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ABSTRACT: As-built information of building elements (e.g. element dimension, geometry, material, etc.) could be 
used to facilitate multiple building assessment and management tasks, including project progress monitoring, 
productivity analysis, construction inspection, etc. However, the current process for retrieving as-built 
information of building elements from remote sensing data is labor-intensive and time-consuming. This is 
especially true for modeling the building indoor environments prevalent with occlusions and partitions. In order 
to address these limitations, the use of RGB-D mapping has been proposed and shown a promise for modeling 
building indoor environments. One fundamental part in the RGB-D mapping is to select an appropriate 
combination of visual feature detectors and descriptors. This paper investigates the effectiveness of different 
visual feature detectors and descriptors on modeling 3D building scenes. Several visual feature detectors and 
descriptors (e.g. GFTT, SURF, SIFT, ORB, and BRISK) have been evaluated. The evaluation criteria considered 
in the paper include accuracy and speed. The feature detectors and descriptors have been tested in multiple 
building scenarios with the same hardware configuration. Based on the evaluation results, it could be found that 
the combination of a SURF feature detector and a BRISK feature descriptor is more accurate than the others. 
Meanwhile, the use of the ORB feature detector and descriptor could get the fast speed.  
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1. INTRODUCTION 

Three dimensional (3D) as-built information of building elements (e.g. columns, beams, and walls) record the 
actual status of buildings. Therefore, they have been identified useful for owners, designers, contractors, and 
facility managers in multiple building assessment and management tasks (Zhu, 2012). However, the current 
process of retrieving and modeling such information is labor intensive and time consuming. This is especially true 
in the case of building indoor environments. According to the report from a recent research study, a simple task for 
the generation of 3D point clouds for 40 rooms may require a 3D laser scanner to be set up at hundreds of locations 
due to potential indoor partitions and occlusions (Adan et al. 2011). Such labor-intensive and time-consuming 
nature significantly counteracts the benefits of using 3D as-built information in practice, unless the current 
information retrieval and modeling process can be improved, and the 3D as-built information could be updated and 
reviewed frequently (Pettee, 2005). 

In order to reach this goal, several research studies have been proposed. Specific for the building indoor 
environments, the recent work built upon the RGB-D camera is promising. RGB-D stands for Red, Green, Blue 
plus Depth. Typically, an RGB-D camera, such as Microsoft© Kinect, is small, portable, and easy to carry, which 
makes it fit for the retrieval of as-built information in the building indoor environments. The camera could capture 
RGB-D images (i.e. pairs color and depth images simultaneously) almost in real time (30 Hz), and maintain the 
resolution of the images at 640x480. When an RGB-D image (i.e. a pair of the color images and depth images) is 
captured by the camera, a set of 3D points (i.e. point cloud) could be automatically generated. The point clouds 
from different RGB-D images could be further merged and aligned by being progressively mapped (i.e. RGB-D 
mapping).  

Currently, there are many RGB-D mapping methods available (Henry et al. 2010; Engelhard et al. 2011). Their 
basic ideas are similar. First, the 3D point clouds are generated from the RGB-D images captured by the RGB-D 
camera. In the consecutive images, their visual features are detected, described, and matched. According the 2D 
matching results in the images, the corresponding matched 3D points in the point clouds are located. This way, the 
pair-wise transformation matrix between the point clouds could be estimated, and the point clouds could be 
registered under one 3D coordinate system. During the RGB-D mapping process, one of the critical steps lies in the 
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selection of appropriate combinations of visual feature detectors and descriptors for the detection, description, and 
matching of visual features. 

The objective of this paper is to evaluate the effectiveness of different combinations of the visual feature detectors 
and descriptors in the RGB-D mapping process. In doing so, the framework following the basic RGB-D mapping 
idea has been implemented. The visual feature detectors and descriptors, including Good Features to Track 
(GFTT) (Shi and Tomasi, 1994), Features from Accelerated Segment Test (FAST) (Rosten and Drummond, 2006), 
Scale-Invariant Feature Transform (SIFT) (Lowe, 2004), Speed-Up Robust Features (SURF) (Bay et al. 2008), 
Oriented Fast and Rotated BRIEF (ORB) (Rublee et al. 2010), etc. have been considered. The different 
configurations of these visual feature detectors and descriptors have been tested in multiple building scenarios. 
The mapping accuracy and speed have been recorded. The evaluation results indicated that the combination of a 
SURF feature detector and a BRISK feature descriptor (i.e. SURF/BRISK) could reach the high mapping accuracy. 
The use of the ORB feature detector and ORB descriptor (ORB/ORB) could get the fastest mapping speed without 
the support of the graphic processing unit (GPU). 

