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ASPHALT ROAD LAYER DETECTION FOR
CONSTRUCTION PROGRESS MONITORING
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Abstract: Transportation construction projects consistently underperform, with an
estimated $82.6 billion globally in annual cost overruns. Current progress monitoring
practices contribute to this poor performance thanks to their manual, subjective,
inaccurate, and time-consuming nature. Automating this task could address these
shortfalls and improve project performance. One way to accomplish this automation
compares 3D Civil Infrastructure Model design surfaces to 3D point cloud
reconstructions of the as-built scene. This requires automated detection of the design
surfaces in the as-built data. Research in this area has focused on all-or-nothing
detection of structural building components using methods that are a poor fit for large,
complex, and closely-layered road design surfaces. These approaches ignore the kind
of incremental progress detection needed on transportation projects. This paper
proposes a method for detecting large road design surfaces in discrete regions (i.e.
increments) of as-built point cloud data, contributing a novel model-guided and
sparse hierarchical data structure ('layerTree’) that addresses the limitations of
existing state-of-the-art methods. The authors collected as-built and as-planned data
during construction of a small residential road in Cambridge, UK. A total of 640
experiments on this data examined different combinations of layerTree parameters
and classification rules, producing a peak accuracy of 86.62%, peak precision of
80.65%, and peak recall of 92.50%. The most balanced combination produced an
accuracy of 86.50%, precision of 68.17%, and recall of 60.99%.
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1 INTRODUCTION

Transportation construction projects consistently underperform, with an estimated $82.6
billion globally in annual cost overruns (Vick and Brilakis 2016). The nature of these
projects contributes to this inefficiency, with sites often in rural areas that can stretch
across many kilometres. This presents a logistical challenge for inspectors and managers
charged with overseeing project execution, as it can be very costly and time-consuming to
conduct the regular in-person site assessments needed in current practice to identify
schedule deviations. In addition to these logistical progress monitoring challenges, the
current methods employed for accomplishing the task lack the accuracy, consistency,
reliability, and timeliness needed to enable effective project control actions. They rely on
checklists and daily reports that offer room for subjective interpretation and provide no
physical measurement of the work done on site. Progress monitoring remains largely a 2D
process despite the increasing proliferation of 3D and 4D Civil Infrastructure Models
(CIM), the use of which is mostly limited to marketing and communication of design intent
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and/or construction sequencing (Guo et al. 2014). A method that leverages the rich 3D
information available in CIMs and accurate 3D reality capture technologies, like laser
scanning or photogrammetry, could address both the logistical and performance shortfalls
of the current practice in transportation construction progress monitoring.

An essential task in implementing such a progress monitoring approach is the
detection of relatively thin design surface layers in 3D as-built data. In this context,
detection refers to both the classification (i.e. which element is present) and localization
(i.e. exactly where it is present in the scene) of design surface layers in the as-built point
cloud data (PCD). This paper proposes a method for accomplishing this detection and
presents experimental results on as-built data collected during the construction of a small
residential road in Cambridge, UK. The following section provides background and
context to this effort by reviewing recent relevant research. The proposed method is then
described, and experimental results are discussed in subsequent sections. Finally, we draw
conclusions and make recommendations for further research in this area.

2 BACKGROUND

The scope of this paper is limited to detection of layered as-planned design surfaces in as-
built PCD for asphalt road construction progress monitoring. Research in this area has
been very limited, so recent approaches for detection of non-layered design surfaces in as-
built PCD for building construction will also be examined in this literature review.

