Teaching Parametric
Design in Code and
Construction.

Sean Hanna

Alasdair Turner

Bartlett School of Graduate Studies,
University College London

email: s.hanna@cs.ucl.ac.uk

Parametric and generative methods
of design, often incorporating
explicit computer programming,
represent a working method based
more on procedure than geometric
form. This paper reviews a recent
workshop held at the Bartlett
School of Architecture, using
Bentley’s Generative Components
software to teach parametric
modelling, with a focus on digital
fabrication of the projects. We
propose that in the design studio
of the future, these procedural
techniques may help to forge a
closer connection between the
process of form generation and the
real, constructed design in one of
two ways: either in how it is built
or in how it performs.

(J
xe;il'_;raDh:"DCl&) / Educocion 4 Desarrollo Acadéemico

Introduction

Automated manufacturing processes with

the ability to translate digital models into
physical form promise both an increase in the
complexity of what can be built, and through
rapid prototyping, a possibility to experiment
easily with tangible examples of the evolving
design. In addition, the increasing literacy of
designers in computer languages offers a new
range of techniques through which the models
themselves might be generated. (Loukissas and
Sass 2004) This paper reviews the results of an
integrated parametric modelling and digital
manufacturing workshop at the Bartlett School
of architecture, combining participants with a
background in computer programming with those
with a background in fabrication. Its aim was
both to encourage collaboration in a domain that
overlaps both backgrounds, as well as to explore
the ways in which the two working methods
naturally extend the boundaries of traditional
parametric design. The types of projects chosen
by the students, the working methods adopted
and progress made will be discussed in light of
future educational possibilities, and of the future
direction of parametric tools themselves.

Bentley’s Generative Components (GC)

software was used as the primary vehicle for
the workshop design projects. Built within

the Microstation framework, it enables the
construction of a parametric model at a range
of different interfaces, from purely graphic
through to entirely code based, thus allowing
the manipulation of such non-geometric,
algorithmic relationships as described above.
Two-dimensional laser cutting was the

primary fabrication method, allowing for rapid
manufacturing, and in some cases iterative
physical testing. The two technologies have led
in the workshop to working methods that extend
the geometric schema: the first, by forcing an
explicit understanding of design as procedural,
and the second by encouraging physical
experimentation and optimisation. The resulting
projects have tended to focus on responsiveness
to conditions either coded or incorporated into
experimental loop.

Parametrics

Where standard CAD constructs isolated
geometric primitives, parametric models allow
the user to set up a hierarchy of relationships,
deferring such details as specific dimension and
sometimes quantity to a later point. (Kolarevec
2003; Woodbury 2006) Usually these are captured
by a geometric schema. Many such relationships
in real design however, cannot be defined in
terms of geometry alone. Logical operations,



Teaching Parametric Design in Code ond Constftruction

environmental effects such as lighting and air
flow, the behaviour of people and the dynamic
behaviour of materials are all essential design
parameters that require other methods of
definition, including the algorithm.

Parametric modelling implies a very different
concept of the design. In traditional CAD and
drawing, the focus is on the representation of
final form described geometrically. This can be
easily modified and reworked by the designer.
The primitives used in CAD packages (lines, arcs,
splines, etc.) are based on drawing conventions
evolved over centuries and on physical drawing.
Parametric methods, by contrast, force a prior
procedural representation in which the form is
only the result of this designed procedure. When
revising a model it is generally impossible to
make changes at the level of final representation
(form); it must be modified at the procedural
level. The primitives in use still include lines and
surfaces, but these are associative rather than
simple geometry, and new ones such as global
variables and rectangular arrays are added that
are based on computation. Relations between
elements are constructed prior to instantiation
in real space, and so relations dependant on
space and scale and the usual fine adjustments
to final form are not as easily accommodated.