2. RELATED WORK 

In general, visual features refer to those local points, blobs or regions of interest in a color (RGB) image. So far, 
several detectors and descriptors have been developed to distinctively detect and describe the visual features, even 
when the color images are under certain affine deformations. Here are the details of the common ones which have 
been widely used in computer vision applications. 

2.1 Good Features to Track (GFTT) 

In 1994, Shi and Tomasi (1994) presented the concept of GFTT. They designed a GFTT detector to decide which 
visual features were good for the purpose of visual tracking. In their work, the strong Harris corners (Harris and 
Stephens, 1988) with high eigen-values were first kept. Then, in the remaining corners, those that were relatively 
"weak" were further rejected, if there were relatively "strong" corners close to them. Consider the corners typically 
appear at object boundaries where multiple motions are highly possible. Therefore, the GFTT detector was 
expected to address the generalized aperture problem (Senst et al. 2012), and moreover the corners kept by the 
GFTT detector are always those whose motions can be reliably estimated. 

2.2 Features from Accelerated Segment Test (FAST) 

FAST was proposed by Rosten and Drummond (2006). Similar to the GFTT, it was designed based on a corner 
detector. The detection procedure for the FAST included two main steps. First, the potential corner points in an 
image were classified with a segment test. Then, a score value was calculated at each potential corner point. The 
score values could be used to remove the false corners that have been classified before. In general, the FAST 
detector (Rosten and Drummond, 2006) has been identified as reliable and fast (Rosten et al. 2010). Therefore, it 
has been widely used for the applications with the real-time requirements, such as Augmented Reality workspaces 
(Klein and Murray, 2007). 

2.3 Binary Robust Invariant Scalable Keypoints (BRISK) 

BRISK was proposed by Leutenegger et al. (2011). In their framework, a scale-space pyramid was first created by 
progressively half-sampling an original image. The potential regions of interest on each octave and intra-octave of 
the pyramid were then detected with the FAST detector (Rosten and Drummond, 2006). Then, the detection results 
were refined with the non-maxima suppression. Moreover, the BRISK feature descriptions were provided on the 
detection results using the configurable circular sampling patterns. In general, the BRISK detector and descriptor 
could produce both distinctive, scale and rotation invariant visual features.  

2.4 Scale-Invariant Feature Transform (SIFT) 

SIFT was developed by Lowe (2004). In his framework, the local maxima or minima of the Difference of 
Gaussians (DoG) were first used to locate potential key points. Then, some of the potential key-points were 
removed, if they had low contrast values or were poorly localized along the edges. In the remaining key-points, 
their dominant orientations were assigned. When the key-points were located and assigned with dominant 
orientations, the feature vectors were calculated at the key-points as the feature descriptions to make the key-points 
highly distinctive. The SIFT key-point detector and descriptor were expected to be invariant to scale and rotation. 
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Also, they could be robust to illumination changes. Therefore, they have been widely used for object recognition 
(Sirmacek and Unsalan, 2009), robust localization and mapping in a stereo system (Se et al. 2001), panorama 
stitching (Brown and Lowe, 2007), etc. 

2.5 Speeded-up Robust Features (SURF) 

SURF was presented by Bay et al. (2008). They adopted the concept of the Hessian matrix and approximated the 
determinant of the Hessian matrix with two box filters (Bay et al. 2008). The size of the box filters was up-scaled. 
Based on the response values of an image to these two filters, the SURF key-points in the image could be located. 
The descriptions could be further produced as the vectors based on the distribution of the intensity content within 
the local image regions of the points. The SURF detector and descriptor could utilize the integral images to reduce 
the computation time, which makes them almost three times faster than the SIFT detector and descriptor (Bay et al. 
2008). Also, similar to the SIFT detector and descriptor, they are supposed to be robust against image rotation and 
scale (i.e. rotation and scale invariance).  

2.6 Oriented FAST and Rotated BRIEFF (ORB) 

ORB is the combination of the FAST point detector (Rostern et al. 2010) and the BRIEFF descriptor (Calonder et 
al. 2010) with several improvements. First, Harris corner measures were calculated and used to remove potential 
edge points. Only those corner points with high confidence values were kept. Then, the orientation of each corner 
point was estimated based on the intensity centroid of the local image patch around the corner (Rublee et al. 2011). 
The orientation information could help to identify the corresponding BRIEFF test pattern, which made the ORB 
description rotation-invariant. In addition to the rotation-invariance, another benefit of using the ORB detector and 
descriptor is their computational efficiency. This is especially true when they are compared with the SIFT and 
SURF feature detectors and descriptors (Rublee et al. 2011).  