Approaches to design object detection in building construction typically search for as-
built points within distance tolerances of design surfaces after PCD-to-model registration.
Bosché (2010) used a point-to-point method labelling as-built points with the nearest
model element during registration. Others (e.g. Tuttas et al. 2014; Golparvar-Fard et al.
2015; Braun et al. 2015) partitioned the registered scene into equilateral axes-aligned
volume elements (voxels) and/or raster cells before conducting the point-to-surface/plane
search. The object detection decision has been accomplished using a decision tree based
on voxel and raster cell labels (Tuttas et al. 2014), a Support Vector Machine classifier
(Golparvar-Fard et al. 2015), and a threshold on recognized points (Zhang and Arditi 2013).
Braun et al. (2015) used a precedence relationship graph to account for activity sequence
and technical dependencies, which improved the method’s robustness to occlusions. All of
these methods focus on detecting progress at the object level; i.e. the design object is either
there or not, and incremental progress is not considered. The spatial partitioning methods
show promise, but either require analysing one surface triangle at a time (e.g. Tuttas et al.
2014) which can be costly for large and complex road surfaces, or use recursive axes-
aligned subdivisions that cannot guarantee a uniform voxel 'fit' to non-planar surfaces (e.g.
Golparvar-Fard et al. 2015). This poor voxel fit could result in detection conflicts, e.g.
where two closely-layered surfaces intersect the same voxel, and/or inconsistent results,
e.g. when a surface intersects the middle of some voxels and only a small corner of others.
These drawbacks limit the effectiveness of existing methods on road construction projects,
where design surfaces are large, layered and complex, and require incremental progress
determination.

One study dealing directly with asphalt road design layers (Kivimaki and Heikkila 2015)
used CIM surfaces for cloud-based as-built comparisons on infrastructure projects. Survey
data from various project sources (e.g. GNSS surveys, Total Stations, etc.) was uploaded
to a cloud-based server. The researchers then assigned points to the applicable design
surface, and elevation differences between the surveyed points and design surface were
calculated to determine compliance with specified tolerances. This study, however,
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stopped short of classification and/or detection, as the matching of surveyed points to the
relevant design surface was accomplished using a specific code assigned to each point.
Such point codes must be manually set on data collection equipment prior to operation, or
manually applied to various sections of the point cloud during post-processing which
requires a-priori knowledge of the surveyed scene. The authors concede that manual point-
to-surface matching is required; a drawback that limits the usefulness of this approach for
automated progress monitoring.

Considering the shortfalls in current progress monitoring practice for road
construction and limitations in the body of research, there exists a need for a method
capable of incrementally detecting large, complex, and relatively-thin design surface
layers in unlabelled as-built data. The next sections propose and evaluate such a method,
with the stated goal of answering the following questions: How can we partition the 3D
as-planned space to consistently detect road design surfaces in discrete increments? What
combination of design and/or input parameters will produce the most desirable results?

3 PROPOSED SOLUTION

For the reasons mentioned in the previous
section, we propose a novel model-guided
and sparse hierarchical data structure,
termed the 'layerTree', for assigning as-

Rasterized Surf n

built points to voxels corresponding to
discrete regions of the layered design <§7 pointThreshold
surfaces. A threshold on the number of searchDistanceI AN
points attributed to each voxel is then [ :
Q

used to determine if that cell is a Jestertzed Surt 1
candidate for positive detection. Finally,
we resolve detection conflicts between
layered cells occupying the same x-y
space using a branch classification rule.
Figure 1 illustrates the key concepts and
parameters used in the implementation of this solution. Figure 2 on the following page
provides an overview of the process.

The first step in the process establishes a 2D grid of cells, the 'projectGrid’, defining
the x and y boundaries of each 'rasterBranch' in the tree structure. The lowest design
surface is transformed from the CIM project coordinate system to the global origin and
aligned using Principal Component Analysis so the transverse and longitudinal axes of the
road are paralle] to the global x- and y-axes respectively. This analytical coordinate system
is used to provide stability for calculations performed using floating point numbers, and
to ensure proper alignment of grid cells for the following analysis. We define an outer
bounding box and subsequently divide it into square cells with side length 'gridCellSize'.
This parameter defines the granularity of the ultimate progress determination; i.e.
incremental progress on a design surface layer will be defined at the per-cell level. If all
else is perfect in the detection algorithm, this gridCellSize parameter defines the acceptable
level of error in the final determination, as projectGrid cells located in areas of as-built
transition between layers will be partially incorrect in their classification.

