
An Strategic Analysis of Urban

Growth Controls

Dolores Garcia

Departament D'Economia i Empresa

Universitat de les Illes Balears

07071 Palma de Mallorca, Spain

Phone: +34 971 173242

Fax +34 971 173426

e-mail: dolores.garcia@uib.es

Preliminary version

\Paper presented at the 8th European Real Estate

Society Conference {ERES Alicante, 2001",

in Alicante, 27{29 June 2001

May 2001

1



Abstract

The welfare economics of urban growth controls and other land

use regulations have received an increasing deal of attention in re-

cent years, especially at the theoretical level. This paper analyzes two

types of growth controls in the context of a closed system of inter-

dependent cities where utility is determined endogenously. Thus, it

concentrates on how the use of population growth controls and, alter-

natively, the use of taxes on housing consumption, a�ect utility levels,

taxes revenues and city size, in a simple context in which households'

utility is not a�ected by environmental amenities. Several scenar-

ios are analyzed, with particular attention to the emerging equilibria

when strategic interaction between cities takes place, both considering

static and dynamic horizons. It is shown that cooperation between ju-

risdictions and the subsequent choice of stringer population controls

and higher taxes constitute the equilibrium solution when interaction

is to occur along in�nite periods.



1 Introduction

The use of urban planning instruments is common to most western coun-

tries. Among European countries planning systems vary a great deal, but

the presence of the public sector is habitual along the several stages of the

planning process. In Spain there has been a long tradition of intervening the

land market and the planning process, and instruments such as density levels

and the delimitation of land suitable for development are jointly used. The

role of land-use controls as a means to guide urban development and restrict

urban growth has been long and widely analyzed in the urban literature.

From the viewpoint of resident households, the economic justi�cation for the

introduction of growth control relies mostly on the alleged relationship be-

tween the urban size and the existence of external costs, related for instance

to the appearance of congestion or to the loss of outer landscapes. In this

sense, restricting the urban size may lead to increases in welfare. This is the

approach followed by the so-called amenity-creation models, by which plan-

ning restrictions would improve urban amenities, what ultimately translates

into increases in land rents [Brueckner (1990); Engle, Navarro and Carson

(1992)].

However, in the theoretical urban economics literature it seems to pre-

dominate the idea that actual planning restrictions are welfare-worsening,

even though they may correct externalities [Fischel (1990); Anas, Arnott

and Small (1998)]. Even when they result successful in preserving the ur-

ban environment, they are supposed to achieve the end at too high costs

compared to alternative instruments such as taxes or impact fees, that truly

distort residents' decisions [Brueckner (1997); Brueckner (2001)]. Recently,

a new line of research has regarded urban planning decisions as the result of

the strategic interaction among cities. This approach allows for the emer-

gence of restricted city sizes even though urban growth involve external costs

[Helsley and Strange (1995), Brueckner (1998)].

This paper analyzes the welfare e�ects of planning restrictions, under

di�erent scenarios. It uses the bid-rent framework to try to analyze two types

of growth controls, namely population regulations and a tax that burdens

housing consumption. It is assumed that the utility function of residents is

not a�ected by any urban characteristic such as density or the city size. Thus,

utility only depends upon the consumption of land and all other private non-

land goods. The model consists in a closed system of three interdependent

cities where utility is determined endogenously. Two types of households can
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be di�erentiated attending to their income levels, and both types migrate

freely and at zero cost from one city to another. The e�ects when one or two

of the cities impose some type of regulation are analyzed, and quantity and

price instruments are considered, in the form of population controls and a

tax on housing consumption. In particular, it will be considered that cities

may impose endogenous land use regulations, in the sense that thy maximize

certain objective function for the local planner. We will consider that local

communities maximize the �scal revenue arising from either from population

controls or taxes.

Special attention is paid to the scenarios in which two of the cities may

impose some form of controls, that will be strategically chosen. The equilib-

rium strategies will be obtained for the cases in which cities use population

controls and taxes, something that has already done in the literature. In

this respect, the distinct feature in this paper is to extend the results to

a dynamic context and to allow for the possibility of cooperation between

jurisdictions.

The subsequent sections show the following contents. Section 2 describes

the main features of the model, and shows the equilibrium conditions with-

out planning restrictions. In section 3, the e�ects of endogenous population

controls are analyzed, di�erentiating two scenarios: the �rst, when a single

city imposes the control, and the second, when they take into account the

decisions of rival communities and decide strategically. Thus, we investigate

about the equilibrium strategies both for a one-period context and a multi-

period scenario. Section 4 undertakes the e�ects of price controls in the form

of taxes on housing. It covers again the case when decisions are taken sepa-

rately or considering other cities' choices, in static and dynamic frameworks,

too. Section ?? shows the di�erences in tax collection outcomes that results

from using population controls or taxes. The �nal section summarizes the

main outcomes and conclusions of the analysis.

2 The basic model

The benchmark model here has 3 cities, denoted by superscript i, i = A;B;C.

City A and B may impose growth restrictions, while in all cases city C

simply accommodates all coming residents. Cities are supposed to be linear

and with a width of 1. All residents work at the Central Business District

(CBD), located at an extreme of the city. Individuals must commute to the
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city centre at a cost T (r), where r represents every possible distance from

home to the CBD. Transportation costs increase linearly with distance in

all cities, so T i(r) = tr, and transportation costs do not vary across cities.

Households rent a �xed amount of housing and respond to utility di�erentials

by migrating from one city to another at zero cost.

In the simplest model, households' utility depends upon the consumption

of housing space s and a composite good z, which is also the num�eraire.

Utility is then

ui = u(sj; zj) (2.1)

where us > 0 and uz > 0. At every city residents must pay housing rents

to absentee landowners, and the rental price of housing per period of time is

denoted by Ri(r). The housing market is assumed to be competitive.

