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1 Introduction

Research of portfolio selection with higher moments faces two obstacles. First, the

theory of higher moments portfolio selection is underdeveloped comparing to the mean-

variance portfolio selection theory. In the mean-variance portfolio selection theory, the

expected return and risk characteristics of portfolios can be intuitively compared in a

“mean-standard deviation” diagram. The mean-variance efficient frontier is spanned

by two funds and the two-fund separation simplifies the calculation of efficient port-

folios. The portfolio selection with higher moments however have several frameworks

(Simaan 1993, Athayde & Flôres 2004, Briec et al. 2007, Menćıa & Sentana 2009, and

Low et al. 2012). Although each of these frameworks has its own merits, the lack

of a unified framework is certainly a drawback. Second, the economic value of higher

moments in portfolio selection is hard to capture through the comparison of expected

utilities. Empirical studies (Patton 2004, Jondeau & Rockinger 2006, and Harvey et

al. 2010) usually use numerical integrations and approximations which involve tedious

computation.

This paper aims to advance both theoretical and empirical understanding of higher

moments portfolio selection. From the perspective of theoretical development, I explore

Simaan (1993)’s three-parameter model by combining it with Azzalini & Dalla Valle

(1996)’s multivariate skew normal distribution. I examine an alternative parameteriza-

tion of the multivariate skew normal distribution and show that under this parameteri-

zation the multivariate skew normal distribution is a special case of the three-parameter

model. All theoretical results in Simaan (1993) are applicable to skew normal asset re-

turns. Among all available higher moments portfolio selection frameworks, Simaan

(1993)’s three-parameter model has many desirable features. The three-parameter ef-

ficient frontier is spanned by a three-fund separation which nests the classic two-fund

separation and has nice geometric properties. The skew normal distribution provides

flexibility of modeling higher moments behavior in asset returns and this distribution

is well-known in the statistics literature. The skew normal distribution provides a way

to operationalize the three-parameter model.
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Combining the skew normal asset returns and the CARA (constant absolute risk

aversion) utility, I obtain the closed-form certainty equivalent and skewness premium.

Using the skewness premium, I show that when investors face positive skewness, they

are willing to sacrifice some required return to chase positive skewness. On the other

hand, when investors face negative skewness, they require higher return to compensate.

Market risk aversion plays an important role of determining the magnitude of skewness

premium. When market risk aversion is low (high), the magnitude of skewness premium

is also low (high).

From the perspective of empirical study, the skew normal certainty equivalent

allows me to empirically evaluate the economic value of higher moments in portfolio

selection. It is well-known in the finance literature that combining the CARA utility

and multivariate normal asset returns leads to the mean-variance certainty equivalent.

Previous studies use the mean-variance certainty equivalent to analyze theoretical and

empirical problems in portfolio selection (Pástor & Stambaugh 2000, Tu & Zhou 2004,

and Kan & Zhou 2007, among others). Tu & Zhou (2004) compare the economic loss

of a mean-variance investor when the multivariate normal data-generating process is

replaced by a set of multivariate t distributions. Part of their study can be inter-

preted as a study on the economic value of higher moments because multivariate t

has heavier tails than multivariate normal distribution. Although Tu & Zhou (2004)

find nontrivial changes in optimal portfolio weights, they do not find any significant

change in economic value when heavier tails are considered. The certainty equivalent of

the CARA utility with student t asset returns however has no closed-form because the

cumulant-generating function of multivariate t does not exist. Thus the economic value

comparison conducted by Tu & Zhou (2004) might be better used for investors facing

multivariate normal asset returns but mistakenly regard them as multivariate t returns.

In my study, the certainty equivalent is obtained on skew normal asset returns, so I can

explicitly measure the economic value difference when investors face multivariate skew

normal asset returns but mistakenly regard them as multivariate normal returns.

Margin requirements can eliminate the benefits of higher moments by constraining
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investors’ ability of taking extreme long/short positions. Unconstrained portfolio se-

lection results may provide biased value of higher moments because investors can take

extreme positions. Patton (2004) considers short-sales constraints and finds that un-

der short-sales constraints, the economic gain of considering higher moments is limited.

Short-sales constraints however are different from margin requirement constraints. In

my empirical study, I explicitly incorporate margin requirements. When investors face

broad investment opportunities, I find that the economic gain of considering higher

moments is negligible when realistic margin requirements exist.

The rest of the paper is organized as follows. Section 2 provides a review on the

results of Simaan (1993) and relates them to other current developments in higher mo-

ments portfolio selection. Section 3 discusses the multivariate skew normal distribution

and relate it to Simaan (1993)’s three-parameter model. Section 4 analyzes the portfo-

lio selection with the CARA family of utilities by obtaining the closed-form certainty

equivalent. It also characterizes the skewness premium, and shows a stochastic dom-

inance result. Section 5 discusses the certainty equivalent approach of evaluating the

economic value of higher moments, applies the approach to the data and reports the

empirical results. Section 6 concludes.

2 Simaan’s Three-Parameter Model

Simaan (1993)’s three-parameter model is generated from a perturbation of multivari-

ate elliptical distribution. In his model, asset returns can be characterized by three

parameters: location, scale and skewness. By solving a quadratic programming prob-

lem, Simaan (1993) shows a three-fund separation result which characterizes the ef-

ficient frontier for all risk-averse investors. The efficient frontier takes into account

all moments of asset return distribution. Simaan (1993)’s three-parameter framework

produces an elegant portfolio selection solution which extends intuitions obtained in

Markowitz (1952)’s mean-variance framework.
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2.1 Three-Parameter Model and Portfolio Selection

Simaan (1993) approaches the higher-moments portfolio selection problem by specifying

skewed asset return distribution as a perturbation of elliptical distributions1. Let yt ∈
�k be a vector of asset returns observed at time t, on which observations (t = 1, ..., T )

are available. The data-generating process of yt is written as a multivariate regression:

yt = ξ + Cst + et. (1)

where st is a scalar perturbation with any non-elliptical distribution. The perturba-

tion st can be centered to have zero mean so that the mean vector of asset returns

E(yt) = ξ. Conditioning on st, the random vector et follows a joint-elliptical distribu-

tion Elk with zero mean, positive-definite scale matrix Σ and characteristic function φ,

i.e. et|st ∼ Elk(0,Σ;φ) or equivalently yt|st ∼ Elk(ξ + Cst,Σ;φ). When elements of et

are uncorrelated with each other, the regression (1) is a one-factor model with factor

loading matrix C. In Section 3, I will show that Simaan (1993)’s construction is related

to Engle et al. (1983)’s weak exogeneity concept.

In portfolio selection problems, the investor wants to maximize her expected utility

with or without constraints by choosing the asset weight vector ρ = (ρ1, ..., ρk)
′. When

asset returns follow the data-generating process (1), Simaan (1993) shows that the port-

folio return ρ′yt is fully characterized by three parameters: 1) location parameter ρ′ξ,

2) scale parameter ρ′Σρ, and 3) skewness parameter ρ′C. And the optimal solutions

of portfolio selection with or without a risk-free asset satisfy quadratic programming

problems described in Proposition 1.

Proposition 1. For any concave utility there exists a pair (μ0, s0) such that

the portfolio selection problem without a risk-free asset is equivalent to the following

1Simaan (1993) does not distinguish between spherical distributions and elliptical distributions. In
standard statistics text (e.g. Fang et al. 1990), spherical and elliptical distributions are different.
Simaan (1993) actually discusses elliptical distributions.
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quadratic programming problem:

min
ρ∈�k

1

2
ρ′Σρ

s.t. ρ′ξ = μ0,

ρ′C = s0,

ρ′τ = 1.

(2)

When there exists a risk-free asset with return Rf , the portfolio selection problem

is equivalent to the following quadratic programming problem:

min
ρ∈�k

1

2
ρ′Σρ

s.t. ρ′ξ + ρ0Rf = μ0,

ρ′C = s0,

ρ′τ + ρ0 = 1.

(3)

where τ is the vector of ones and ρ0 denotes the investment in the risk-free asset.

The implication of Proposition 1 is that solving the quadratic programming prob-

lem (2) or (3) by varying μ0 and s0 will provide a menu that includes efficient portfolios

for all risk-averse investors. The return-risk trade-off on the efficient frontier is cap-

tured by a three-parameter vector (ξ,Σ, C). Simaan (1993)’s approach is similar to the

Markowitz (1952)’s mean-variance portfolio selection approach. Both are fully compat-

ible with expected utility maximization and both provide a menu of efficient portfolios

to all risk averse investors. Proposition 2 shows a three-fund separation result which

extends the two-fund separation in the mean-variance framework.