Figure 1: The voxelTree Data Structure
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In the following step, we generate the
layerTree by projecting projectGrid cells onto
the layered design surfaces and building
'leafVoxels' at each projected cell location. This
construction topology explains the model-
guided and sparse nature of the solution, as
voxels are only generated where rasterBranches
intersect a design surface. The 'searchDistance’
parameter defines the leafVoxel height oriented
normal to the design surface within the
rasterBranch boundaries. The selection of the
optimal searchDistance parameter is a focus of
experiments in the following section, but care
should be taken to ensure it is selected to limit
overlap with voxels from adjacent design
surface layers.

Next, we populate the leafVoxels with as-
built points. The registered PCD is transformed
to the analytical coordinate system, and an
octree is constructed to enable rapid
identification of only those points nearest to
each leafVoxel. A hull cropping algorithm then
assigns points to the leafVoxels. First, we
traverse the as-built octree to identify only those
points nearest the leafVoxel in question. This is
done to limit the number of points fed into the
hull cropping algorithm. The algorithm then
crops these points using a 3D hull constructed
from the leatVoxel such that only points falling
within this volume are assigned to the voxel. We
use a threshold (‘pointThreshold’) on the
number of points assigned to label each
leafVoxel as a 'candidate' or 'non-candidate’ for
detection. This threshold is designed to
eliminate voxels containing sparse noise from
further consideration. The optimal
pointThreshold value is another focus of the
experiments discussed in the next section.

Registered
Design
Surfaces

Registered
PCD

Transform & Align

Aligned
Surfaces

Generate layerTree

Aligned PCD layerTree

Populate voxels

Populated
Voxels

Classify Branches

Classified
Branches

-As-builtinput data - Original process
-As-planned input data - Mixed process

Figure 2: Solution process

Given the closely-layered nature of the design surfaces, random noise in the as-built
data exceeding the pointThreshold could result in multiple leafVoxels being marked
‘candidate’ in the same rasterBranch region. To address this and correct any potential
detection conflicts, we implement a further rasterBranch classification rule. This study
considers three possible rules: maximum points (i.e. select the voxel with the most points),
minimum distance (i.e. select the voxel with the minimum average orthogonal distance
between the as-built points and the design surface), and minimum vertical variance (i.e.
select the voxel whose points have the lowest variance in the z-direction). The following
section tests this solution for a variety of different parameters using each of the three

classification rules.
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4 METHODOLOGY, EXPERIMENTS & RESULTS

As-built and as-planned data were collected
on the construction of a residential road for a
new development in Cambridge, UK. The
asphalt road design included five distinct
surfaces: (1) the formation, or bottom of
excavation, (2) a 520 mm thick sub-base layer,
(3) a 125 mm thick base course, (4) a 65 mm
thick asphalt binder course, and (5) a 40 mm
thick asphalt wearing course. To facilitate the
following experiments, we generated a 3D w
corridor model from the design information Figure 3: Trimble UX5

provided by the contractor using Autodesk's Civil 3D application.

We collected as-built aerial imagery using Trimble's UX5 fixed wing unmanned aerial
vehicle (UAV), shown in Figure 3. This method of data collection was selected because it
is the most cost- and time-effective technology capable of producing accurate survey data
for large areas (Vick and Brilakis 2016). The UXS5 collected a total of 224 images during
the 11:13 minute flight, with a ground sample distance of 0.02 m from an average flying
height of 93.5 m above ground level. We performed photogrammetric post-processing of
the collected images in Trimble's Business Center application. A total of eight GNSS-
surveyed ground control targets were used to georeference the photogrammetric products
in the design model's coordinate system, requiring no further registration between the
model and as-built data. The post-processing produced an orthorectified image and point
cloud with an average density of 335 pts/m2. We selected the southern-most section of the
road to run the following experiments because it contained a transition between two
relatively thin layers (base course and asphalt binder) at the time of data collection. Figure
4 depicts the site, photogrammetric surveying products, and ground truth conditions.