All households have identical tastes, but may di�er in income level, de-

noted by the subscript j, j = 0; 1. There are two levels of wealth among

residents. There is a population of N0 with an income level of Y0, and N1

residents who receive Y1, with Y0 < Y1. Income levels are supposed to be

exogenous and the role of �rms in the city is not considered. Individu-

als spend their income between the composite good z, housing space s and

transportation. Housing consumption is �xed, with richer people consum-

ing a normalized quantity s1 = 1 and poorer ones consuming s0 = �, with

� < 1. Since housing space is determined exogenously, the only variable that

a�ects the utility level achieved by households will be the consumption of all

other private goods di�erent from housing, that is z. The respective budget

constraints of both types of households can then be expressed as:

Y1 = z1(1; u1) +Ri
1
(r) + tr (2.2)

Y0 = z0(�; u0) + �Ri
0
(r) + tr; (2.20)

or, in terms of the housing bid-rents:

Ri
1
(r) = Y1 � tr � z1 (2.3)

Ri
0
(r) =

Y0 � tr � z0

�
: (2.30)

Since transportation costs increase proportionally with distance, the hous-

ing rent or housing bid-rent decreases linearly with distance to the CBD. For

each income level, there exists a family of housing bid-rent functions that
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correspond to di�erent utility levels. For individuals to be in equilibrium

and indi�erent among locations within the city, housing rents must vary as

described by the housing-bid rent function above. Thus, at a larger distance

from the CBD, higher transportation costs are compensated by a smaller

housing rent, so that all individuals belonging to the same income group can

attain identical utility levels independently of the particular location. Ri
0

is steeper than Ri
1
, this implying that the less wealthy locate closer to the

CBD. The inner segment where poorer households locate has a radius of bri.
Wealthier residents locate in the outer segment comprised between radius bri
and ri, where ri represents the edge of the city.

Housing is produced from land and capital, according to the production

function H(l; k) = lk, which shows constant returns to scale. Combining k

units of capital and l units of land yields lk units of housing 1. The rental

price of capital is denoted by P . It will be assumed that both types of housing

require the same amount of capital investment. Li
j(r) represents the rental

price of land, also variable with distance. The relationship between housing

rent and land rent is given by:

Ri
j(r) =

Li
j(r)

k
+ P; (2.4)

or

Li
j(r) = k[Ri

j(r)� P ] = k[
Yj � tr � zj

sj
� P ]: (2.5)

Finally, at radius bri in all cities land rents must coincide, that is

k[
Y i
0
� tbri � z0

�
� P ] = k[Y1 � tbri � z1 � P ]: (2.6)

At all locations, land is allocated to that activity yielding the highest

return.

2.1 Equilibrium without planning restrictions

Equilibrium in the land market involves several conditions. Firstly, total

population N0 and N1 must be accommodated within the boundaries of the

1Accordingly, variable k denotes density, since it refers to the number of housing units

per unit of land.
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cities. Considering that cities are linear and that housing space has been

�xed, this implies that

crA +crB +crC =
�N0

k
(2.7)

and

rA + rB + rC =
�N0 +N1

k
: (2.8)

Secondly, if residents are perfectly mobile, utilities in all cities must equal

for each type of household. Since housing consumption is �xed and identical

for individuals in the same income range, for them to be indi�erent between

cities their consumption of non-housing goods must also be the same, that

is zij = zj. Finally, in a context without planning restrictions it is required

that in all cities the urban land rent equals the value of the best alternative

use at the city limit, usually considered to be the agricultural. For simplicity

the agricultural value is supposed to be zero. Then L1(ri) = 0, or

Y1 � tri � z1 � P = 0: (2.9)

From equation 2.9 it can be derived that rA = rB = rC = r, and from 2.8,

it results:

r =
�N0 +N1

3k
: (2.10)

Thus, in the non-restricted equilibrium population equally distributes

among cities, and the less wealthy occupy an identical inner radius of

r̂ =
�N0

3k
: (2.11)

Combining 2.9 and 2.10, the amount of z consumed by individuals with

income Y1 is:

z1 = Y1 � P �
t

3k
[�N0 +N1]: (2.12)

To obtain z0, conditions 2.6,2.11 and 2.12 are used, resulting in

z0 = Y0 � �P �
�t

3k
[N0 +N1]: (2.13)
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Notice that in the absence of negative environmental e�ects of crowd-

ing, households are better o� the highest density levels, since that allows

transportation costs savings and does not provoke external costs.

The equilibrium utility levels would result:

um
0
= u(�; Y0 � �P �

�t

3k
[N0 +N1]) (2.14)

and

um
1
= u(1; Y1 � P �

t

3k
[�N0 +N1]): (2.15)

Since the following sections all ignore externalities, we can simply concentrate

in the consumption levels of z to analyze how planning controls a�ect utility

levels.

3 The e�ects of population controls

In this section the planning instruments are population controls that re-

strict city size. The choice of the appropriate city size is endogenous in the

sense that it maximizes aggregate urban land rents, an objective function

commonly considered in the urban literature. Two scenarios are considered.

First, the case where only one city in the system restricts its size; secondly,

it is considered that two of the cities impose population controls and they

decide strategically.

