Turning points of the Financial and the Real Estate Market

Ranoua Bouchouicha

Université Lumière Lyon 2 GATE-Lyon-St Etienne CNRS UMR 5824

Agenda

- Introduction
- Motivation
- Data
- Methodology
- Results
- Conclusion

Introduction

- Importance of determining Business cycles
- Turning Points : peak and trough
- Non parametric approach : Bry-Boschan algorithm (1971)
- Parametric approach : Markov Switching Model (Hamilton, 1989)
- Housing as Business cycle (Leamer, 2007)
- Housing as an important indicator to measure economic expansions(Angello and Schuknecht, 2009, Detken and Alessi, 2009).
- Analysis of the Housing market and the financial market by applying the BB algorithm (Bunda and Ca'Zorzi, 2009)

Motivation

- Applying the parametric and the non-parametric approaches to analyse the starting dates of the recessions
- Which method identify better the turning points in the Financial Market and the Real Estate Market
- Analysing the difference between the turning points in the commercial, residential, Real Estate Investment Trust and Stock markets

Data

• Sample length: from 01/1987 to 01/2010

• UK

Residential: Halifax Price index

Commercial: Investment Property Databank index (IPD)

REIT index: Real Estate Investment Trust

Stock market: FTSE 500

• USA

Commercial: SP/Case Shiller 10 composite index

REIT index

Stock market: S&P500

Methodology

• Parametric approach Markov Switching Model Hamilton (1980, 1990)

$$\begin{cases} s_t = 1 \text{ regime in expansion} \\ s_t = 2 \text{ regime in recession} \end{cases}$$
 (1)

The transition probabilities are:

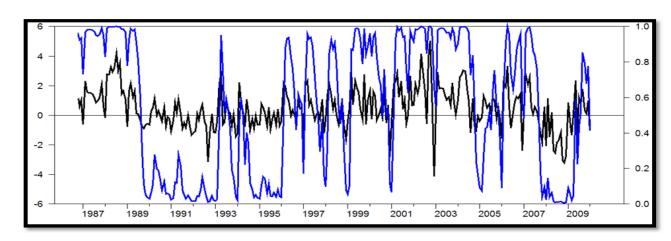
$$p(s_{t} = 1 | s_{t-1} = 1) = p_{11}$$

$$p(s_{t} = 2 | s_{t-1} = 1) = 1 - p_{11} = p_{21}$$

$$p(s_{t} = 2 | s_{t-1} = 2) = p_{22}$$
(2)

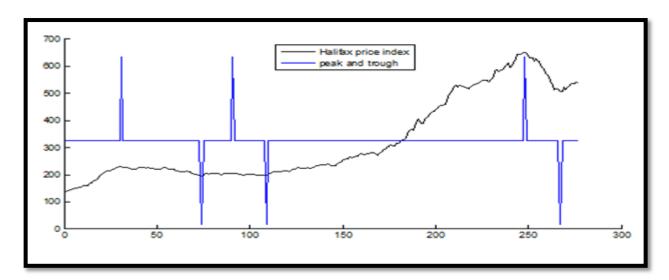
$$\begin{cases} \Delta y_{t} = \mu_{s_{t}} + \varepsilon_{t} & \text{where} \quad \varepsilon_{t} \sim iid \ N(0, \sigma^{2}) \\ \mu_{s_{t}} = \mu_{0} (1 - S_{t}) + \mu_{1} S_{t} \end{cases}$$
(3)

• Non parametric approach Bry-Boschan (1971)

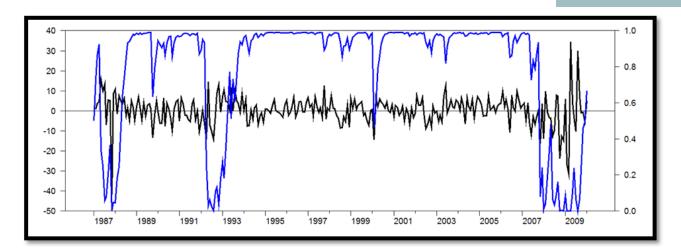


- Step 1: Determination of extreme values.
- Step 2: Determination of cycles in 12-month moving average. For this step and the subsequent steps, consider the alternation of turns by selecting highest of multiple peaks and lowest of multiple troughs.
- Step 3: Application of Spencer curve on the series resulting from the step 2, "update" the turning points and elimination of the too short cycles.
- Step 4: Detection of turning points on the resulted series of step 3 with a new moving average filter and elimination of short cycles.
- Step 5: Determination of turning points in the original series taking into account information obtained through the step 4 and elimination of the too short cycles.
- Step 6: Statement of final turning points.