We conducted a series of 640 experiments testing different combinations of
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Figure 4: As-built data and ground truth conditions
searchDistance and pointThreshold parameters for the three classification rules discussed
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in the previous section. The experiments also considered the 'no classification' case,
skipping the final step shown in Figure 2 to provide a better feel for the impact of the
classification rules. The gridCellSize parameter was set to 0.5m and controlled for in the
following experiments based on conversations with local project management personnel.
For each of the four classification cases, we varied the searchDistance between 0.01m and
0.04m in 0.01m increments and tested pointThreshold values between 1 and 40. Design
layer thickness drove selection of the searchDistance values tested, being careful to limit
overlap in grid cell voxels between adjacent design surface layers. The range of
pointThreshold values was determined experimentally, running enough iterations to
ensure an observable peak in accuracy. We ran all experiments on a computer with a 4.0
GHz Intel i7 processor, 32 GB of RAM, a dedicated 1,280-core GPU with 2 GB memory,
and Windows 10 64-bit operating system. Average accuracy, precision, and recall were
used as the performance metrics (Equations 1-3), where ¢ is the number of design surface
classes, true positive (TP;) is the number of leafVoxels correctly detected, false positive
(FP;) is the number incorrectly detected, true negative (TN;) is the number correctly
undetected, and false negative (FN;) is the number incorrectly undetected for each class
respectively. Table 1 lists the top results and the combination of searchDistance (sD) and
pointThreshold (pT) parameters that produced each. We include a fourth metric, 'Balance'
calculated as the mean of the three performance metrics, to highlight the combination of
parameters producing the most balanced results. Figure 5 depicts the results for the
combination of parameters that produced the most balanced results.

c TPi+TN;
1=17p,+TN;+FP;+FN;
c

Average Accuracy = (D
c TP;
1=17p,1Fp;

c

Average Precision = (2)
c TP;
1=17p,+FN;

c

(3)

Average Recall =

Table 1: Maximum performance metric values

Classification Rule Avg. Accuracy Avg. Precision Avg. Recall Balance

None 86.013% 80.654% 92.502% 71.757%

sD: 0.02, pT: 15 sD: 0.01, pT: 29 sD: 0.04, pT: 1 sD: 0.03, pT: 14
Maximum Points 86.623% 80.654% 62.981% 71.891%

sD: 0.04, pT: 27 sD: 0.01, pT: 29 sD: 0.03, pT:1 sD: 0.03, pT:10
Minimum Distance 86.501% 80.654% 60.885% 70.880%

sD: 0.04, pT: 29 sD: 0.01, pT: 29 sD: 0.04, pT: 1 sD: 0.04, pT: 18

85.825% 80.654% 53.677% 69.080%

Minimum Variance —ny g 09 'Ti16 sD:0.01,pT:20  sD:0.02,pT: 11 sD: 0.02, pT: 15
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Maximum Point Classification Rule
searchDistance 0.03 m, pointThreshold 10

Average Accuracy: 86.50%
Average Precision: 68.17%
Average Recall: 60.99%

Figure 5: Results for most balanced mix of parameters

5 SUMMARY AND CONCLUSIONS

This study presented a novel approach for detecting incremental progress on layered
asphalt road design surfaces in PCD, contributing a model-guided and sparse hierarchical
data structure known as the layerTree to accomplish the task. One advantage of the
layerTree is its ability to uniformly fit voxels to non-planar surfaces, allowing for a more
consistent point-to-surface assignment compared to standard space partitioning
approaches like octrees. Additionally, limiting the detection decision to discrete regions
enables identification of incremental progress on large design objects, unlike existing
methods focused on all-or-nothing detection of building structural elements. We
conducted 640 experiments testing the proposed method's performance across a wide
range of input and design parameter combinations for four separate classification cases.
The results show promise, but also highlight a need for further research. The poor
reliability results (as measured by precision and recall) appear to be caused by a
combination of misclassification, surface occlusion, and potential construction error (see
Figure 6). Our future research will examine the automated classification and handling of
these different error cases to improve overall performance. Interestingly, the maximum
recall achieved prior to classification (92.5%) indicates that the required progress
information is available in the data. However, the drastic reduction in recall following
classification indicates that a more sophisticated classification rule (or set of rules) may be
required to improve performance. Further research in this area will examine additional
classification approaches along with inclusion of a priori construction sequencing and
technique information to improve results.
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Figure 6: Binder layer results overlaid with PCD
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