3.1 Equilibrium with one controlling city

Assume now that city A imposes an urban population control that restricts

city size, and that all excluded households can be accommodated in cities

B and C. There, the condition that urban land rent equals zero at the city

limit continues to be valid. Similarly, land rents must equal at bri, so 2.6 at

page 4 still applies in the restricted case. Now, using 2.8 it results

z1 = Y1 � P �
t

2
[
�N0 +N1

k
� rA]; (3.1)

where rA is now a choice variable for the local government in city A.
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From 2.6 in page 4 for all cities, and since zj will be the same in equi-

librium, it must be the case that bri coincide in all cities, and then the intro-

duction of the population control does not alter the size of the inner segment

where poorer households live. Then,

bri = �N0

3k
: (3.2)

This result suggests that when city A imposes an urban population con-

trol, in the resulting equilibrium the poorer residents continue to split be-

tween the controlled and uncontrolled cities, and the size of the inner seg-

ments does not vary. Although it has been assumed that both types of house-

holds are mobile, the previous result implies that, in practice, some residents

do not relocate when growth controls are imposed in one of the cities and

that only wealthier households �nally migrate. But this is the logical result

when considering the assumption that z0 must be the same independently of

the city. Since the relative steepness of land-rents functions does not change

in the regulated situation, then bri does not modify with the introduction of

the population control.

Simplifying and using 2.7 it can be obtained that

z0 = Y0 � �P �
�t

2k
[
(� + 2)

3
N0 +N1 � krA]: (3.3)

With the use of a population growth control in city A, z0 and z1 are

negatively a�ected. The positive signs of the partial derivatives of zj with

respect to rA show that the consumption of all other goods increases with

rA, that is, the less restrictive the control is. Since housing consumption is

exogenously determined, the population control makes residents worse o� in

this simple context without environmental externalities.

The above results apply whatever the values of rA. Consider now the

particular case when the population control introduced is endogenous, in the

sense that it maximizes a particular objective function chosen by the local

government. Suppose an objective function consisting in the sum of all land

rents in city A, TRA, land rents that go to absentee landowners. The decision

for the local planner consists then in choosing the value of rA that maximizes

max
rA

TRA =

Z crA

0

k[
Y0 � tr � z0

�
� P ]dr +

Z rA

crA
k[Y1 � tr � z1 � P ]dr: (3.4)
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Using the Leibniz' rule to obtain the �rst order condition for the maximiza-

tion of aggregate land rents and solving for rA yields an endogenous growth

control smaller than the market equilibrium city size,

rA� =
1

4k
[�N0 +N1]: (3.5)

Finally, z1 and z0 can be expressed in terms of the parameters:

z1 = Y1 � P �

3t

8k
[�N0 +N1]; (3.6)

and

z0 = Y0 � �P �

�t

8k
[
(� + 8)

3
N0 + 3N1]: (3.7)

It can be shown that, as expected, introducing the endogenous population

control makes both types of residents consume smaller amounts of z0 and z1,

and as a result they attain smaller utility levels.

3.2 Equilibrium with two controlling cities

Assume now that all cities in the system impose population controls so as to

maximize total land rents, and that they are aware that the remaining cities

use them as well. In equilibrium all households must be accommodated,

and since housing consumption has been exogenously �xed, it is made the

assumption that city C acts passively and accommodates all coming house-

holds.

Now A and B want to maximize their respective aggregate land rents,

TRA and TRB, but taking into account the rival choice of city size ri. This

implies to search for the best strategy to follow given the actions of all other

local governments in the urban system, that is for each city best response

function. The problem can be solved as a typical simultaneous game, where

the decision variables for cities are population controls.

The size of the segment where the less wealthy households live does not

vary, and br = �N0

3k
. Besides, in city C equation 2.9 in page 5 holds, and the

equilibrium levels of z1 and z0 can be calculated from:

z1 = Y1 � P � t[
�N0 +N1

k
� rA � rB] (3.8)

8



z0 = Y0 � �P �
�t

k
[
(1 + 2�)

k
N0 +N1 � k(rA + rB)] (3.9)

From above it is shown that, as in the one controlling city case, less

restrict population controls lead to higher consumption of z1 and z0.

The objective of city A is to maximize aggregate land rents TRA. How-

ever, city A has to consider city B choices of rB. This is achieved by com-

bining z1 and z0 in 3.8 and 3.9 together with the expression of TRA in 3.4.

From the maximization of the expression above the best response function

for city A is found:

rA(rB) =
�N0 +N1

3k
�

rB

3
: (3.10)

Symmetrically, the expression of the best response function of city B would

be:

rB(rA) =
�N0 +N1

3k
�

rA

3
: (3.11)

Notice that the optimal rA for city A when maximizing TRA diminishes

the larger rB. Thus, if city B �xes a not too stringent rB, then city A

bene�ts from choosing a smaller rA. This suggests that population controls

act as strategic substitutes. The land rent sacri�ced by excluding a household

decreases if a rival community enacts a less stringent population control, and

then communities are willing to introduce more stringent population controls.

Seemingly, a more stringent control increases the opportunity cost of losing

population, and as a result cities choose larger city sizes.

Solving the system with the best response functions for cities A and B

yields smaller sizes in city A and B, but a larger rC . The expressions for the

Nash equilibrium rA and rB coincide with the ones they would be choosing

if they were individually imposing the control:

rcomp = rA = rB =
1

4k
[�N0 +N1]: (3.12)

However, the equilibrium utilities achieved are smaller. Because more

cities in the system impose population controls, this leads to a larger number

of residents diverted to city C and consequently to higher land rents. These

equilibrium values of z1 and z0 in this simultaneous population control game

are:

z1 = Y1 � P �

t

2k
[�N0 +N1]; (3.13)
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and

z0 = Y0 � �P �
�t

2k
[N1 +

(2 + �)

3
N0]: (3.14)

Finally, the equilibrium land rents could be found. Substituting 3.12 back

into the expression for land rent in city A in 3.4, and considering that both

cities A and B use optimal growth controls, it is found the expression for

total land rents, denoted by TRcomp:

TRcomp =
t

288k
[11�N2

0
+ 54�N0N1 + 27N2

1
+ 16�N0]: (3.15)

3.3 A cooperative framework

This subsection introduces the possibility that cooperation between jurisdic-

tions exists. To our knowledge, the literature using game theory as a means

to explain urban growth controls has so far used a non-cooperative approach.