Proposition 2. (Three-Fund Separation) When asset returns follow the data-
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generating process (1), the efficient frontier is spanned by the following three funds:

a1 =
V −1ξ

τ ′V −1ξ
, a2 =

V −1τ

τ ′V −1τ
, and a3 =

V −1C

τ ′V −1C

where V = V ar(yt). If there exists a risk-free asset with a rate Rf , then the efficient

frontier is spanned by the risk-free asset, fund

a =
V −1(ξ −Rfτ)

τ ′V −1(ξ − Rfτ)
, (4)

and a3.

The fund a1 (a) is the portfolio that maximizes (excess) portfolio expected return

ρ′ξ (ρ′(ξ − Rfτ)) for a given portfolio variance. The fund a2 is the global minimum

variance portfolio. The fund a3 is the portfolio that maximizes portfolio skewness for

a given portfolio variance. Proposition 2 provides an elegant solution to the higher-

moments portfolio selection problem. When perturbation in asset returns disappears,

the three-fund separation naturally reduces to the classic two-fund separation of funds

a1 (a) and a2.

2.2 Geometry of Three-Parameter Portfolio Selection

The efficient frontier constructed from Proposition 2 has nice geometric properties.

Simaan (1993) shows that in the “(excess) mean - variance - skewness parameter C”

space, the efficient set (with) without the risk-free asset) is the surface of an elliptical

paraboloid which includes Markowitz (1952)’s minimum-variance set. The implications

of this result are: 1) iso-variance contours are ellipses; 2) iso-mean and iso-C contours

are parabolas; 3) the efficient set is the upper surface of an elliptical cone when variance

is replaced by standard deviation. Figure 1 illustrates the geometric shapes of efficient

set (with the risk-free asset) in two panels.
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[Insert Figure 1 here.]

Panel (a) shows the efficient set in the “(excess) mean - variance - skewness pa-

rameter C” space and Panel (b) shows the efficient set in the “(excess) mean - standard

deviation - skewness parameter C” space. I draw a relationship between the three-

parameter model’s geometric properties and properties of mean-variance-skewness effi-

cient set shown by Athayde and Flôres (2004). Athayde and Flôres (2004) consider the

geometry of optimal portfolios with first three sample moments in a ”(excess) mean -

standard deviation - cubic root of skewness” space. With the risk-free asset, they show

an important linearity property of the efficient set. For a given k, suppose the efficient

(minimum variance) portfolio is ρ̄ when excess return μ = 1 and cubic root of skewness

is k. Portfolio ρ̄’s standard deviation is σ̄. Along the same direction k (in the ”excess

return - cubic root of skewness” space) with varying μ, the portfolios μρ̄ are also effi-

cient with excess return μ and cubic root of skewness is kμ. Their standard deviations

are μσ̄. Along each of these directions, the optimal portfolios are combinations of two

funds: ρ̄ and the risk-free asset. The linearity property comes from the mathematical

fact that sample mean, variance and skewness are homogeneous functions of degree 1,

2 and 3 with respect to asset weights.

Panel (b) of Figure 1 intuitively shows that the linearity property holds with the

three-parameter model when the cubic root of skewness is replaced by the skewness

parameter C. Mathematically, the three-parameter efficient frontier is the solution

of a quadratic programming in Proposition 1 and a portfolio’s skewness parameter

C is a homogeneous function of degree 1 with respect to asset weights. These two

mathematical facts ensure the linearity property.

The iso-variance contours of the three-parameter efficient frontier are ellipses. The

ellipse represents ”a sort of ideal situation” (Athayde and Flôres 2004, Fig. 2(a)) with

only one maximum, either for excess return or C, for a given variance. For positive

skewness lover (negative skewness averter), the efficient set is the part of iso-variance

curve from the maximum mean return point to the maximum skewness parameter point.

7



2.3 Simaan’s Framework vs. Other Higher Moments Portfolio

Selection Frameworks

There are several theoretical frameworks on higher moments portfolio selection. I re-

view these theoretical frameworks including Simaan (1993) by summarizing them in

Table 1.

[Insert Table 1 here.]

Table 1 is a two-by-two table which categorizes theoretical frameworks into four

groups. “Parametric” (“Nonparametric”) theories have (no) distributional assumption

on asset returns. Theories consider all moments are identified as “all moments’ theories.

And theories only consider the first three moments are identified as “mean-variance-

skewness” theories.

Menćıa and Sentana (2009) consider the mean-variance-skewness portfolio selec-

tion with a location-scale mixture distribution of normals. The mixture distribution is

flexible and its first three moments are fully characterized by three parameters. Menćıa

and Sentana (2009) show that the mean-variance-skewness frontier is spanned by three

funds in the “mean-variance-skewness” space. Although their work has similarity to

Simaan (1993). The mixture normal distribution however cannot be nested in Simaan

(1993)’s three-parameter model.

Low et al. (2012) propose a skewness-aware measure and show that with this

measure the efficient frontier in the presence of a risk-free asset has similar properties to

the mean-variance efficient frontier. The skewness-aware measure has no distributional

assumption and is based on the cumulant-generating function of a multivariate random

variable which captures the information of all moments. However, for some distributions

the cumulant-generating functions do not exist. Notable examples are multivariate t,

stable and Cauchy distributions. Moreover, the skewness-aware framework is not fully

compatible with the expected utility maximization.
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Athayde and Flôres (2004) develop the mean-variance-skewness portfolio selection

solution for general distributions based on their sample moments. They characterize

several important geometric properties of the efficient frontier including the linearity

property I have discussed in Section 2.2. They point out that the efficient frontier may

not be well-behaved (e.g. may exist discontinuity) and emphasizes the importance of

establishing a theoretical foundation to guide empirical studies. Briec et al. (2007), in-

stead of solving the efficient frontier directly, propose a shortage function which guides

the search of efficient portfolio in the mean-variance-skewness space. Their develop-

ment is based on a dual approach and does not provide separation results or direct

characterization of the efficient frontier.

Comparing to above frameworks, Simaan (1993)’s three-parameter model has sev-

eral desirable properties: 1) it is fully compatible with the expected utility maximiza-

tion; 2) it nests the mean-variance portfolio selection results; 3) it has nice geometric

properties; 4) it considers information of all moments. Despite all these advantages,

the three-parameter model is largely in oblivion. In next section, I will show that a

well-known skew distribution in the statistics literature is a special case of the three-

parameter model and thus can operationalize the model.

3 Skew Normal Distribution as A Three-Parameter

Model

The key to operationalize the three-parameter model is to find a flexible skew distri-

bution which satisfies the model (1). In this section, I show that the multivariate skew

normal distribution proposed by Azzalini & Dalla Valle (1996) is a special case of the

three-parameter model. The multivariate skew normal distribution can be generated

by two equivalent methods: transformation method and conditioning method. I focus

on the conditioning method because the multivariate skew normal distribution can be

shown as a three-parameter model when conditioning method is used.

Let yt ∈ �k and scalar st have a joint multivariate normal distribution with mean
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vector μ and covariance matrix Γ, which is represented as

⎛
⎝ yt

st

⎞
⎠ ∼ Nk+1

⎡
⎣μ =

⎛
⎝ ξ

0

⎞
⎠ ,Γ =

⎛
⎝ Σ+ CC ′ C

C ′ 1

⎞
⎠
⎤
⎦ (5)

Here, both ξ and C are (k×1) vector parameters and Σ is a (k×k) positive definite

matrix. The multivariate skew normal distribution for yt is defined as the conditional

distribution of yt upon st > 0, which I write as (yt|st > 0). The resulting multivariate

skew normal density of (yt|st > 0) is

gsn(yt; ξ,Ω, α) = 2φk(yt; ξ,Ω)Φ
(
α′ω−1(yt − ξ)

)
(6)

where Ω = (ωij) = Σ + CC ′ and ω = diag(ω11, ..., ωkk)
1/2. φk(.; ξ,Ω) is a k-dimensional

multivariate normal probability density function with mean ξ and covariance matrix Ω;

Φ(.) denotes the standard normal cumulative distribution function.

α is a skewness parameter and α = 1
(1−C′Ω−1C)1/2

Ω−1C. When α = 0k×1, the

multivariate skew normal density in (6) reduces to the multivariate normal density

φk(yt; ξ,Ω). To illustrate the role of the skewness parameter α, Figure 2 plots contours

of bivariate skew normal distributions. The location parameter ξ = (0, 0)′ and the scale

parameter Ω is a correlation matrix with off-diagonal element ω12 = 0.5.

[Insert Figure 2 here.]

The varying skewness parameter α1 (α2) in each panel of Figure 2 affects both

marginal skewness and dependence structure substantially. Positive (negative) α1 (or

α2) accounts for positive (negative) skewness. The central panel corresponds to the

contour plot of a bivariate normal distribution with α1 = α2 = 0. Figure 2 shows that

dependence structures offered by the skew normal distribution are richer than those

offered by the normal distribution.