3. OBJECTIVE AND SCOPE 

Although several visual feature detectors and descriptors have been developed, so far, none of them is perfect. 
Their performances vary significantly. That is why the appropriate selection is necessary for specific computer 
vision applications. For example, Senst et al. (2007) compared different visual feature detectors and indicated that 
the FAST detector was one of the efficient feature detectors for local optical flow tracking. Chandrasekhar et al. 
(2010) found that the SIFT descriptor had the better performance for mobile visual search than others.  

The focus of this paper has been placed on investigating the effectiveness of different combinations of visual 
feature detectors and descriptors in the RGB-D mapping process for retrieving and modeling as-built conditions in 
the building indoor environments. In order to select the appropriate combination of visual feature detectors and 
descriptors, this paper first implements a general framework for the RGB-D mapping. Then, the different 
combinations of the visual feature detectors and descriptors have been tested. Their RGB-D mapping accuracy and 
speed are compared. The visual feature detectors that are considered in the paper include the FAST, GFTT, SIFT, 
SURF, BRISK, and ORB, while the visual feature descriptors include the BRISK, SIFT, SURF, and ORB. All of 
these detectors and descriptors are common, and have been widely used in different computer vision applications.  

4. FRAMEWORK FOR RGB-D MAPPING 

A typical RGB-D mapping process includes the detection, description, and matching of visual features. 
Specifically, the visual features are first detected in the RGB images. These features are then distinctively 
described. Based on the feature descriptions, the common features in the consecutive RGB images are matched. 
The 2D matching results could be further extended into 3D. When the pairs of 3D matching points in consecutive 
point clouds are determined, the point clouds representing the building indoor environments from different 
RGB-D images could be merged and aligned. The overall RGB-D mapping process has been illustrated in Fig. 1. 
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Fig. 1: Framework of RGB-D mapping. 

5. EVALUATION CRITERIA AND EXPERIMENTS 

The RGB-D mapping process mentioned above has been implemented and tested with different combinations of 
the visual feature detectors and descriptors. During the tests, the mapping accuracy and speed, as two main 
evaluation criteria, are recorded to measure the effectiveness and efficiency of different combinations of visual 
feature detectors and descriptors. Here, the mapping accuracy is determined by calculating the difference between 
the camera positions estimated from the mapping process (i.e. estimated trajectory) and the real positions of the 
camera (i.e. ground truth). The mapping speed is determined by the duration taken when performing the RGB-D 
mapping with each combination of the visual feature detectors and descriptors.    

The specific configuration of the platform used to evaluate the RGB-D mapping process has been listed in Table 1. 
A total of seven RGB-D datasets have been used for the evaluation purpose. The datasets include freiburg1_xyz, 
freiburg1_rpy, freiburg1_360, freiburg1_desk, freiburg1_desk2, freiburg1_floor, and freiburg1_room. All were 
prepared by Strum et al. (2012) in the Computer Vision Groups at the Technische Universität München, each of 
which contains the RGB-D images plus the camera positions recorded (Strum et al. 2012). The real positions of the 
camera were captured by a motion capture system and they were included in the datasets to construct the 
ground-truth trajectories for the determination of the mapping accuracy.  

Table 1: Configuration of the platform for the evaluation of the framework 

Software Operating System Ubuntu 12.0.4 LTS 

 C++ Code Compiler gcc 4.6 

Hardware Central Processing Unit (CPU): Intel(R) Core (TM) i7-2600K CPU @ 3.4 GHz 

Graphic Processing Unit (GPU): NVIDIA GeForce GTX 560 Ti (1280 megabytes)  

Memory: 16 gigabytes (4x4 gigabytes) 

Motherboard ASUS P8Z68-VPRO (Intel Z68 Chipset) 

Hard drive Toshiba MK5061GSYN 

Operating System Ubuntu 12.0.4 LTS (32 bits) 

Different combinations of the visual feature detectors and descriptors have been implemented and tested in the 
RGB-D mapping process. The combinations (i.e. detector/descriptor) include BRISK/BRISK, BRISK/SIFT, 
BRISK/SURF, FAST/BRISK, FAST/SIFT, FAST/SURF, GHTT/BRISK, GHTT/SIFT, GHTT/SURF, 
ORB/BRISK, ORB/ORB,, ORB/SIFT, ORB/SURF, SIFT/BRISK, SIFT/SIFT, SIFT/SURF, SURF/BRISK, 
SURF/SIFT, and SURF/SURF. The implementations of these visual feature detectiors and descriptors could be 
found in the Open Source Computer Vision (OpenCV) library (Bradski and Kaehler, 2008). The GPU support has 
not been considered when implementing these feature detectors and descriptors. 