In this subsection it is aimed to explore in which instances cooperation be-

tween jurisdictions is plausible, both in a static and in a dynamic context.

In this scenario without competition, the �rst information needed is the

city size that cities would choose to maximize aggregate land rents. With no

a priori di�erences between cities, one should expect a symmetric city size,

so that rA = rB under the cooperation agreement. Let rcoop denote each

individual city size with cooperation. This could be considered a particular

case of the problem solved in the previous subsection where competition

existed, but now imposing the symmetry condition in the election of city

size2. The corresponding expressions of z0 and z1 would be

z0 = Y0 � �P �
�t

k
[
(1 + 2�)

k
N0 +N1 � 2krcoop] (3.16)

and

z1 = Y1 � P � t[
�N0 +N1

k
� 2rcoop]: (3.17)

2It could be possible, however, that city sizes are di�erent with cooperation, as long

as a di�erent agreement is met that leads to the maximum attainable level of total land

rents.
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To �nd the optimal city size, for instance in city A, the following expres-

sion must be maximized:

max
rcoop

TRA =

Z
brcoop

0

k(
Y0 � tr � z0

�
� P )dr +

Z rcoop

brcoop
k(Y1 � tr � z1 � P )dr:

(3.18)

It is found that the maximizing population control when cooperating results

in

rcoop =
1

5k
[�N0 +N1]: (3.19)

Although cooperation leads to the highest land rent attainable, it may well

happen that the equilibrium solution is such that cities compete instead of

cooperate. Results vary when considering static or dynamic horizons.

3.3.1 Cooperation in a static context

For every city, the available strategies in the static case are \cooperating" or

\competing", equivalent to choosing a city size according to the best-response

function in equation 3.10.

In the cooperation scenario, both cities choose a city size as that in equa-

tion 3.19, and total land rents in each city are:

TRcoop =
t

450k
[20�2N2

0
+ 90�N0N1 + 45N2

1
+ 25�N2

0
]: (3.20)

It can be shown that, as expected, TRcoop results larger than TRcomp.

Although TRcoop > TRcomp, cities have the incentive to deviate from the

cooperation agreement, since rcoop is not their best city size choice when the

other one cooperates. When A deviates while B cooperates, then

rA = rdev =
4

15k
[�N0 +N1]; (3.21)

and

rB = rcoop =
1

5k
[�N0 +N1]: (3.22)

Likewise, if the corresponding values of aggregate land rents are denoted by

TRdev and TRcoop0

, then:

TRdev =
t

450k
[23�2N2

0
+ 96�N0N1 + 48N2

1
+ 25�N2

0
]; (3.23)
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and

TRcoop0

=
t

450k
[14�N2

0
+ 78�N0N1 + 39N2

1
+ 25�N2

0
]: (3.24)

Logically, land rents are larger for the city that deviates from the cooperative

agreement, and they are also larger with respect to the cooperative solution.

Thus,

TRdev > TRcoop > TRcomp > TRcoop0

:

Figure 3.1 depicts the normal form for the static game just described.

City A

City B

Cooperate Compete

Cooperate TRcoop; TRcoop TRcoop0

; TRdev

Compete TRdev; TRcoop0

TRcomp; TRcomp

Figure 3.1: Static game with population controls with cooperation.

In a static context, there exists a single Nash equilibrium in pure strategies

in which both cities end up competing and do not cooperate.

3.3.2 Cooperation in a dynamic context

1. Finite horizon

Consider now the case where cities are concerned not only for present

outcomes, but for future land rents as well. Two scenarios can be

di�erentiated. Assume �rst that competition among jurisdictions is

to take place up to period T only, that is, for a limited number of

years. Using backwards induction from the last period, it is found the

usual result that, as in the static scenario, the set of pure strategies

(compete,compete) make a Nash equilibrium despite it yields lower ag-

gregate land rents. Thus, when the interaction only takes place for a

�nite number of periods, the resulting equilibrium strategy is again to

compete and to deviate from the cooperative agreement.

2. In�nite horizon

Consider now that cities interact for an in�nite number of periods.

In order to be able to calculate aggregate land rents in each possible

situation, strategies must be de�ned for every contingency that may

occur. The strategies considered are the following ones. Cities either
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can cooperate or compete, the latter understood as �xing the popula-

tion control as their respective reaction function suggests. It is assumed

that cities follow the trigger strategy, that is, once any of them deviates

from the agreed growth control, competition among them takes place

in the subsequent periods. Thus, deviating leads to immediate gains in

the current period, but implies renouncing to higher land rents in the

remaining future due to the end of cooperation. How future land rents

are discounted {together with the number of cities in competition{ is

one of the key factors among the conditions determining the equilib-

rium solution and the optimal strategy to be followed by each city.

Using the above assumption that cities compete from the moment that

one of them does not cooperate, the present value of total land rents

{PVTR{ can be calculated for the di�erent scenarios that can occur.

Namely, the PVTR has been calculated in the following three instances:

� When cities always cooperate

� When cities always compete

� When one city deviates in the �rst period while the other one

cooperates, and competition prevails from that period on.

Let PV TRcoop denote the present value of land rents when both cities

cooperate; PV TRcomp, the present value of land rents when competi-

tion takes place; PV TRdev, the present value of rents resulting from

deviating in the �rst period and competing in the subsequent ones; and

PV TRcoop0

, the present value of rents when the city cooperates in the

�rst period when the other one deviates, and both compete in the re-

maining periods. In �gure 3.2 the dynamic game with in�nite periods

has been transformed to its single-period equivalent, where the payo�s

represent the present value of the 
ow of land rents.

City A

City B

Cooperate Compete

Cooperate PV TRcoop; PV TRcoop PV TRcoop0

; PV TRdev

Compete PV TRdev; PV TRcoop0

PV TRcomp; PV TRcomp

Figure 3.2: In�nite horizon dynamic game with population controls when

cooperation is allowed.