By examining (5) and how α is calculated from C shows that C is an alternative
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skewness parameter. When C = 0k×1, yt and st are independent and there is no

skewness induced by conditioning (yt|st > 0). From this observation, there are at least

three equivalent parameterizations of the multivariate skew normal distribution. The

first parameterization (ξ,Σ, C) and the second parameterization (ξ,Ω, C) come directly

from (5). The third parameterization (ξ,Ω, α) comes from the density formula (6). Both

Azzalini & Dalla Valle (1996) and subsequent development in Azzalini & Capitanio

(1999) focus on the third parameterization and another (the fourth) parameterization.

They never discuss the first parameterization. When the third parameterization is used

in describing linear transformation of the skew normal variables, the resulting expression

of α is complex.

The first and the second parameterizations have the advantage of simplifying the

result of linear transformation. This advantage is important in describing and analyz-

ing portfolio selection problems. I focus on these two parameterizations and use them

interchangeably. Proposition 3 is on linear transformation results using these two pa-

rameterizations.

Proposition 3.

Suppose A is a k × h matrix,

(a) under the first parameterization, if yt ∼ SNk(ξ,Σ, C), then A′yt ∼ SNh(A
′ξ, A′ΣA,A′C);

(b) under the second parameterization, if yt ∼ SNk(ξ,Ω, C), then A′yt ∼ SNh(A
′ξ, A′ΩA,A′C).

Proof. The proof is straightforward as multiplying yt in (5) by A′.

Q.E.D.

With some algebraic work, it can be shown that α implied by Proposition 3 is the

same as that obtained in Azzalini & Capitanio (1999).

From the conditioning method, the conditional distribution (yt|st) ∼ Nk(ξ+Cst,Σ)

and st is from a half-normal distribution N(0, 1)I(st > 0). With this observation, (5)

is readily written in a regression form yt = ξ +Cst + et which is the same as the three-
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parameter model (1). The corresponding three parameters are ξ, Σ and C. st is non-

elliptical with a half-normal distribution, it can be centered by deducting its mean value√
2/π. et|st ∼ Nk(0,Σ) is a multivariate normal (joint-elliptical) random vector with

the covariance matrix Σ. Noticing that the variance of a half-normal variate is 1− 2/π,

the unconditional covariance of yt can be decomposed to an elliptical variance compo-

nent and a non-elliptical variance component as follows: V ar(yt) = Σ + (1− 2/π)CC ′.

It is easy to check that this variance formula is equivalent to V ar(yt) = Ω− (2/π)CC ′

in Azzalini & Capitanio (1999). From the regression form (1), I obtain the following

algorithm of simulating a k-dimensional skew normal random variable with parameter-

ization (ξ,Σ, C).

Algorithm 1.

Step 1. Generate s ∼ N(0, 1)I(s > 0).

Step 2. Generate y ∼ Nk(ξ + Cs,Σ).

Since the multivariate skew normal distribution is a special case of the three-

parameter model, all Simaan (1993)’s results are applicable to the multivariate skew

normal distribution. I now examine whether other skew elliptical distributions gener-

ated by the same conditioning method are nested by the three-parameter model. To

facilitate the examination, I draw a relationship between the three-parameter model

and the weak exogeneity concept studied by Engle et al. (1983).

Consider the joint distribution of (yt, st) as the product of a marginal distribution

and a conditional distribution: g(yt, st) = g(yt|st)g(st). The conditional distribution

g(yt|st) embodies the regression equation in which yt is the dependent variable and st is

the regressor. If st is a weakly exogenous variable, the details of its marginal distribution

can be safely ignored when making statistical inference about the parameters of the

conditional distribution. In other words, the conditional information yt|st is sufficient

to conduct statistical inference on these parameters.

The construction of the three-parameter model (1) guarantees that st is weakly
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exogenous with respect to the parameters of the conditional distribution. As a typical

example, the multivariate skew normal distribution’s conditional Gaussian construction

guarantees the weak exogeneity of st with respect to (ξ, Σ, C) (Engle et al. 1983, p.

287-288).

Branco & Dey (2001) (see also the discussion in Azzalini & Capitanio 2003) extends

Azzalini and Dalla Valle (1996)’s multivariate skew normal distribution to a general

class of skew elliptical distributions. They propose the following construction which is

similar to (5): yt and st have a joint-elliptical distribution Elk+1(μ,Γ;φ) where μ is the

location parameter, Γ is the scale matrix and φ is the characteristic function.

⎛
⎝ yt

st

⎞
⎠ ∼ Elk+1

⎡
⎣μ =

⎛
⎝ ξ

0

⎞
⎠ ,Γ =

⎛
⎝ Σ + CC ′ C

C ′ 1

⎞
⎠ ;φ

⎤
⎦ (7)

Branco & Dey (2001) show that (yt|st > 0) has the density with the form similar

to (6). However, in their construction st is not weakly exogenous to the parameters

of g(yt|st) when the elliptical distribution is not multivariate normal. Specifically, yt|st
indeed follows a joint-elliptical distribution but both its characteristic function and

its scale matrix depend on the realization of st. Spanos (1994) shows that st is weakly

exogenous with respect to the statistical parameterization of the conditional distribution

g(yt|st) if and only if (yt, st) follows a multivariate normal distribution. From Spanos

(1994)’s result, the skew elliptical distributions generated from conditioning on the

construction of (7) cannot be written as a three-parameter model unless the resulting

skew distribution is multivariate skew normal.

There are other approaches to construct skew distributions. Sahu et al. (2003)’s

skew elliptical distributions, for example, are not nested by the three-parameter model

because the conditioning is on multiple non-elliptical variables rather than on one vari-

able. In the finance literature, Ronn et al. (2009) use a distribution generated by

conditioning on a two-sided truncation of a bivariate normal distribution. Ronn et

al. (2009) study the correlation between the truncated variable and the non-truncated

variable conditional on the truncation |st| > a. In their setting both yt and st are
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observable. Their construction can be easily extended into a multivariate one with la-

tent scalar st. It is straightforward to show (yt||st| > a) can be written as a case of the

three-parameter model. The resulting multivariate distribution is less studied and there

is no obvious intuition on how to determine the truncation point for latent variable st.

It remains to study whether there exist other well-known skew distributions that can

be nested by the three-parameter model.

4 Certainty Equivalent: Some Theoretical Results

It is well known that a closed-form mean-variance certainty equivalent (objective func-

tion) can be obtained by combining the CARA utility and the multivariate normal

distribution. Suppose the investor holding random wealth Wt at time t has the CARA

utility function as follows:

U(Wt) = −exp(−γWt); (8)

The Arrow-Pratt coefficient of absolute risk aversion is denoted by γ (γ > 0).

The certainty equivalent CE is defined as the certain return that makes the in-

vestor indifferent from obtaining the certain return and taking a risky investment. This

definition is formally given by the equation: CE(Wt) ≡ U−1E(U(Wt)). The indifference

condition is: U(CE(Wt)) = E(U(Wt)). The certainty equivalent concept is particularly

useful when an investor compares two financial choices A and B. If CEA > CEB, then

the investor will prefer choice A to B and the economic gain of choosing A can be

measured by CEA − CEB. The certainty equivalent is also useful in numerical com-

puting because an investor who maximizes the certainty equivalent also maximizes the

corresponding expected utility. If a closed-form certainty equivalent exists, numerical

integration of computing expected utility can be avoided. For the CARA utility func-

tion, the certainty equivalent is closely related to the cumulant-generating function of

(random) wealth. In particular, the certainty equivalent has the form

CE(Wt) = −1

γ
ln(E(exp(−γWt))). (9)
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Thus the certainty equivalent is − 1
γ
multiplied by the cumulant-generating function of

Wt evaluated at −γ.

Assuming that the risk-free asset exists, at time t−1, the investor faces the following

portfolio selection problem:

ρ∗ = argmax
ρ

E(−exp(−γρ′(yt −Rf,tτ))). (10)

where yt is a k-vector of asset returns, Rf,t is the risk-free rate and τ is a vector of

ones. When excess asset returns (yt − Rf,tτ) ∼ Nk(μ, V ) with μ = E(yt) − Rfτ and

V = V ar(yt), the excess portfolio return ρ′(yt − Rf,tτ) follows a univariate normal

distribution N(ρ′μ, ρ′V ρ). The cumulant-generating function of multivariate normal

distribution evaluated at −γ is −γρ′μ+ γ2

2
ρ′V ρ. The mean-variance certainty equivalent

excess return is as follows:

ρ′μ− γ

2
ρ′V ρ. (11)

The optimization problem (10) is equivalent to the following problem:

ρ∗ = argmax
ρ

ρ′μ− γ

2
ρ′V ρ. (12)

It is well known that the solution to (12) is given by

ρ =
1

γ
V −1μ. (13)

Both Pástor & Stambaugh (2000) and Tu & Zhou (2004) use the certainty equivalent

(11) to investigate the economic value difference between portfolios. Kan and Zhou

(2007) use it to examine the impacts of parameter uncertainty.