Table 1. Estimates of the Markov Switching Model for returns

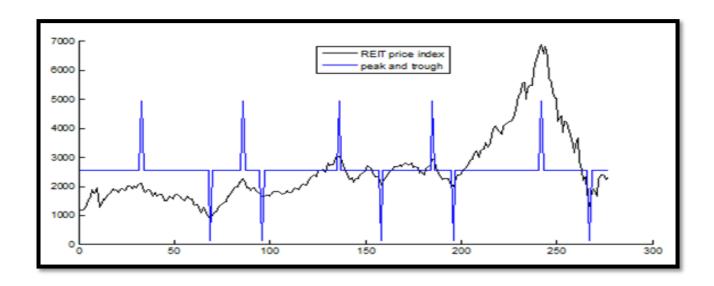

	UK				USA		
	Halifax	REIT	IPD	FTSE 500	REIT	SP/CS 10	S&P500
p_{12}	0.0458	0.0128	0.0253	0.0464	0.0302	0.0228	0.0369
	(0.0432)	(0.0095)	(0.0177)	(0.0317)	(0.0361)	(0.0080)	(0.0162)
p_{21}	0.0558	0.0531	0.0430	0.0240	0.1015	0.0176	0.1023
	(0.0708)	(0.0325)	(0.0161)	(0.0219)	(0.0547)	(0.0123)	(0.0512)
$\mu_{\scriptscriptstyle 1}$	1.1243	0.7120	0.9757	1.1168	1.0515	0.9509	1.2287
	(0.0680)	(0.4243)	(0.0759)	(0.1969)	(0.5822)	(0.0524)	(0.1925)
$\mu_{\scriptscriptstyle 2}$	-0.2711	-1.4333	0.1002	-0.0001	-1.8654	-0.3415	-1.4158
	(0.1212)	(2.0668)	(0.3850)	(0.4203)	(1.3938)	(0.0682)	(1.2053)
$\sigma_{_{1}}$	0.2340	0.6717	0.4505	0.0766	0.9514	0.4808	0.3301
	(1.6046)	(0.2252)	(0.0667)	(0.2169)	(0.8428)	(0.0271)	(0.1685)
$\sigma_{\scriptscriptstyle 2}$	1.0261	1.3977	1.8343	1.5997	1.6582	1.7540	1.8968
	(3.4432)	(0.2848)	(0.1595)	(0.5404)	(3.0275)	(0.0639)	(0.7478)