13



The worst possible scenario for a city in terms of the aggregate total

land rents occurs when it chooses the cooperative population control

while the other city deviates in the �rst period, since PV TRcoop0

<

PV TRcomp.

Suppose �rst that city A chooses the population control according to

its best response function, that is, it chooses the strategy \compete".

In this instance, the best strategy for city B is to compete as well, since

doing so yields higher land rents. Similarly, that applies symmetrically

to city A when it is city B the one that competes. Then, the set if

strategies (compete, compete) constitute a Nash equilibrium.

Suppose now that city A cooperates. City B can choose its best strat-

egy: either to cooperate as well, or to deviate from the cooperative

solution and compete in all the remaining periods. To �nd out about

the best strategy, we need to know which of the two leads to the highest

payo�. Comparing PV TRcoop against PV TRdev, it is found that the

optimal solution depends on the value of the discount factor. Cooper-

ating is optimal whenever

PV TRcoop > PV TRdev;

and comparing the two values of present value of land rents:

t

450k
[20�2N2

0
+ 90�N0N1 + 45N2

1
+ 25�N0]

+
t

r(1 + r)450k
[20�N2

0
+ 90�N0N1 + 45N2

1
+ 25�N0] >

t

450k
[23�2N2

0
+ 96�N0N1 + 48N2

1
+ 25�N2

0
]

+
t

288r(1 + r)k
[11�2N2

0
+ 54�N0N1 + 27N2

1
+ 16�N2

0
];

(3.25)

which can be simpli�ed to

(�N0 +N1)
2

160r(1 + r)
>

(�N0 +N1)
2

150
: (3.26)

It results that the present value of land rents when cooperating exceeds

that of deviating as long as

r < 0:589: (3.27)
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At the current level of interest rates, and according to the result above,

if cities were to take decisions in an in�nite horizon then it would be

more pro�table for them to cooperate, to choose smaller city sizes and

as a result to set more stringent population controls. Then the set of

pure strategies (cooperate, cooperate) would be a Nash equilibrium as

well. However, if interaction among jurisdictions applies for a limited

number of periods only, then the competitive solution prevails and po-

pulation controls are somehow less restrictive. Although it is not such a

strong assumption to consider that competition between jurisdictions

may take place in�nitely, it is however less likely that elected local

government base their decisions in such a long term.

4 The e�ects of a tax on housing consump-

tion

Other possible instruments to constrict city size are taxes that modify hous-

ing bid-rents of households, and consequently they somehow distort landown-

ers' decisions of converting land from rural to urban. In this section the tax

used will be one placed on housing. The rationale for introducing such a tax

is to levy taxes that the community would be able to use to �nance a public

good, for instance. The main di�erence when utilizing a price instrument in

this setting relates to the distributional consequences.

Consider now the case where a tax per unit of housing consumption,

denoted by hi, 0 < h � 1, is introduced in city i, whose residents now face

an additional expense. This makes that their respective budget constraints

change to:

Yj = zj + tr +Ri
j(r)sj + hisj; (4.1)

or expressed in terms of the housing bid-rents:

Ri
j(r) =

Yj � tr � zj

sj
� hi: (4.2)

The land bid-rent functions result then:

Li
1
(r) = k[Y1 � tr � z1 � hi � P ] (4.3)

Li
0
(r) = k[

Y0 � tr � z0

�
� hi � P ]: (4.30)
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4.1 Equilibrium values when one city uses taxes

The new land rent functions di�er from the one in the market situation

because of the new tax on housing, hi. In equilibrium it must hold in any case

that Li
j = 0, independently of whether the city uses or not a tax. Assume

�rst that only A introduces a tax hA. Then rB = rC = r, and since in

equilibrium z1 is common to all cities, it results:

r =
�N0 +N1

2k
�

rA

2
: (4.4)

Since L1(rA) = 0, and using 3.1, the size of city A can be expressed in terms

of the tax hA:

rA =
�N0 +N1

3k
�

2hA

3t
: (4.5)

There is a linear and negative relationship between the tax and city size.

Introducing a tax on housing consumption also reduces housing rents and

consequently land rents, what makes city A smaller. Now we can �nd the

expressions for z1 and z0 in terms of the housing tax hA:

z1 = Y1 � P �
t

3k
[�N0 +N1]�

hA

3
; (4.6)

and

z0 = Y0 � �P �
�t

3k
[N0 +N1]�

�hA

3
: (4.7)

It results again that bri = br = �N0

3k
. Examining the e�ect of hA on z0 and

z1, it results that as the housing tax increases the consumption of z0 and z1
logically decreases, as does utility.

Both a certain population constraint and a tax on housing consumption

that leads to the same city size have the same negative e�ect on households,

and in either situation they reach identical utility levels of consumption of

z. This is a logical result since both a�ect them in the same direction: the

housing consumption tax acts as an additional expense for households, while

the population control causes housing rents to increase. In both scenarios, the

remaining income that can be dedicated to non-land goods shrinks. If the tax

was on land instead of housing, then the city would become smaller as well,
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residents would attain higher utility levels, but landowners activity in city A

would become less pro�table. But the distributional consequences di�er. In

the population control case, landowners of developed land receive higher land

rents, while residents experience a reduction in their utility levels. When the

housing consumption tax is used, then resident households also experience

a comparable decrease in z and the utility level, but all landowners in city

A lose too. Instead, the local authority bene�ts from all aggregate housing

consumption taxes.