Now I will show that when asset returns are multivariate skew normal, the certainty

equivalent can be obtained in its closed-form. To simplify notations, I use the second

parameterization (ξ,Ω, C) and I assume that st is not centered. By Proposition 3, when

excess asset returns (yt − Rf,tτ) ∼ SNk(ξ,Ω, C), the excess portfolio return follows

a univariate skew normal distribution SN(ρ′ξ, ρ′Ωρ, ρ′C). The cumulant-generating
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function of a skew normal variate (Azzalini & Capitanio 1999) evaluated at point −γ

is −γρ′ξ + γ2

2
ρ′Ωρ+ log(2Φ(−γρ′C)). Therefore, the certainty equivalent excess return

has the following closed form:

ρ′ξ − γ

2
ρ′Ωρ− log(2Φ(−γρ′C))/γ. (14)

The certainty equivalent in (14) has three terms and each term involves only one param-

eter in the parameterization (ρ′ξ, ρ′Ωρ, ρ′C). The investor facing problem (10) solves

the following equivalent portfolio selection problem:

ρ∗ = argmax
ρ

ρ′ξ − γ

2
ρ′Ωρ− log(2Φ(−γρ′C))/γ. (15)

The multivariate skew normal portfolio selection in (15) reduces to the mean-variance

portfolio selection when skewness parameter C is a vector of zeros. When skewness

exists, the mean-variance portfolio choice is not generally optimal for investors. Since

Ω = Σ + CC ′, it is easy to check that the investor prefers higher ρ′Σρ when ρ′ξ and

ρ′C are fixed. This confirms that the optimal portfolio obtained in (15) satisfies the

quadratic programming problem (3). I will use the closed-form certainty equivalent (14)

to investigate the economic value of higher moments in Section 5. Now I explore some

related theoretical results.

The first-order conditions of (15) are given by:

ξ − γΩρ+
φ(−γρ′C)

Φ(−γρ′C)
C = 0. (16)

The second-order condition for maximizing the expected utility is satisfied be-

cause the CARA utility function is strictly concave. This guarantees that the optimal

portfolio ρ∗ solved from first-order conditions (16) is unique and is indeed the global

maximum point. Although there is no closed-form solution from first-order conditions

(16), numerical maximizer can be used to solve the optimal portfolio from (15). The

programming problem (15) can be modified to handle nonnegative constraints or other
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linear constraints and the Kuhn-Tucker conditions are both necessary and sufficient for

this type of programming problems.

There are three implications from (15) and (16). First, suppose the maximum

certainty equivalent obtained from (15) is CE∗, the envelop theorem gives ∂CE∗
∂Ci

=

φ(−γρ∗′C)
Φ(−γρ∗′C)

ρ∗i . When ρ′C �= 0, φ(−γρ∗′C)
Φ(−γρ∗′C)

> 0. If in the optimal portfolio the investor takes

a long (short) position in asset i, increasing asset i’s skewness results in higher (lower)

expected utility. The CARA investor has positive skewness preference.

Second, Cass and Stiglitz (1970)’s general result on two-fund separation holds.

Cass and Stiglitz (1970) show that, with homogeneous probability beliefs and the ex-

istence of the risk-free asset, the composition of each CARA investor’s optimal risky

asset portfolio is the same. The two-fund separation holds regardless of asset returns’

distribution. For markets to clear with two-fund separation, the optimal proportions of

risky assets for each investor must be those of the market portfolio. In (16) suppose ρ∗

is the optimal portfolio for the investor with risk aversion coefficient 1, the first order

conditions (16) imply that 1
γ
ρ∗ is the optimal portfolio for the investor with risk aversion

γ. Investor with higher (lower) risk aversion will invest less (more) in the risky fund.

Third, the closed-form risk premium in asset price can be obtained. Particularly,

the skewness premium can be expressed in its exact form. Following Cochrane (2006),

I assume the market (aggregate) risk aversion coefficient is γM . The investor who

has risk aversion γM will put all her money (without borrowing or lending) into the

market portfolio. Multiplying the portfolio weights on both sides of (16) and using the

equations E(yt) = ξ+
√
2/πC +Rf,t and V ar(yt) = Ω− (2/π)CC ′ for the multivariate

skew normal distribution, I obtain the expected excess return of individual asset i as

follows:

E(yi,t)− Rf,t = γMCov(yi,t, yM,t) + gMCi. (17)

where gM = (2/π)γMCM +
√
2/π − φ(−γMCM )

Φ(−γMCM )
. Since gM only depends on market risk

aversion γM and the market portfolio’s skewness parameter CM , gM can be interpreted

as the systematic skewness return. γM and CM play symmetric roles in the systematic

skewness return. Ci, the skewness parameter of asset i, can be interpreted as the

17



sensitivity to the systematic skewness return gM .

Substituting Ci by CM in (17), the market price of risk can be written as:

E(yM,t)− Rf,t = γMV ar(yM) + gMCM . (18)

Comparing to the mean-variance results (Cochrane 2006, p. 154), the term gMCi

(gMCM) is the skewness premium in asset return (market price of risk). Simaan (1993)

explains that the sign of the skewness premium is ambiguous because the skewness

parameter C in the three-parameter model also captures higher moments’ information.

This ambiguity can not be eliminated by convergence of Taylor expansion on the util-

ity function and skewness preference (U ′′′ > 0). In the CARA investors’ world with

skew normal asset returns, the skewness premium is characterized in its exact form and

the sign of the skewness premium is not ambiguous. Figure 3 illustrates the skewness

premium in the market price of risk as a function of the market portfolio’s skewness

parameter CM . The market risk aversion γM = {0.1, 0.5, 1}.

[Insert Figure 3 here.]

Two observations can be made from Figure 3. First, positive (negative) skewness

in market portfolio returns induces negative (positive) skewness premium in the mar-

ket price of risk. Investors sacrifice required market return to chase positive market

skewness. On the other hand, they require return compensation for accepting negative

market skewness. This result is consistent to the previous results which are based on

approximations (Rubinstein 1973, Kraus & Litzenberger 1976, Harvey & Siddique 2000

among others). Second, the magnitude of the skewness premium also depends on the

market risk aversion. When the market risk aversion is low (high), the absolute value of

skewness premium is also low (high). Similar observations can be found when the asset

i’s skewness premium is expressed as a function of Ci. Proposition 5 formally presents

these observations.
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Proposition 4.

(a) gM ≤ 0. Strict inequality holds when CM �= 0.

(b) The skewness premium in asset i’s price (market price of risk) is decreasing in

the skewness parameter Ci (CM).

(c) The magnitude of skewness premium in asset price is increasing in the market

risk aversion γM .

Proof. See the Appendix.

An empirical implication of Proposition 4 is that testing (conditional) skewness

preference is better implemented during high return skewness and (or) high market risk

aversion periods. To conclude this section, I present a first-order stochastic dominance

result as follows.

Proposition 5. Suppose y1 ∼ SN(ξ,Ω, C1) and y2 ∼ SN(ξ,Ω, C2) and C1 > C2,

then y1 dominates y2 by first-order stochastic dominance.

Proof. See the Appendix.

The stochastic dominance results for normal, truncated normal and log-normal

distributions are well studied (Levy 2006). Proposition 5 states a new result for the skew

normal distribution under the second parameterization. All investors with increasing

utility on wealth, ceteris paribus, prefer a skew normal distribution with larger skewness

parameter. A direct consequence of Proposition 5 is that the certainty equivalent in (15)

is larger (smaller) than the mean-variance (form of) certainty equivalent ρ′ξ − γ
2
ρ′Ωρ

when ρ′C > 0 (ρ′C < 0).
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5 Economic Value of Higher Moments: A Certainty

Equivalent Approach

In this section I evaluate the economic value of higher moments using empirical data.

I borrow the certainty equivalent framework used by Pástor & Stambaugh (2000) and

Tu & Zhou (2004) and replace the mean-variance certainty equivalent by the certainty

equivalent I have obtained in (14) to incorporate higher moments information.