This is often a cause for frustration in design
students introduced to parametric design for
the first time. In the education and practice of
design, in sketching, exchange and criticism,
the final form is the object, which (especially
during the earliest phases) can be interpreted
many different ways. This is in fact an extremely
important part of the creative process either by
the individual or in groups. A parametric model
instead requires a great deal of explicitness and
effort up front to create the schema, and the
ability to thereafter switch explicit, procedural
representations of a form is not permitted. The
advantage of this approach is the assistance it
gives to the designer in structuring ones thoughts.
To understand this conceptual shift, it has been
our position that the skills of the programmer are
necessary in the future of design.

Introduction to Generative Components
Bentley’s Generative Components (GC), currently
in beta testing, was made available to the
twenty six Bartlett students, half drawn from
the design diploma units and half MSc students
in Adaptive Architecture and Computation, with
prior programming experience. The GC software
is based on a traditional CAD interface, except
that a project is simultaneously represented by
two models: one geometric and

the other procedural. This second, symbolic
model is a hierarchical graph that represents
each geometric element as a node and the
relationships between elements as directed
links. Geometry can only be placed in the
model in relation to prior geometry: a line,

for instance, can be drawn between two prior
points, and this then shows up as a lower node
in the graph with links showing dependency to
the two points. When a geometric element in
the graph is updated, all lower elements that are
dependent on it are also immediately redrawn
to reflect their new position, similar to moving a
control point on a spline.

The object orientated nature of the software
allows a model, with all its geometry and
behaviour to be encapsulated into one single
component and used as a single piece of
geometry. A single schema for a truss or a glazing
panel, for instance, might be repeated throughout
the project with variation in shape at every
instance controlled by the logic and relationships
built into the component. This logic can be
stated entirely with dependent geometry, or
coded at various levels from simple mathematical
expressions through scripting to fully compiled
C#. The software thus allows designers with
varying levels of computing knowledge to work
as deep as they wish, and provides for the model
a method of modularity in which each element is

flexible and capable of computation.
i
-

fA

o

Advantages of the generative approach

The obvious advantage of such a method,
exploited in most examples of generative
design, is that the algorithm can reproduce

a schema with changes to its dimension or
configuration, and thereby create forms both

of great complexity, and with a responsiveness
to conditions and environment. A project by
Takehiko Iseki typifies this, in which solar paths,
mineral content and other environmental factors
of a salt water site serve as parameters to form
a surface ideally suited to salt crystallisation

on the edge of the Dead Sea. The result is a
sweeping curved plane that responds to the
changes in the site and environment with
millions of unique elements. Such a form as the
generative model produces is well beyond

1593




(J
XSIDraDI:“DD& / Educocion 4 Desarrollo Académico

the capacity of a human designer to realise
through conventional drawing, still less through
construction methods based on standardisation.

Image 2

Limits of the approach

But any tool, as with any method of working,
influences the result of the designer’s creativity.
For all the flexibility that a universal programming
language provides, the structure of GC allows
some forms to be produced with ease while others
require rather more effort. Over the past three
years of workshops held during the development
of the GC software, the most common method
for producing geometry has been to replicate

a component over the rectangular UV grid of a
doubly curved b-spline surface.

While programming languages and geometry
are universal in intent, their constraints on

the design process were still notable during

the workshop. The default data structures

of computer languages (in particular the
rectangular array) replace one schema limitation
with another. The indexing of data in this way
is conceptually hard-wired into much of our
thinking both in CAD and in code. This is in part
because the structure and primitives are based
not on geometry but programming logic, on

image 3
such structures as rectangular integer-indexed
arrays of data. Even the project above, for all

its complexity, is still a repetition of a modular
element, based on a rectangular grid.

Thus, approximately half of the projects in the
workshop attempted in some fashion to

Image 3b

subvert this grid. A collaborative work between
Michael Georgiou and Yiannis Kanakakis involved
the placement of triangular components on

a topologically irregular surface, the logic of
which is immediately grasped in spatial terms,
but difficult to define parametrically. Thankfully
this can be overcome with a little programming,
using an algorithm to sort and index node points,
but this requires effort. The number of projects
which have required such a step suggests that
more intuitive, or spatial methods of data
access, might be developed in the future.