Which tax would the local government choose if its objective were to

maximize the sum of aggregate taxes levied from residents in city A? Since

the tax a�ects the size of city A and also the number of households subject

to the tax, the objective of the local authority would be

max
h

RA = hAkrA = hAk[
�N0 +N1

3k
�

2hA

3t
]: (4.8)

Maximizing the above expression yields the optimal value of hA�, which

is

hA� =
t

4k
[�N0 +N1]: (4.9)

This optimal tax corresponds to a city size of

rA� =
1

6k
[�N0 +N1]: (4.10)

After substituting 4.9 in the expressions of z1 and z0 in 4.6 and 4.7, it is

obtained:

z1(h
�) = Y1 � P �

5t

12k
[�N0 +N1]; (4.11)

and

z0(h
�) = Y0 � �P �

�t

12k
[5N1 � (4 + �)N0]: (4.12)

Both levels of private goods consumption are smaller compared to the

market situation. The e�ects on z would be identical if directly using a po-

pulation control leading to the city size achieved when using h�

A. Residents

lose in a similar way both with taxes and population controls. On the con-

trary, landowners gain with the introduction of the population control, but

are worse o� with the tax on housing that ultimately diminish land rents.

Likewise, landowners of undeveloped land lose out with the tax. The bene�ts

are for local communities which receive an income corresponding to aggregate

taxes.
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4.2 Equilibrium values when two cities use taxes

As with the population growth control case, consider now that all cities in the

system except for the passive city C impose taxes on housing consumption.

Thus, A and B enact taxes hA and hB. In order to maximize taxes levied,

city A now must consider the behaviour of all other active cities, and so

must city B. The expression for 3.8 in page 8 will determine the level of

z1 in the system, common to the three cities. Applying the condition that

L1(rA) = L1(rB) = 0, z1 can be expressed exclusively in terms of the taxes

applied by cities A and B, thus

z1(h
A; hB) = Y1 � P �

t

3k
[�N0 +N1]�

1

3
[hA + hB]: (4.13)

And from the expressions in 2.6, it is found that

z0(h
A; hB) = Y0 � �P �

�t

3k
[N0 +N1]�

�

3
[hA + hB]: (4.14)

The expression for rA can similarly be calculated:

rA =
�N0 +N1

3k
+

1

3t
[hB � 2hA]: (4.15)

The objective of city A will be again to maximize aggregate taxes levied,

but now taking into account decisions taken by city B. The expression of rA

in 4.15 is used. Thus, the maximization problem consists in:

max
hA

RA
h = hAk[

�N0 +N1

3k
+

1

3t
(hB � 2hA)]; (4.16)

and the best response function for city A results in

hA(hB) =
t(�N0 +N1)

4k
+
hB

4
: (4.17)

For city B the best response function could be analogously found:

hB(hA) =
t(�N0 +N1)

4k
+
hA

4
: (4.18)

Notice that the sign of the partial derivatives is positive. Contrary to what

happened in the population control game, now the best response functions
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slope upward in the tax game. This means that taxes as growth control

instruments act as strategic complements rather than substitutes. When B

chooses a relatively high tax more households are diverted to the remaining

cities in the system, including A, since the decision is made considering that

hA remains �xed, but not the population level in A. By imposing a higher

hA it is possible to increase the revenue levied from this diverted households.

The system with the best response functions for cities A and B is solved,

and the equilibrium tax values corresponding to the simultaneous tax game

result in:

hcomp = hA = hB =
t

3k
[�N0 +N1]: (4.19)

The tax revenue that arises from these equilibrium tax levels is

Rh(h
comp) =

2t

27k
[�N0 +N1]

2 (4.20)

for any of the cities enacting taxes. The resulting city size is

r(hcomp) =
2

9k
[�N0 +N1]: (4.21)

This city size is larger than in the one controlling city case, and it is smaller

compared to the population control game. However, comparisons must be

taken carefully, since di�erent objective functions have been used for the po-

pulation and the tax control games. Alternatively, the total level of revenues

should be compared3.

Other studies have already shown that price instruments lead to higher

equilibrium populations (Helsley and Strange, 1995). As for the levels of z0
and z1, which ultimately a�ect the levels of utility in the system, it results

that

z1(h
comp) = Y1 � P �

5t

9k
[�N0 +N1]; (4.22)

and

z0(h
comp) = Y0 � �P �

�t

9k
[5N1 + (3 + 2�)N0]: (4.23)

3This comparison of e�ects will be further explored in a upcoming section.
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The consumption of non-land goods diminishes when introducing strategic

interaction between cities, for both types of households, again compared to

the outcome with a single controlling city. As the number of cities using

taxes increases, the negative e�ects on z rise because it grows the number of

households who are diverted from the controlling cities. This causes housing

and land rents in the system to increase.

4.3 A cooperative framework with taxes

As in the population control scenario, we consider the possibility that coopera-

tion between jurisdictions might take place when enacting taxes. To simplify,

and since no a priori di�erences between cities A and B exist, one would ex-

pect the implementation of symmetrical tax rates4. This permits to express

aggregate revenues from taxes for any of the active cities as:

max
hcoop

Rh(h
coop) = hcoopk[

�N0 +N1

3k
�

1

3t
hcoop]: (4.24)

It is found that the optimal tax under cooperation is

hcoop =
t

2k
[�N0 +N1]; (4.25)

tax size that exceeds the Nash equilibrium tax level, hcoop > hcomp. Accordingly,

the resulting city size for the controlling cities is

r(hcoop) =
1

6k
[�N0 +N1]; (4.26)

which is smaller compared to the outcome obtained in the competition sce-

nario.