Both Pástor & Stambaugh (2000) and Tu & Zhou (2004) analyze uncertainty of

model mispricing. When asset returns yt and model variables are jointly multivariate

normal or multivariate t, E(yt|xt) is a linear function of xt. However, when yt and xt

are jointly multivariate skew normal, model misspecification and model mispricing are

entangled because E(yt|xt) is nonlinear function of xt (Azzalini and Capitanio 1999).

The focal point of the current paper is not model mispricing. Instead, I focus on

evaluating the economic value of higher moments when investors face broad investment

opportunities.

5.1 Data Description

I consider two datasets. The first dataset contains 12 risky positions2. Three of the risky

positions are the Fama and French (1993) benchmark positions, SMB, HML, and MKT.

The other nine non-benchmark positions are constructed in Pástor and Stambaugh

(2000). They are formed as spreads between portfolios selected from a larger universe

of equity portfolios created by a three-way sorting on size, book-to-market, and HML

beta. This three-way sorting creates 27 value-weighted portfolios that are identified

by a combination of three letters which designate increasing values of size (S, M, B),

book-to-market (L, M, H), and HML beta (l, m, h). Holding size and book-to-market

constant, nine spread positions are long stocks with low HML betas and short stocks

with high HML betas. The data are available as monthly returns from July 1963

2I am grateful to Ľuboš Pástor for providing me the dataset.
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through December 1997. The second dataset is the 30 industry portfolios3 constructed

by sorting each NYSE, AMEX, and NASDAQ stock to an industry portfolio at the end

of June of each year based on its four-digit SIC code at that time. Industry portfolios

also well proxy the investment opportunity set. The original data are available back to

year 1928. In my study I use daily returns from January 1, 1980 through December 31,

2012. I also construct weekly and monthly returns from daily data. I use one-month

Treasury bill return to proxy the risk-free rate of return.

5.2 Margin Requirements

Margin requirements can reduce investors’ ability of taking extreme positions in assets

and dramatically reduce or eliminate the benefit of higher moments. Following Pástor

and Stambaugh (2000) and Tu and Zhou (2004), I consider spread position i; con-

structed at the end of period t−1; as a purchase of one asset coupled with an offsetting

short sale of another. The two assets are denoted as Li and Si; and their rates of return

in period t are denoted as RLi;t and RSi;t. Thus, a spread position of size Xi has a

dollar payoff Xi(Rti;t − RSi;t). Since regulation T requires the use of margins for risky

investments, a constant c > 0 is used to characterize the degree of margin requirements.

The spread position involves at least one risky asset which, without loss of generality,

is designated as asset Li. If the other asset of position i, Si of size Xi, is risky as well,

then (2/c)|Xi| dollars of capital are required. Otherwise, (1/c)|Xi| dollars of capital

are required. For example, c = 2 implies a 50% margin imposed by Regulation T . In

addition to a 50% margin requirement, I also consider margins of only 20% (c = 5),

10% (c = 10) and the case of no margin (c = ∞).

The total capital required to establish the spread positions must be less than or

equal to the investors wealth, Wt−1. That is

∑
i∈Λ

(2/c)|Xi|+
∑
i/∈Λ

(1/c)|Xi| ≤ Wt−1

3I am grateful to Ken French for making the data available. The data are downloaded from Ken
French’s homepage at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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where Λ denotes the set of positions in which Si is risky, or alternatively,

∑
i∈Λ

2|ρi|+
∑
i/∈Λ

|ρi| ≤ c (19)

where ρi = Xi/Wt−1. For 12 risky positions, RSi,t = Rf,t only for MKT and Λ has 11

elements. For 30 industry portfolios, RSi,t = Rf,t for all i and Λ is a null set.

The total wealth in excess of the margin capital required to establish k spread

positions is invested in the risk-free asset, earning the risk-free rate Rf,t and the margin

capital also earns this rate. The rate of return on the total portfolio is then given by

Rp,t =

k∑
i=1

Xi(RLi,t − RSi,t) +Wt−1Rf,t

Wt−1

so the excess portfolio return is simply weighted average of spread positions’ returns.

Rp,t −Rf,t =

k∑
i=1

ρi(RLi,t − RSi,t). (20)

Denote the spread returns yt = RL,t−RS,t and suppose yt ∼ SNk(ξ,Ω, C), the certainty

equivalent obtained in Section 4 is applicable to describing the portfolio selection prob-

lem. Combining the problem (15) and margin requirements (19), the optimal portfolio

choice of the skew-normal-optimizing investor is the solution to:

ρsn = argmax
ρ

ρ′ξ − γ

2
ρ′Ωρ− log(2Φ(−γρ′C))/γ

st.
∑
i∈Λ

2|ρi|+
∑
i/∈Λ

|ρi| ≤ c (21)

Alternatively combining the optimization problem (12) and margin requirements (19),

the optimal portfolio choice of a mean-variance-optimizing investor is the solution to:

ρmv = argmax
ρ

ρ′μ− γ

2
ρ′V ρ
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st.
∑
i∈Λ

2|ρi|+
∑
i/∈Λ

|ρi| ≤ c (22)

When c = ∞, (21) reduces to (15) and (22) reduces to (12).

5.3 Model Estimation and Portfolio Performance Evaluation

Following Pástor & Stambaugh (2000), Tu & Zhou (2004), and Kan & Zhou (2007), I

assume independently and identically distributed (i.i.d.) asset returns. While the i.i.d.

assumption rules out time-varying parameters and predictability, I maintain maintain

this assumption for the similar reasons stated by Tu and Zhou (2004). I use the max-

imum likelihood estimation to estimate candidate models. fter obtaining the maxi-

mum likelihood estimates ξ̂, Ω̂, α̂, the estimate of skewness parameter is computed as

Ĉ = 1
(1+α̂′Ω̂α̂)1/2

Ω̂α̂ (the invariance property of the maximum likelihood estimator).

Then I plug the maximum likelihood estimates into (21) and (22) to compute

optimal asset allocations ρsn and ρmv for a given margin requirement c and risk aversion

level γ. After obtaining ρsn and ρmv, I can compare the certainty equivalents of investors

when the actual data-generating process is multivariate skew normal. I compute the

certainty equivalent for the skew-normal-optimizing investor as follows:

CEsn = ρ′snξ̂ −
γ

2
ρ′snΩ̂ρsn − log(2Φ(−γρ′snĈ))/γ (23)

Then I compute the certainty equivalent for the mean-variance-optimizing investor as

follows:

CEmv = ρ′mv ξ̂ −
γ

2
ρ′mvΩ̂ρmv − log(2Φ(−γρ′mvĈ))/γ (24)

The economic gain of the skew-normal-optimizing investor is computed by:

CEsn − CEmv. (25)

If the gain computed by (25) is significant, then the skew-normal-optimizing investor

has substantial increase in her expected utility and considering higher moments does
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provide economic value. On the contrary, if the gain computed by (25) is negligible, then

considering higher moments does not provide substantial economic value to investors.

5.4 Choice of Risk Aversion Parameter

The choice of risk aversion parameter is crucial for conducting economic value compar-

ison between portfolios. In the limit of infinite risk aversion the investor would put

all her wealth in the risk-free asset. In this limit case, the economic value of higher

moments is zero.

Both Pástor & Stambaugh (2000) and Tu & Zhou (2004) interpret γ in (11) as

the coefficient of relative risk aversion (RRA). Both studies set γ = 2.83, which is the

value that results in an unconstrained allocation of all wealth to MKT when that is the

only risky position available, i.e., the investor chooses neither to borrow. Specifically,

utilizing (13) the number 2.83 is obtained by γ = V −1
MKTμMKT . If a skew-normal-

optimizing investor put all her wealth to MKT when that is the only risky position

available, then the corresponding risk aversion can be obtained by solving (16). The

resulting risk aversion is not far from 2.83.

Although 2.83 might be a realistic number in the finance literature, the economics

literature however seems to agree on much lower risk aversion. Holt and Laury (2002)

show that the RRA is centered around range of [0.3, 0.5]. They also list many field

studies which obtain similar estimates. Moreover, from the derivation of certainty

equivalent in Section 4, γ is actually the coefficient of absolute risk aversion (ARA). The

CRRA (constant relative risk aversion) utilities typically have no closed-form certainty

equivalents. Maximizing those expected utilities has to be conducted through numerical

integration.

As RRA = −U ′′(W )W
U ′(W )

= ARA ∗W , the magnitude of RRA should be much larger

than ARA evaluated at a realistic wealth level. Patton (2004) use numerical integration

to maximize the CRRA utilities. He use the range [1, 20] for RRA. Even using RRA =

20 (which is about 40 times of 0.3-0.5 normal range in the economics literature), the

implied ARA should still be far smaller than 2.83.
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Although estimated values of ARA differ widely in the economics literature, none

of the previous literature show γ higher than 0.538 (See a detailed literature review in

Babcock et al. 1993). For a realistic level of $10000 loss, Babcock et al. (1993) estimate

the range of absolute risk aversion as [0.000002, 0.000462]. In a more recent study,

Rabin (2000, Table 3) use the absolute risk aversion in the range [0.000009, 0.003] to

obtain stock market investment range [$449, $163, 899]. For about $30,000 stock market

investment, the corresponding absolute risk aversion is around 0.00005.