Results on UK Markets

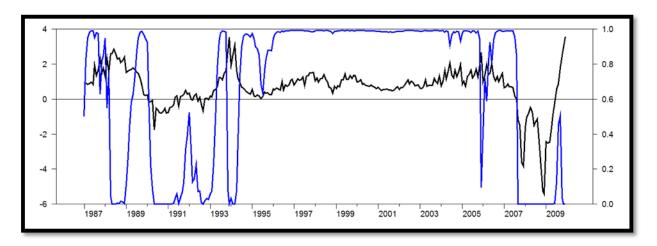


Return
St=1

Halifax return and probability of being in expansion

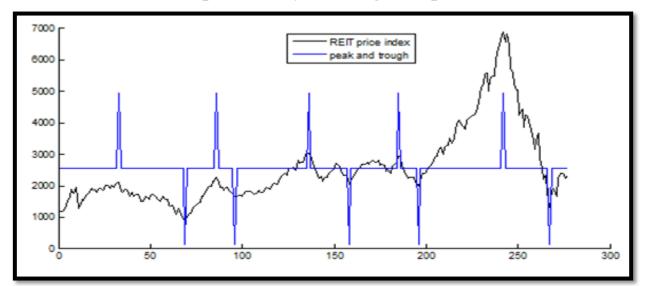


BB algorithm on the Halifax price index

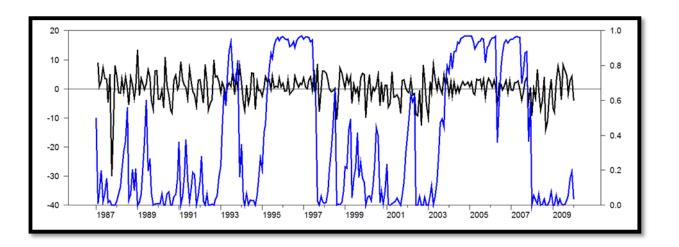


Return
St=1

REIT return and probability of being in expansion

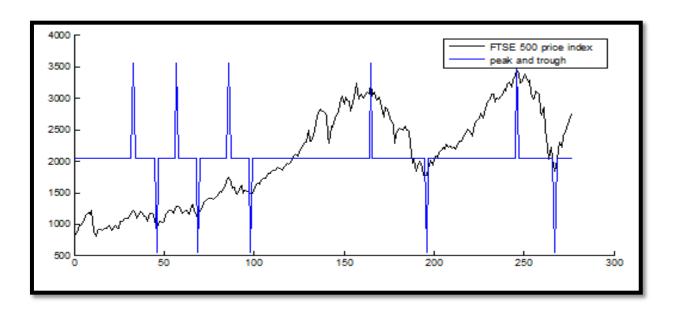


BB algorithm on the REIT UK price index

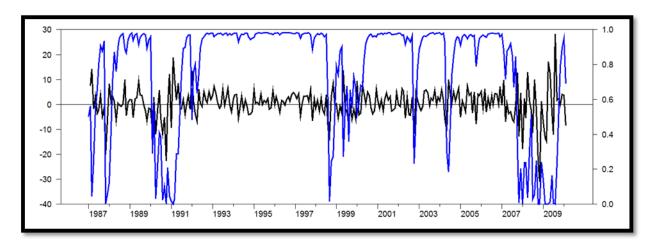


Return
St=1

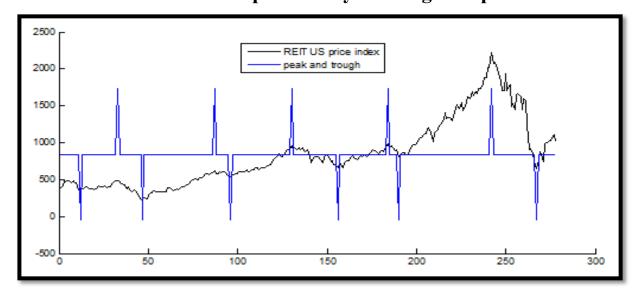
IPD return and probability of being in expansion