Let Rh(h
coop) denote the tax revenue when both cities cooperate. Like-

wise, Rh(h
comp) in equation 4.20 denoted the revenue with competition. It

can ben observed that Rh(h
coop) > Rh(h

comp), that is, tax revenues are larger

under the cooperative framework. Assuming that one city enacts the coop-

erative tax, the best tax level for the other city can be calculated by substi-

tuting in the city's best response function. Let hdev denote the tax chosen

when deviating. Then,

hdev =
3t

8k
[�N0 +N1]; (4.27)

4Alternatively, it could be accepted a di�erent agreement on taxes leading to this

maximum level of tax revenues, followed by an egalitarian share-out of taxes levied

20



that is, the city that deviates from the agreement gains from imposing a

lower tax rate. The gains from the attraction of a larger number of residents

o�set the loss associated to collect a smaller tax per head of population. The

overall tax revenue for the city that breaks the cooperation agreement is

Rh(h
dev) =

3t

32k
[�N0 +N1]

2; (4.28)

while the city that enacts hcoop obtains a diminished tax revenue of

Rh(h
coop0

) =
t

16k
[�N0 +N1]

2; (4.29)

where Rh(h
coop0

) denotes overall tax revenue for the city that �xes hcoop. If

only revenues from a single period are considered, then the highest revenues

are obtained when cities deviate from the cooperation agreement, while the

other one maintains the cooperative tax hcoop. Thus,

Rh(h
dev) > Rh(h

coop) > Rh(h
comp) > Rh(h

coop0

) (4.30)

4.3.1 Equilibrium in a static context

Consider the case where the e�ects of the introduction of taxes are going to

be realized for a single period only. Then, as it happened in the population

control game, the equilibrium solution is to compete and to enact hcomp as

tax sizes. Although communities would be able to attain higher revenues if

they maintained the cooperative tax level, cooperating is not an equilibrium.

Keeping in mind the comparison of revenues as shown in equation 4.30, the

City A

City B

Cooperate Compete

Cooperate Rh(h
coop); Rh(h

coop) Rh(h
coop0

); Rh(h
dev)

Compete Rh(h
dev); Rh(h

coop0

) Rh(h
comp); Rh(h

comp)

Figure 4.1: Static game with taxes when allowing for cooperation.

equilibrium solution can be found when solving the static game depicted in

table 4.1. Given a certain strategy of the rival community, and in the search

of the largest payo�s, it is found that the only Nash equilibrium is the one in

which cities compete, and they achieve an identical tax revenue of R(hcomp).
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4.3.2 Equilibrium in a dynamic context

Two scenarios, the �nite and in�nite horizon games are considered in this

subsection. As in the population control case, cooperation would be only the

resulting equilibrium when considering that the game lasts in�nite periods.

1. Finite horizon

When the interaction between jurisdictions takes place for a limited

number of periods, again the equilibrium strategy for any of the cities

is to compete. To solve this game, backwards induction is used, and in

every single period the equilibrium solution is to compete.

2. In�nite horizon

If the game between jurisdictions is to take place during in�nite peri-

ods, then cooperation is a plausible equilibrium solution. The calculus

of the revenue obtained in every possible scenario is needed. Thus it

has been calculated the respective present value of tax revenues when

the two cities cooperate {PV Rh(h
coop){; when the two cities compete

{PVRh(h
comp){; and when one city cooperates while the other one de-

viates from the cooperation agreement {PV Rh(h
coop0

) and PV Rh(h
dev),

respectively.

In each instance, the expressions for aggregate tax collections result as

shown below. Aggregate revenues when one city cooperates and the

other one deviates have been calculated under the assumption that the

trigger strategy applies, as in the population control game. The results

are as follows:

Rh(h
coop) =

t

12k
[�N0 +N1]

2 +
t

12kr(1 + r)
[�N0 +N1]

2 (4.31)

Rh(h
comp) =

2t

27k
[�N0 +N1]

2 +
2t

27kr(1 + r)
[�N0 +N1]

2 (4.32)

Rh(h
dev) =

3t

32k
[�N0 +N1]

2 +
2t

27kr(1 + r)
[�N0 +N1]

2 (4.33)

Rh(h
coop0

) =
t

16k
[�N0 +N1]

2 +
2t

27k
[�N0 +N1]

2 (4.34)
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To �nd the equilibrium solution, one must compare aggregate tax rev-

enues if cooperation prevails and if cities deviate and choose hdev. The

latter allows for a greater revenue in the �rst period, but that leads

to the smaller competition revenue levels for all the periods on. Once

City A

City B

Cooperate Compete

Cooperate PV Rh(h
coop); PV Rh(h

coop) PV Rh(h
coop0

); PV Rh(h
dev)

Compete PV Rh(h
dev); PV Rh(h

coop0

) PV Rh(h
comp); PV Rh(h

comp)

Figure 4.2: In�nite horizon dynamic game with taxes, when allowing for

cooperation.

the cooperation agreement has been abandoned by one of the cities,

competing becomes the Nash equilibrium strategy. The cooperative

solution is a Nash equilibrium as well if the present value of revenues

under cooperation exceeds the present value of revenues when deviat-

ing, that is

Rh(h
coop) > Rh(h

dev); (4.35)

or

t

12k
[�N0 +N1]

2 +
t

12kr(1 + r)
[�N0 +N1]

2 >

3t

32k
[�N0 +N1]

2 +
2t

27kr(1 + r)
[�N0 +N1]

2

(4.36)

Operating the expression above and solving for r it results that coopera-

tion is the equilibrium solution as long as the interest rate is

r < 0; 875: (4.37)

Again, with current interest rates, cooperation would be the equilib-

rium strategy for local jurisdictions when the game lasts in�nite peri-

ods.
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5 Comparison of results with population con-

trols and taxes

We have so far assumed that the housing tax and the population control

were endogenous in the sense that they maximize total taxes levied by local

communities. In this section aggregate taxes levied are compared depending

on the instrument used. Because households' utility levels do not depend

upon any local public good or urban amenity, the expenditure side of the tax

collection is being ignored. It can be likewise argued that the positive e�ect

on households' utility of this expenditure would be the same for a constant

level of tax revenues, and then only the negative e�ects associated to the

particular source of the �scal revenue matter.