The debate of realistic level of risk aversion can be traced back to the equity

premium puzzle (Mehra and Prescott 1985). Many subsequent studies are devoted to

solve the puzzle and justify the high level of risk aversion that is needed to explain the

premium. Loosely linking the equity premium puzzle to the skewness premium plotted

in Figure 3, it is straightforward to see that the skewness premium disappears when

ARA parameter γ is small.

I am not in a position to judge whether 2.83 or 0.00005 is more suitable for comput-

ing the economic value of higher moments. Instead, I use both values as representatives

of two academic camps (finance and economics) to ensure the robustness of my results.

5.5 Statistically Significant but Economically Negligible: The

Role of Higher Moments

When conducting empirical studies on higher moments portfolio selection, there are two

related questions to answer. First, whether the return series statistically depart from

multivariate normal. Second, whether the departure (if exists) generates economically

significant gain to investors who are aware of it.

Tu & Zhou (2004) apply Mardia (1970)’s multivariate skewness and kurtosis tests

to the 12 risky positions and industry return data. They find significant departure

from normality. My industry return data are relatively new comparing to those studied

by Tu & Zhou (2004). I check whether industry return series show departure from

joint normality using Mardia’s tests. The test results are reported in Table 2. Both

multivariate skewness and kurtosis tests show significant departure from multivariate
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normal. All p-values in the table are 0.00 (less than 0.00001). The deviations from

normality increase substantially when return frequency increases. These results are

consistent with those reported in Tu & Zhou (2004).

Table 3 reports the maximum likelihood estimates Ĉ for monthly returns on 12

risky positions. The percentile method (Cameron and Trivedi 2005, p. 364) is used to

calculate the 90% confidence intervals of estimates from 1000 bootstrapping replications.

As discussed in Section 2, elements in the skewness parameter can be treated as factor

loadings on the skew factor st. Table 3 shows that SMB has the highest loading of

1.51 and SH(l-h) has lowest loading of -1.11. The 90% confidence intervals of these two

loadings do not include zero.

Table 4 reports the maximum likelihood estimates Ĉ for weekly returns on 30

industry portfolios along with bootstrapping confidence intervals. Textiles industry

(Txtls) has the highest skew factor loading of 6.03 and Personal and Business Services

industry (Servs) has the lowest skew factor loading of -0.22. Telecommunication has

0.00 loading which suggests no exposure to the skew factor st. Fifteen out of thirty

confidence intervals do not include zero. Overall, the estimated results also suggest

both datasets’ departure from joint normality.

After establishing the statistical importance of higher moments in data, I ob-

tain optimal portfolio weights of both the skew-normal-optimizing investor and the

mean-variance-optimizing investor and then examine the economic gain of the skew-

normal-optimizing investor. Table 5 reports the unconstrained asset allocations when

investment opportunities include 12 risky positions and cash. As shown in Section 4, all

the CARA investors will hold the same risky portfolio when there is no restriction. The

only difference among them is the asset allocation between the risky portfolio and the

risk-free asset. The unconstrained allocations are normalized in Table 5 so that the sum

of the risky asset weights is 1 (100%). Table 5 shows that optimal portfolios constructed

by the skew-normal-optimizing investor and the mean-variance-optimizing investor are

similar. I examine the economic value of incorporating higher moments in portfolio

selection using the approach described in Section 5.3. When γ = 2.83, the annualized

26



economic gain of considering higher moments is 0.0023% which is negligible. When

γ = 0.00005, the annualized economic gain of considering higher moments is 249.00%.

The high economic gain however mainly comes from financial leverage of borrowing

1.22 × 107% (holding −1.22 × 107% in Cash). I conduct further examination which

shows that to obtain annualized economic gain of 1%, the skew-normal-optimizing in-

vestor should have γ = 0.006 and borrow 105%. In real trading, such a high financial

leverage is hard to achieve.

The I examine the results when margin requirements exist. I consider six cases

that combine three different levels of margin requirements and two different levels of

investor risk aversion. The parameters are: c = {2, 5, 10} and γ = {0.00005, 2.83}.
Table 6 reports the optimal allocations when c = 10 and γ = 0.0005. Table 6

shows that asset allocations are different between the skew-normal-optimizing investor

and the mean-variance-optimizing investor. For example, the mean-variance-optimizing

investor longs 1.1710 (171.10%) in SMB and shorts 0.2431 (24.31%) in HML. The skew-

normal-optimizing investor instead longs 1.7485 (174.85%) in HML and 0.0941 (9.41%)

in SMB. In this case, the annualized economic gain of skew-normal-optimizing investor

is 0.69%. This economic gain is the highest gain among all the six cases.

An interesting finding across all levels of margin requirements is that investors

put significant and similar long positions (e.g. 3.4838 and 3.4963 respectively in Ta-

ble 6 when c = 10) in MKT (the value-weighted market index portfolio). MKT

dominates other risky positions in asset allocations. It might be reasonable to ar-

gue that a value-weighted market index proxies aggregate investor choice (including

mean-variance-optimizing investors, skew-normal-optimizing investors and many other

investors) so portfolio selection on a risky asset pool including MKT will concentrate

on MKT and will not generate any significant economic value for considering higher

moments. However, on the other hand, Chung et al. (2006) show that SMB and HML

well proxy the higher moments in asset returns.

Portfolio selection results on 30 industry portfolios will help mitigate the above

concerns because the investment universe does not include the market index portfolio.
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Table 7 reports the unconstrained asset allocations. The asset allocations are differ-

ent between the skew-normal-optimizing investor and the mean-variance-optimizing in-

vestor. When γ = 2.83, the annualized economic gain of considering higher moments

is negligible as 0.24%. When γ = 0.00005, the annualized economic gain of considering

higher moments is 6.67×103%. Again, the extreme gain comes from leverage of borrow-

ing 9.11× 106%. To obtain annualized economic gain of 1%, the skew-normal-investor

should have γ = 0.63 and borrow 6120%. This leverage level is still very high in real

trading.

Table 8 reports the asset allocations of investors with γ = 0.00005 and margin

requirement c = 10. Table 8 shows that the skew-normal-optimizing investor bor-

rows 893.51%. The annualized economic gain of the skew-normal-optimizing investor

is 0.95%. Again, the 95 basis points annual gain is obtained by allowing relatively high

financial leverage. This economic gain is again the highest gain among all the six cases.

When daily and monthly returns on 30 industry portfolios are considered, the

economic gain of considering higher moments is still negligible. I also conduct out-of-

sample performance comparison which is not reported here. I find that the out-of-sample

economic gain is also negligible when margin requirements are considered. The benefits

of higher moments disappear when margin requirements exist because investors cannot

take extreme long/short positions.

My results however do not rule out the possibility of exploring higher moments

benefits if investors can use high financial leverage and (or) if investors face a small and

special investment universe. Real estate investors can establish substantial leverage.

Momentum or special condition investors only focus on a small group of stocks. These

investors may find higher moments portfolio selection useful and valuable.

5.6 Parameter Uncertainty and Bayesian Estimation: A Dis-

cussion

The standard plug-in approach described in Section 5.3 does not take into account

of parameter uncertainty (Kan & Zhou 2007). To incorporate parameter uncertainty,
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Bayesian methods can be used. In the Bayesian framework, parameters are treated as

random variables. The parameter uncertainty is captured by their posterior distribu-

tions in light of data and prior beliefs. I assume that yt is drawn independently from

a multivariate skew normal distribution with unknown parameters ξ, Σ and C. An

investor has prior beliefs p(ξ,Σ, C). The investor forms posterior beliefs p(ξ,Σ, C|Y )

based on the data Y = (y1, ..., yT )
′. The posterior beliefs on parameters is proportional

to the product of likelihood and the prior beliefs:

p(ξ,Σ, C|Y ) ∝ p(Y |ξ,Σ, C)p(ξ,Σ, C). (26)

Then the investor forms the predictive distribution for yT+1,

p(yT+1|Y ) =

∫
ξ

∫
Σ

∫
C

p(yT+1|ξ,Σ, C)p(ξ,Σ, C|Y )dξdΣdC

Similarly, the predictive distribution for utility UT+1 is,

p(UT+1|Y ) =

∫
ξ

∫
Σ

∫
C

p(UT+1|ξ,Σ, C)p(ξ,Σ, C|Y )dξdΣdC (27)

By the law of iterated expectations,

E(UT+1|Y ) = E(E(UT+1|Y, ξ,Σ, C)|Y ). (28)

This says the predictive expected utility is identical to the posterior expected utility.

