ that addresses the authenticity of data.

Visualisation Visual presentation of data that would otherwise be difficult to use in a

meaningful and informative way in decision-making.

3 METHODOLOGY

A modular view (Figure 2) of the built environment was adopted to support the objective
of exploring the uses of big data at each level within the built environment hierarchy.
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Neighbourhood

Building

Figure 2: Built environment scale (adapted from BIM Framework, 2016)

A systematic literature review was utilised to identify existing studies on big data uses in
built environment. The systematic review helps to reduce the natural tendency of
researchers to be swayed by potential biases and provides "a sort of scientific gyroscope
with an in-built self-righting mechanism” (Petticrew and Roberts, pp. 5-6). The search
strings (Table 2) were applied on the Scopus online database which was selected because
it contains the largest number of peer-reviewed academic journals of all online databases
in the field of science, technology and engineering. The initial search returned 1,924
papers. After executing the entire process of the systematic literature review (i.e.,
exclusion of non-journal articles; exclusion of papers published prior to year 2012;
exclusion of paper in other than English language; exclusion of non-physical science
papers; exclusion of keywords 'computing infrastructure' and 'computing architecture';
exclusion of non-related subject areas; exclusion based on abstract review, and exclusion
based on introduction/conclusion review), 71 articles subsisted and passed into the
subsequent stage of data extraction and analysis.

The identified studies were analysed using a combination of bibliometric analysis,
network analysis and clustering. The bibliometric analysis is generally used to evaluate
the qualitative and quantitative interest in a specific field and to describe key patterns.
The network analysis provides a quantitative understanding of a series of objects that are
interconnected. Data clustering places together sets of articles that share same
characteristics. To enhance the interpretation and analysis of results, Gephi was selected
as a network analysis tool because: (1) it has the ability to demonstrate links between
nodes based on spatial relationships, and (2) it provides flexible visual representations of
relationships (Jacomy et al. 2014). The remainder of the paper will focus on profiling big
data research in built environment across the different clusters.
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Table 2. Search terms for the systematic literature review

Big data Big data, Big data analytics, Analytics, Smart data, Datafication
Built environment Built environment, Construction, Sustainability, Civil engineering,
Structural engineering, AEC, Architecture, Buildings, Roads, Bridges, Rail,
Engineering
Big data Smart cities, Smart government, Smart grid, Energy management,
applications Utilities, Integrated services, Community ownership, Infrastructure

planning, Infrastructure, Traffic management, Public safety, Crowd
sensing, Crowdsourcing, Building information modelling, Building
information modeling, BIM, Building management systems, BMS, Building
automation systems, BAS

Building energy management systems, BEMS, Social networking services,
SNS, Early warning systems, Early warning

4 RESULTS AND ANALYSIS

This section addresses the profiling of the identified articles using two knowledge lenses:
(1) the phases of the asset lifecycle (i.e., design and planning, construction, and
operation); and (2) the built environment hierarchy scale (i.e., product/component,
building/facility, site, neighbourhood, city and region). Distinct clusters of big data
applications (Figures 3 to 5) across the two lenses are presented and discussed. In these
figures, the nodes represent the entities within the dataset. Their size is a measure of the
node degree (e.g. the larger a node is, the larger is its degree). The edges represent
connections or relationships between the nodes.

4.1 Big data across the asset lifecycle

The identified big data research clusters across the asset lifecycle are illustrated in Figure
3. The results show that big data research is more focussed on the operation phase than
on the design and construction phases. However, there is an increasing stream of big
data research connecting the design and planning phase to the operation phase. This

outcome will be reconfirmed - in section 4.3 - where big data applications are profiled
and described.
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Figure 3: Clusters and spatial distribution of big data research across the project
lifecycle
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4.2 Big data across the Built Environment hierarchy

The profiling of big data research across the built environment hierarchy is illustrated in
Figure 4. There is research across every level of the built environment hierarchy with the
highest concentration being at city level and building/facility level. There is also an
increase in research effort aimed at integrating the component, building/facility,
neighbourhood, and city levels. Site and region have much fewer links with the
remaining nodes. Their distance away from the centre demonstrates that they are less
integrated with other big data applications in built environment.
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Figure 4: Clusters and spatial distribution of Big data research across the built
environment hierarchy

4.3 Big data uses in built environment

The identified six clusters of big data applications in built environment (Figure 5) are:
energy management, traffic management, design/planning use, onsite construction, city-
wide services, and smart cities. Applications in energy management and traffic
management dominate the current research agenda of big data applications in built
environment. Onsite construction ranks third however, its corresponding cluster shifts
away from the other clusters - a situation referred to as isolation - and have fewer links
with nodes of other clusters. The top application area (i.e. energy management) is briefly
illustrated in this section.