To compare the di�erent e�ects of using population controls or taxes for

collection purposes, we make the following assumption. Taxes on housing

directly yield a certain amount of tax revenue. As for the population control

e�ect on �scal revenues, two extreme scenarios can be considered. Firstly, it

could be the case that only increased land rents were taxed, for instance if

the whole increase in land rents was captured by the local government. The

second possibility consists in assuming that the local community imposes

a certain p% tax on total land rents, not only on value increases. With

a p=100%, the local community would appropriate all land rents. Such

an extreme tax on land rents creates the problem of landowners losing the

incentive to e�ciently allocate each plot of land to the highest bidder.

The comparison of tax revenues under each instrument results easier if

representing each revenue level against the associated city size rA, as in �gure

5.1. The graph plots the revenue size associated to each city size, under three

di�erent scenarios: when cities compete with taxes; when cities compete with

population controls and the tax revenue equals the increased land rents; and

when cities compete with population controls and the tax revenue equals all

land rents. In any case it is also assumed that cities choose identical housing

taxes, or identical population controls, so that only symmetric solutions are

considered.

The relationship between land rents {or increased land rents{ and city

size is straightforward, by rearranging the general expression of land rents in

equation 3.4. As for the relationship between tax revenues and city size, it can

be easily obtained by combining the expression of tax revenues in equation

4.8 with the expression in equation 4.5 in page 16, that inversely relates the

24



Figure 5.1: Comparison of tax revenues with population controls and housing

taxes

tax level hA and city size rA. Each tax level is uniquely associated to a

certain city size. As it can be observed, the three revenue curves follow the

La�er type shape. Thus, a small city size can represent either the utilization

of a too stringent population control or the result of a relatively high tax

on housing consumption. A smaller city is associated then either to a large

increase in land rents or to to a higher housing tax. Both facts provoke a

greater per capita revenue, but a reduction in the base of the revenue due

to the fact that less residents remain in the city in equilibrium. Several city

sizes have been highlighted: rm, which represents the city size corresponding

to the market situation; rcomp, the equilibrium city size when competing

with population controls; r(hcomp), the arising city size when competing with

with taxes; rcoop, the city size when cities agree on population controls; and

r(hcoop), the resulting city size when cities cooperate to �x their taxes.

A city size of rm corresponds to a situation where there is no population

control or a tax hA = 0, and as a result Rh = 0 and �TRA = 0. Total land

rents equal the value market, that is TRm.

When the increases in land rent values due to the introduction of the

population control are fully taxed, taxes are always superior to population
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controls because a �xed revenue level can be achieved at a smaller cost in

terms of the decrease in residents' utility. The optimal city size when ma-

ximizing increased total land rents �TRA is rA = 1

5k
[�N0 + N1] {the same

city size that also maximizes aggregate land rents TRA. The revenues aris-

ing from the implementation of a tax on housing leading to the same city

size are greater. Alternatively, the revenue obtained with this city size,

�TRA = t

144k
[�N0 + N1]

2, could be achieved with a tax level leading to

a greater city size {and as a result, with a reduced loss in residents' utility.

For values of the city size greater than the optimal level rA the diverting of

population through a direct population control provokes that total revenues

begin to decline, up to the city size rA = 1

6k
(�N0 + N1), that implies again

that �TRA = 0.

Secondly, consider that a tax levies total land rents, and not only land

rent rises. Under this scenario the comparison between taxes and population

favors the population control instrument, since total land rents are always

superior to taxes in terms of total revenue for identical city sizes. Under this

total con�scation of land rents it arises the problem that landowners have no

incentive to e�ciently allocate their land.

There exists an intermediate tax rate p that could be applied on total

land rents, that would lead to identical outcomes in terms of tax revenues.

Analytically, this p tax rate can be expressed in terms of the parameters,

being

p =
18k2(�N0 +N1)

2

�45�2N2

0
+ 16�k2N2

0
+ 56�2k2N2

0
� 90�N0N1 + 144�k2N0N1 � 45N2

1
+ 72k2N2

1

(5.38)

6 Conclusions

This paper provides an extension to the scarce urban economics literature

undertaking the analysis of urban regulations as the result of the strategic

interaction among local jurisdictions. Some results previously cited have

already be found, as would be the distinct nature of quantity and price

instruments as strategic variables to manage urban growth. Thus, population

controls are strategic substitutes while taxes act as strategic substitutes.

Likewise, generalizing the model for n cities, it could be shown that the

decrease in the utilities of residents increases with the number of cities using

controls.
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Measured in terms of resident's utility, competing with population con-

trols is desirable because it leads to relatively greater city sizes, and con-

sequently, to smaller negative impacts on utilities. If measured in terms of

total revenues, population controls are superior to taxes only when all land

rents are con�scated, but inferior when only increased land rents constitute

the tax revenue.

It has also been considered the case where competition takes place not

only in a single period, but repeatedly. When the interaction between juris-

dictions takes place in a �nite horizon, the equilibrium strategy for every city

is to compete. In a in�nite period horizon, though, cooperation becomes the

equilibrium strategy for active cities for \normal" levels of interest rates.

This work is still in a preliminary phase. The model used incorporates

variables which have not been exploited in the present analysis, but that will

hopefully constitute the focus of further research. For instance, one serious

shortcoming is that externalities have not been considered, while their pres-

ence makes one of the most alleged reasons to justify urban land controls

from an economics perspective. The model seems 
exible enough so as to

easily incorporate environmental externalities a�ecting households welfare,

both in the form of density levels {k{and of the costs of urban growth and

the consequent loss of open spaces. Similarly, two di�erent types of house-

holds have been di�erentiated attending to their income levels. Additional

attention and a more careful analysis should be devoted to the distributional

consequences of planning instruments.
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