For the CARA utility, when the Bayesian sampling scheme converges to produce iterates

(ξ[k],Σ[k], C [k]) ∼ p(ξ,Σ, C|Y ) for k = 1, ..., K, the predictive expected utility can be

approximated by:

E(UT+1|Y ) ≈ 1

K

K∑
k=1

−exp(−γξ[k] + γ2Ω[k]/2 + log(2Φ(−γC [k]))). (29)
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where Ω[k] = Ω[k]+C [k]C ′[k]. The portfolio selection problem that maximizing E(UT+1|Y )

is tedious to solve because (16) has no closed-form solution. Kan and Zhou (2007)’s

analysis based on solution (13) cannot be easily extended here. And unfortunately the

closed-form certainty equivalent does not help much in simplifying the computation.

Plugging the posterior means of ξ, Ω, C into (14) will actually bias the result because

of (conditional) Jensen’s inequality. After obtaining the asset allocations which maxi-

mize E(UT+1|Y ), the predicative certainty equivalent can be calculated using (9) and

then (23) - (25) can still be used to compute the economic gain. The procedure is

tedious and the economic gain is still negligible so I omit reporting the results here.

Bayesian estimation methods for the multivariate normal and multivariate tmodels

are described by Tiao & Zellner (1964) and Zellner (1976). Pástor & Stambaugh (2000)

and Tu & Zhou (2004) also provide comprehensive discussions on these two models

respectively. Bayesian estimation method for the multivariate skew normal model is an

extension of above methods. In the Appendix, I provide details of Bayesian estimation

algorithm for the multivariate skew normal model.

6 Conclusion

In this paper, I examine higher moments portfolio selection by establishing a relationship

between Simaan (1993)’s three-parameter model and Azzalini & Dalla Valle (1996)’s

skew normal distribution. I show that the skew normal distribution is a special case of

the three-parameter model and all Simaan (1993)’s results are applicable to the skew

normal asset returns. The closed-form certainty equivalent and skewness premium can

be obtained when the CARA investor faces skew normal asset returns. The certainty

equivalent allows me to examine the economic value of incorporating higher moments

in portfolio decision. Although I find that asset returns statistically depart from joint

normality, I do not find significant economic value of considering higher moments in

portfolio selection. Under reasonable margin requirements, the economic value of higher

moments are negligible. One implication of my empirical results is that the value of
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higher moments might be better explored by investors with relaxed financial constraints

or by those facing a small and special investment universe.
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Appendix

Proof of Proposition 4.

(a) The proof is straightforward when CM = 0.

When CM �= 0, let x = γMCM and f(x) = φ(−x)/Φ(−x). Then f(x) = φ(x)
1−Φ(x)

=

1/M(x) where M(x) is the famous Mill’s ratio.

Now using the Largrange remainder theorem for Taylor expansion:

f(x) = f(0) + f ′(0)(x− 0) + f ′′(x∗)(x− 0)2

where 0 < x∗ < x. From Sampford (1953), the second derivative f ′′(x) > 0 for

all finite x. Substituting f(0) =
√

2/π and f ′(0) = 2/π into the Taylor expansion

above, f(x) =
√

2/π + (2/π)x + Rem where the remainder Rem > 0. I obtain

gM =
√

2/π + (2/π)x− f(x) < 0.

(b) is straightforward to obtain when (a) is true.

(c) Since gM(x) =
√

2/π + (2/π)x − f(x) < 0 (with x = γMCM and CM �= 0), it

is sufficient to prove that ∂gM
∂γM

< 0 when CM > 0.

∂gM
∂γM

=
∂gM
∂x
∂x

∂γM

= [(2/π)− f ′(x)]/CM = [f ′(0)− f ′(x)]/CM

Again using the Largrange remainder theorem for Taylor expansion:

f ′(x) = f ′(0) + f ′′(x∗)(x− 0)

where 0 < x∗ < x and f ′′(x∗) > 0.

Thus when CM > 0, [f ′(0)− f ′(x)]/CM < 0.

Q.E.D.4

4The proof of Proposition 5 gives a new bound for Mill’s ratio (M(x) = 1−Φ(x)
φ(x) ): for all x, 1

M(x) >√
2/π + (2/π)x. The well-known bounds in the statistical literature are: (

√
4 + x2 − x)/2 < M(x) <

1/x, x > 0. The new bound improves the well-known bounds in some regions of x.
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Proof of Proposition 5.

From Azzalini (1985), the CDF of yi = y is CDFi(y) = Φ((y − ξ)/
√
Ω)− 2T ((y −

ξ)/
√
Ω, Ci/

√
Ω− C2

i ) , i = 1, 2. T (h, a) is the Owen’s T function and it is strictly

increasing in a. Since C1 > C2 implies CDF1(y) < CDF2(y) for all y, y1 dominates y2

by first-order stochastic dominance.

Q.E.D.

Bayesian estimation algorithm for the multivariate skew normal posterior evaluation

Define Y = (y1, ..., yT )
′, a T×k matrix, S = (s1, ..., sT )

′, a T×1 vector, X = (τT S),

where τT denotes a T × 1 vector of ones. Also define β = (ξ, C)′, a 2 × k matrix and

b = vec(β). The regression model can be written as

Y = Xβ + ε, vec(ε) ∼ N(0,Σ⊗ IT ), (30)

where ε = (e1, ..., eT )
′.

Define the statistics β̂ = (X ′X)−1X ′Y , b̂ = vec(β̂) and Σ̂ = (Y −Xβ)′(Y −Xβ).

The likelihood function of Y and S can be factored as

p(Y, S) = p(Y |β,Σ, S)p(S) (31)

where

p(Y |β,Σ, S) ∝ |Σ|−T/2exp
{−1

2
tr((Y −Xβ)′(Y −Xβ))Σ−1

}
∝ |Σ|−T/2exp

{
−1

2
trΣ̂Σ−1 − 1

2
(b− b̂)′(Σ−1 ⊗X ′X)(b− b̂)

} (32)

and

p(S) = N(0, IT )p(S > 0) (33)

The joint prior distribution of all parameters is

p(b,Σ) = p(b)p(Σ) (34)
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where

p(b) ∝ 1 (35)

p(Σ) ∝ |Σ|− 1
2
(k+1) (36)

The priors of b and Σ are diffuse. Investors do not have particular beliefs on parameters

and ‘let data talk’.

The posterior distributions of b, Σ and S are:

p(b|Y,X,Σ) ∼ N(b̂,Σ⊗ (X ′X)−1); (37)

p(Σ|Y,X, b) ∼ IW (T − 2, Σ̂); (38)

The posterior of Σ is inverted Wishart with degrees of freedom T −2 and parameter Σ̂.

And

p(S|Y,Σ, b) ∼ N(μs, Vs)I(S > 0) (39)

where μ′
s = C ′(Σ + CC ′)−1(Y − τT ξ) and Vs = (1 − C ′(Σ + CC ′)−1C)IT . The inverse

transform method can be used to generate S. To sample s from N(μ, σ2)I(s > 0),

simulate variate u from the uniform distribution U [0, 1] and then taking s = μ +

σΦ−1
[
Φ
(−μ

σ

)
+ u

(
Φ
(
μ
σ

))]
as the output.
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Figure 1: The efficient set of the three-parameter model with risk-free asset. Panel (a)
shows the efficient set in the “(excess) mean - variance - skewness parameter C” space.
Panel (b) shows the efficient set in the “(excess) mean - standard deviation - skewness
parameter C” space.

39



α
1
 =5, α

2
 =5

−2 0 2
−2

−1

0

1

2

α
1
 =0, α

2
 =5

−2 0 2
−2

−1

0

1

2

α
1
 =−5, α

2
 =5

−2 0 2
−2

−1

0

1

2

α
1
 =5, α

2
 =0

−2 0 2
−2

−1

0

1

2

α
1
 =0, α

2
 =0

−2 0 2
−2

−1

0

1

2

α
1
 =−5, α

2
 =0

−2 0 2
−2

−1

0

1

2

α
1
 =5, α

2
 =−5

−2 0 2
−2

−1

0

1

2

α
1
 =0, α

2
 =−5

−2 0 2
−2

−1

0

1

2

α
1
 =−5, α

2
 =−5

−2 0 2
−2

−1

0

1

2

Figure 2: Contours of bivariate distributions with

ξ =

(
0
0

)
and Ω =

(
1 0.5
0.5 1

)
and different values of α. The central panel corre-

sponds to a normal distribution.
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Figure 3: Skewness premium in the market price of risk with varying level of market
portfolio skewness CM . The market risk aversion coefficients γM = {0.1, 0.5, 1}
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Tables

parametric nonparametric
all moments Simaan (1993) Low et al. (2012)

mean-variance-skewness Menćıa & Sentana (2009) Athayde & Flôres (2004)
Briec et al. (2007)

Table 1: Summary of theories on portfolio selection with higher moments. The the-
ories are categorized into four groups. “Parametric” (“Nonparametric”) theories have
(no) distributional assumption. Theories consider all moments are identified as “all
moments” theories. Theories only consider the first three moments are identified as
“mean-variance-skewness” theories.