Fig. 2 illustrates the results of using the combination of the SURF/SURF for the RGB-D mapping, when the 
dataset, freiburg1_xyz, was used for the evaluation. In the figure, it could be seen that the point clouds newly 
generated were progressively added into existing ones, and the number of the 3D poings kept growing. Meanwhile, 
the camera positions during the RGB-D mapping process could be estimated and recorded correspondingly. 
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Table 2 and Table 3 summarized the results for the seven datasets that have been tested so far. According to the test 
results, it could be found that the combination of the SURF/BRISK produced the most accurate RGB-D mapping 
results followed by the combination of the SURF/SIFT. However, the use of the SIFT descriptor may significantly 
increase the RGB-D mapping duratoin. Therefore, it is recommended to use the support of the GPU, if the SIFT 
descriptor has to be selected. The combination of the SIFT/SURF produced the most inaccurate RGB-D mapping 
results, compared with other possible combinations, and it is highly not recommended. As for the runnting time 
required, the combination of the ORB/ORB is taster than the other combinations. In contrast, the use of the 
SIFT/SIFT is the slowest. 

Fig. 2: RGB-D mapping results for the dataset freiburg1_xyz. 

Table 2: Average error for different detector/descriptor combinations 

 Detectors 

BRISK FAST GFTT SIFT SURF ORB 

Descriptors 

BRISK 0.2244 0.2690 0.1931 N/A 0.1873 0.2480 

SIFT 0.2079 0.2132 0.2272 0.3182 0.1891 0.2815 

SURF 0.1965 0.2394 0.2451 0.5420 0.2105 0.2374 

ORB N/A N/A N/A N/A N/A 0.2402 

Table 3: Running time (second) for different detector/descriptor combinations  

 Detectors 

BRISK FAST GFTT SIFT SURF ORB 

Descriptors 

BRISK 10.7938 3.9642 5.3018 N/A 11.0563 2.6676 

SIFT 20.0081 3.9901 5.7614 48.7552 19.9264 8.5529 

SURF 10.6324 3.9859 5.0941 39.3383 11.0458 2.5961 

ORB N/A N/A N/A N/A N/A 1.7230 

In order to show the practicality of the proposed RGB-D mapping framework and the likelihood of uptake by the 
construction industry, the author used the framework for the generation of 3D point cloud of an office in the EV 
building at Concordia University. Considering one scan could not capture the full scene of the office, 3D points 
from each scan are progressively registered (Fig. 3). The 3D points generated from the proposed framework 
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record the building geometry and actual details of building elements, which is useful to facilitate multiple 
building assessment and management tasks, such as construction errors identification and on-site communication 
and coordination between different parties.  

 

Fig. 3: 3D point clouds registration 

6. CONCLUSIONS AND FUTURE WORK 

3D as-built information of building elements have been identified useful, when addressing the problems related to 
building assessment and management. However, the current process for retrieving and modeling such information 
is labor intensive and time consuming. In order to address this issue, several research studies have been proposed, 
and the rececent work using the the RGB-D cameras is promising. The RGB-D camera is portable and convenient 
to use. Also, it could capture the RGB-D images and generate the 3D point clouds with the RGB-D mapping 
almost in real time. All of these benefits make the cammera become a good choice for the retrieval and modeling of 
as-built information of building elements especially in the indoor environments.  

This paper investigated the effectiveness of different combinations of common visual feature detectors and 
descriptors on the RGB-D mapping process, considering the RGB-D mapping plays an imortant role in the 
retrieval and modeling of as-built information. Several common visual feature detectors (BRISK, FAST, GFTT, 
SIFT, SURF, and ORB) and descriptors (BRISK, SIFT, SURF, and ORB) have been selected and their different 
combinations have been evaluated. The main evaluation criteria include the mapping ccuracy and speed. A total of 
seven RGB-D datasets have been used for the evaluaiton purpose. The evaluation results from these datasets 
indicated that the combination of the SURF/BRISK could reach more accurate RGB-D mapping results than other 
possible combinations. Also, the combination of the ORB/ORB could produce the fastest registration speed, if 
there is no GPU support for all the combinations. 
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