Big data research in energy management was found in three sub-areas: energy
[waste] management, smart grids, and smart buildings. In energy waste management,
the common objective between the available studies is the identification of energy wastes
and the implementation of ways to achieve energy efficiencies. To achieve this objective,
researchers analyse patterns in consumption big data and identify anomalies (Janetzko et
al. 2013). Techniques such as non- intrusive load monitoring (Gillman et al., 2014; Paris
et al, 2014); non-linear usage patterns (Grolinger et al. 2016), analytics and
benchmarking (Pol et al. 2012; Park et al. 2015, Zhu et al. 2016), and predictive analytics
(Vaghefi et al. 2015) were used. In smart grids applications, big data, enabled by the
ability to take meter readings at short time intervals as opposed to the traditional
monthly readings, is allowing improved predictions and planning of power generation
needs and daily usages (Aman et al. 2015). Big data related topics for this application
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include: smart meters (Balac. 2013), statistical learning tools (Kekatos et al. 2014),
integration with renewable energy sources (Balac. 2013) and open service cloud for
integration of different 'smart' things (Deindl et al. 2015). In the smart buildings area,
big data were found in applications such as: dynamic energy management enabled
through real-time data reading, benchmark, visualisation and optimisation (Hong et al.
2015, pp. 703); providing comfort, usability and endurance through the amalgamation of
data about energy consumption, environmental conditions and levels of occupancy;
improving energy efficiency and reducing Green House Gas by analysing data from
building management system (Lee et al. 2013); adapting smart lighting applications and
artificial lighting system to occupancy and daylight changes and offering building usage
information services (Pandaripande et al. 2014); detecting faults automatically through
rule-based systems enabled by energy efficiency experts and data mining (Pefia et al.
2016); detecting fault or anomalies at whole building level through integrated portfolio
management (Ulickey. 2016), and communicating with utilities at city level of sensors
data related to smoke levels, temperature, electricity, gas and water usage (Rathore et al.
2016).
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Figure 4: Clusters and spatial distribution of big data applications in built
environment

4.4 Benefits, challenges and gaps

The benefits associated with big data applications in built environment can be
summarised as: enabling new decisions and improving existing decision making
processes; reducing CO2 emissions; improving the use of urban space; improving health
through reducing pollution; making cost savings for producers and consumers; offering
better safety and security for citizens; enhancing citizens' access to amenities; increasing
sustainability through the introduction of new technological developments; providing
better communication networks, and focusing on a more integrated society.

The identified key challenges facing big data applications in built environment
include: security and privacy concerns; handling of non-interoperable unstructured data;
availability; cost and resources for implementation, and governance.
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Some gaps in the application of big data in built environment were identified.
However, these gaps can be short-termed as the whole area of big data application in
built environment is still an emerging area of investigation. The identified gaps include:
application utilities other than electricity (i.e. water and gas); use of data from, or
integration with, Building Information Modelling / Models (BIM); Retrofitting,
Regeneration and Refurbishment (RRR); impact of social networking services in cities,
and end-of-life activities (i.e., in disposal activities: reconstruction, reuse, recycling and

landfill).

5 CONCLUSIONS

This paper identified and analysed big data applications in built environment using a
systematic review and network analysis. Although big data applications were found
across the entire hierarchy of the built environment and the lifecycle of assets, their
distribution across the hierarchy's scale is unbalanced. The six use clusters were
identified across the two selected lenses (i.e. built environment hierarchy, and asset
lifecycle) include: energy management; traffic management; design and planning; onsite
construction; city-wide services, and smart cities. This paper briefly summarised the uses
of big data in the energy management cluster and its sub areas. The explanation of the
other clusters and the descriptive 'Use Foundation model' are deferred to an extended
journal article.

The limitations of this research are those typically associated with a systematic
literature review. Different search terms would return different results. However, an
extensive and varied set of terms, keywords, their synonyms and spelling variations was
used as reasonably as practicable to guide the search strategy.

These early results can be used by domain investigators to: direct attention on
identified gaps; exploit existing uses of big data, and envisage new applications across
the different levels of the built environment hierarchy and the phases of asset lifecycle.
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