30 industry portfolios
Skewness Kurtosis

Daily 5459670.65 (0.00) 6108.32 (0.00)
Weekly 274571.89 (0.00) 874.45 (0.00)
Monthly 30180.95 (0.00) 177.30 (0.00)

Table 2: Summary of Mardia’s multivariate skewness and kurtosis test statistics along
with their p-values in parentheses. The return series are 30 industry returns from
January 1980 through December 2012 in daily, weekly and monthly frequencies.
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Ĉ 90% Conf. Inter.
SL(l-h) 1.08 (-0.38, 2.28)
SM(l-h) 0.67 (-0.36, 1.72)
SH(l-h) -1.11 (-2.08, -0.01)
ML(l-h) 1.05 (-0.13, 2.16)
MM(l-h) -0.81 (-1.83, 0.30)
MH(l-h) -0.19 (-2.29, 1.36)
BL(l-h) 0.14 (-1.01, 1.02)
BM(l-h) -0.07 (-1.36, 1.38)
BH(l-h) 0.08 (-1.07, 1.16)
SMB 1.51 (0.41, 2.49)
HML 0.51 (-0.43, 1.35)
MKT 0.94 (-0.93, 2.46)

Table 3: The maximum likelihood estimates (in percentage points) of the skewness pa-
rameter C, along with 90% confidence intervals (in percentage points) in parentheses for
the nine spread positions created by Pástor and Stambaugh (2000) and the three Fama-
French factors based on monthly returns from July 1963 through December 1997. The
confidence intervals are evaluated by the percentile method through 1000 bootstrapping
replications.
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Ĉ 90% Conf. Inter.
Food 0.89 (0.26, 1.49)
Beer 0.74 (0.20, 1.24)
Smoke 0.84 (0.13, 1.51)
Games 3.11 (1.60, 4.46)
Books 2.73 (1.70, 3.67)
Hshld 1.00 (0.31, 1.61)
Clths 3.60 (2.48, 4.59)
Hlth 1.10 (0.48, 1.65)
Chems 2.44 (1.28, 3.49)
Txtls 6.03 (4.50, 7.32)
Cnstr 3.64 (0.51, 5.30)
Steel 2.42 (-0.22, 4.23)
FabPr 1.91 (-0.07, 3.39)
ElcEq 2.18 (0.85, 3.29)
Autos 3.61 (0.00, 5.47)
Carry 1.49 (0.33, 2.51)
Mines 1.49 (-0.67, 3.19)
Coal 3.54 (1.06, 5.76)
Oil 1.13 (-0.55, 2.34)
Util 0.35 (-0.43, 1.08)
Telcm 0.00 (-1.04, 1.09)
Servs -0.22 (-1.44, 1.02)
BusEq -0.07 (-1.34, 1.14)
Paper 0.07 (-0.96, 1.16)
Trans 0.56 (-0.66, 1.78)
Whlsl 0.18 (-0.89, 1.22)
Rtail 0.71 (-0.36, 1.79)
Meals 0.38 (-0.63, 1.42)
Fin 2.67 (0.92, 4.12)

Other 0.83 (-0.32, 1.85)

Table 4: The maximum likelihood estimates (in percentage points) of the skewness
parameter C, along with 90% confidence intervals (in percentage points) in parentheses
for the 30 industry portfolios weekly returns from Jan 2006 through December 2012. The
confidence intervals are evaluated by the percentile method through 1000 bootstrapping
replications.
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mean-variance skew-normal
c = ∞

SL(l-h) 0.0603 0.0604
SM(l-h) 0.0725 0.0732
SH(l-h) 0.1797 0.1774
ML(l-h) -0.1707 -0.1680
MM(l-h) 0.0010 -0.0008
MH(l-h) 0.0380 0.0382
BL(l-h) 0.1436 0.1439
BM(l-h) -0.0357 -0.0357
BH(l-h) -0.0202 -0.0196
SMB 0.0957 0.0969
HML 0.4381 0.4379
MKT 0.1977 0.1964

Table 5: The unconstrained optimal allocations for the mean-variance-optimizing in-
vestor and the skew-normal-optimizing investor. The investment universe includes 12
risky positions (the nine spread positions created by Pástor and Stambaugh (2000) and
the three Fama-French factors) and cash (risk-free asset). The risky asset weights are
reported and they are normalized to sum to 1.

mean-variance skew-normal
c = 10

SL(l-h) 0.2043 0.0038
SM(l-h) -0.1919 -0.0315
SH(l-h) 0.1783 -0.1296
ML(l-h) -0.7466 -0.7639
MM(l-h) 0.0000 -0.0183
MH(l-h) -0.1271 0.0080
BL(l-h) -0.0049 -0.1742
BM(l-h) -0.1318 -0.2789
BH(l-h) 0.1695 0.0000
SMB 1.1710 0.0941
HML -0.2431 1.7485
MKT 3.4838 3.4963
Cash -2.4838 -2.4963

Table 6: The optimal allocations with 10% margin requirement (c = 10) for the mean-
variance-optimizing investor and the skew-normal-optimizing investor with risk aversion
γ = 0.00005. The investment universe includes 12 risky positions (the nine spread
positions created by Pástor and Stambaugh (2000) and the three Fama-French factors)
and cash (risk-free asset).
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mean-variance skew-normal
c = ∞

Food 0.0491 0.6151
Beer 0.4444 0.5086
Smoke 1.2714 1.4613
Games -0.0835 0.0407
Books -1.1782 -1.4028
Hshld -0.0818 -0.2545
Clths 0.4627 0.6196
Hlth -0.1312 -0.0551
Chems 0.9334 1.1926
Txtls 0.6823 0.9302
Cnstr -0.9090 -0.9218
Steel -0.6358 -0.6376
FabPr 0.6340 0.8524
ElcEq 0.3895 0.4546
Autos 0.4517 0.6190
Carry 0.3832 0.4071
Mines -0.0447 -0.0117
Coal -0.0045 -0.0734
Oil 0.4563 0.3302
Util -0.5274 -0.4182
Telcm 1.1085 1.1268
Servs -0.4850 -0.6414
BusEq -0.7084 -1.0247
Paper -1.3055 -1.5362
Trans -0.0458 -0.2691
Whlsl 0.1740 -0.2026
Rtail -0.4337 -0.5218
Meals 1.2911 1.2262
Fin -0.3191 -0.4312

Other -0.8380 -0.9823

Table 7: The unconstrained optimal allocations for the mean-variance-optimizing in-
vestor and the skew-normal-optimizing investor. The investment universe includes 30
industry portfolios and cash (risk-free asset). The risky asset weights are reported and
they are normalized to sum to 1.
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mean-variance skew-normal
c = 10

Food 0.0083 -0.0036
Beer 0.0070 0.0830
Smoke 0.0001 0.0114
Games -0.0045 0.0747
Books -0.0050 0.0023
Hshld 0.0011 0.0010
Clths 0.2450 0.2319
Hlth -0.0018 0.0122
Chems 2.7658 3.1348
Txtls 5.2462 6.0873
Cnstr -0.0072 0.0004
Steel 0.0010 0.0221
FabPr -0.0053 0.0087
ElcEq 0.0286 0.0076
Autos 0.0082 0.0013
Carry 0.0000 0.0063
Mines 0.5574 0.0107
Coal 1.0585 0.0251
Oil 0.0011 0.2012
Util 0.0045 -0.0058
Telcm 0.0011 -0.0070
Servs -0.0031 0.0145
BusEq -0.0011 0.0039
Paper 0.0034 -0.0053
Trans -0.0034 0.0049
Whlsl 0.0018 0.0213
Rtail 0.0192 -0.0004
Meals 0.0089 -0.0041
Fin 0.0004 0.0009

Other -0.0011 -0.0051
Cash -8.9351 -8.9362

Table 8: The optimal allocations with 10% margin requirement (c = 10) for the mean-
variance-optimizing investor and the skew-normal-optimizing investor with risk aversion
γ = 0.00005. The investment universe includes 30 industry portfolios and cash (risk-free
asset).
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