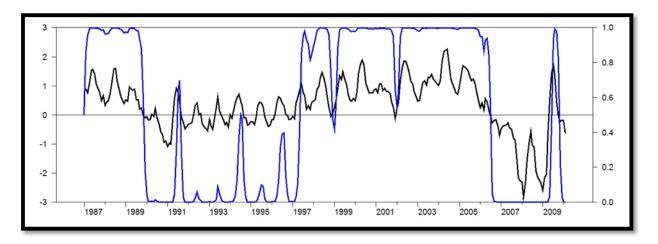
BB algorithm on the IPD


Return
St=1

FTSE 500 return and probability of being in expansion

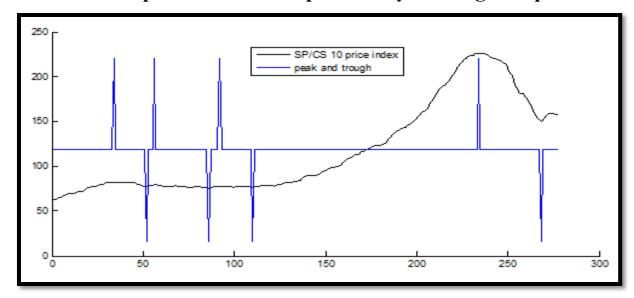

BB algorithm on FTSE 500 price index

Results on US Markets

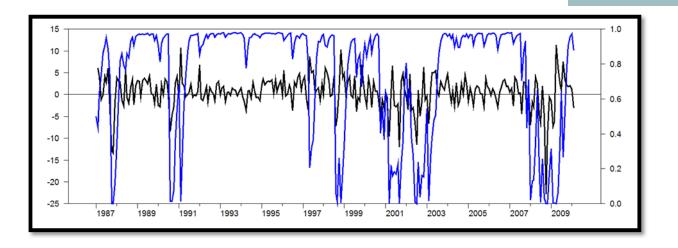


Return
St=1

REIT return and probability of being in expansion

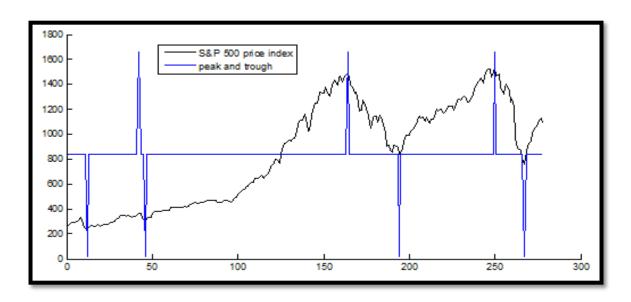


BB algorithm on the REIT US price index



Return
St=1

SP/CS 10 composite return and probability of being in expansion



BB algorithm on the SP/CS 10 composite price index

Return
St=1

S&P 500 return and probability of being in expansion

BB algorithm on the S&P 500 price index

Table 2. Dating recessions using the BB algorithm (UK data)

Halifax	•	REIT		IPD	'	FTSE 500	
Start**	End***	Start**	End***	Start**	End***	Start**	End***
07/1989	02/1993	09/1989	09/1992	01/1990	07/1991	12/1989	09/1990
						08/1991	08/1992
07/1994	01/1996	02/1994	12/1994			01//1994	06/1994
		04/1998	02/2000			12/1999	01/2003
		05/2002	04/2003				
08/2007	03/2009	02/2007	03/2009	07/2007	06/2009	05/2007	02/2009

^{**} Identify a peak in the graphs of the BB algorithm

Table 3. Dating recessions using the MSM (UK data)

Halifax	'	REIT	•	IPD	'	FTSE 500	·
Start	End	Start	End	Start	End	Start	End
10/1989	02/1993	07/1987	03/1988	05/1988	01/1989	01/1987	12/1992
11/1993	01/1996	05/1992	12/1992	05/1990	04/1994	03/1994	10/1994
						09/1997	05/2003
05/2007	04/2009	11/2007	09/2009	01/2007	06/2009	02/2008	08/2009'

^{***}Identify a trough in the graphs of the BB algorithm

Start dates for UK recessions

Halifax
IPD
REIT
FTSE500

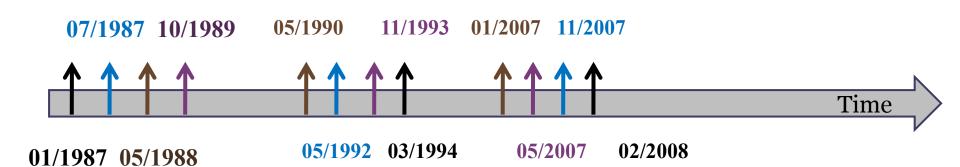


Table 3. Dating recessions using the BB algorithm (US data)

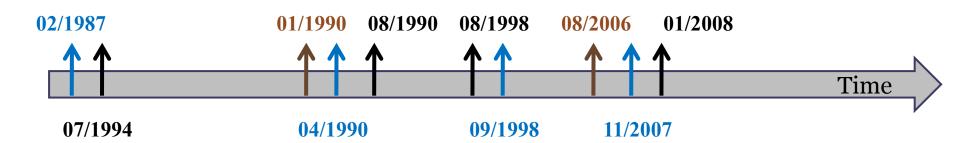

REIT		SP/CS10		S&P 500	'
Start**	End***	Start**	End***	Start**	End***
XXXX	12/1987			XXXX	12/1987
09/1989	11/1990	10/1989	04/1991	06/1990	10/1990
		08/1991	02/1994		
03/1994	12/1994	08/1994	02/1996		
10/1997	12/1999				
04/2002	10/2002			08/2000	02/2003
02/2007	03/2009	06/2006	04/2009	10/2007	03/2009

Table 4. Dating recessions using the MSM (US data)

REIT	'	SP/CS10	·	S&P 500	·
Start	End	Start	End	Start	End
02/1987	01/1988			07/1987	03/1988
04/1990	04/1991	01/1990	03/1997	08/1990	06/1991
09/1998	03/2000			08/1998	02/2003
11/2007	08/2009	08/2006	05/2009	01/2008	05/2009

Start dates for US recessions

SP/CS 10 REIT S&P 500

Conclusion

- Since the BB algorithm detects local minima and maxima, this is the main reason behind the many turning points resulting from this approach
- The Markov switching model gives better results than the Bry-Boschan model. For the latter, assuming that the expansions and contractions of minimum duration can conduct to misleading interpretations
- REIT detects better the turning points of the Real Estate market.
- Detect linear and non linear causality between the two markets.

Thank you!