While any method of working imposes certain
constraints, the direct control one has over
geometry in manual drawing or traditional

CAD reflects the way we think about form. The
potential danger of the generative approach lies
in the fact that its procedural structure may

be too abstract and distinct from the needs of
the project. In the worst case, the designer is
guided into making a form that makes sense
only virtually.

A way forward

But the solution to this problem also potentially
lies in the fact that this method of working

is procedural rather than geometric. What is
being designed is not the final form, but the
steps taken to generate that form, and if these
steps are closely grounded in the reality of the
project, then the generative process actually
forces one to consider the logic of the design on
a deeper level than that of simple geometry and
the drawing.

This is the advantage of equipping designers with
algorithmic thought. The teaching aims of the
workshop have been to forge a closer connection
between this procedure of form generation and
the real, constructed design in one of two ways:
either in how it is built or in how it performs.
These two areas are particularly aided by the
generative, procedural approach because they
are themselves time dependent processes, the
logic of which is not captured in the traditional,
static drawing. In the first case, the method of
fabrication may be dependent on tool paths and
tolerances that can be simulated in the script file
that creates the geometry, so that the designed
object is actually built virtually, rather



Teaching Parametric Design in Code ond Constftruction

than simply drawn as a complete form. This
forces the designer to consider the underlying
construction logic with some rigour even during
the initial design phase. In the second case, that
of performance, we consider optimisation. The
behaviour of a virtual model can be simulated
by the algorithm to predict properties such as
structural efficiency or mechanical movement,
and when coupled with an initial parametric
schema the repeated simulation can be used to
find a final form that meets stated goals.

Due to time constraints, fabrication during

the workshop was limited to two-dimensional
laser cutting. While GC has inbuilt functions for
segmenting and flattening curved surfaces for
this largely automated process, the consideration
of a logical order of assembly of triangulated or
quadrilateral segmented strips was found to be
highly useful in planning the initial model.

Rather than exploring optimisation through
virtual analyses, the workshop provided an
opportunity for some to combine both the
automated fabrication process with optimisation.
Although virtual simulation was considered for
several projects, the parametric setup along
with rapid prototyping allows the testing of
models to occur in physical reality. Wei Shan
Chia’s project for a deployable structure made
from folded surfaces arrayed a simple hinged
module over a complex curve, adjusting the
geometry of each instance to fit. The changes
in shape as the model is folded could have been
simulated, but was constructed to test both the
changes in form as the structures fold and the
tolerance of the materials. In Fred Guttfield’s
bird table, components were designed to move
in response to the weight of the birds interacting
with the project. The balance, in particular, of
these was fine tuned by testing many different
prototypes made from the parametric model.

Alternatively, a virtual optimisation process
can be implemented that takes the fabrication
method into account. To manufacture doubly
curved surfaces using the laser cutter or from
CNC milled tiles, Martha Tsigkari developed an
agent simulation to walk the surface, estimating

errors and finding an optimal geometry for
quadrilateral patches. An arbitrary surface can
be used as a guide, and the algorithm set to
design to tolerances and limits dictated either by
a project brief, or by the machining process to
be used in construction.

Conclusion

Much generative design today is produced for
its own sake, simply as an exploration of the
method. It is still a new technology and requires
new techniques of modelling and thinking.

A great deal of activity as a new user and in
workshops such as this is therefore focused on
getting over conceptual hurdles such as the
formal predisposition of grid, or the hierarchical
nature of a dependent model.

We see the design studio of the future as
integrating process and manufacturing. Based on
what we see currently in development, it seems
a closer connection with design and building
process is possible by aligning the procedural
working method implied by such generative
software either with the procedure of fabrication
or with optimisation of the final form. In both
cases the designer is made to consider aspects
of a project’s behaviour as a matter of course,
rather than simply its geometry. It is our hope and
belief that in both cases the designer can have a
much closer relationship to the process of making.

Acknowledgements

We would like to thank Robert Aish and Bob Sheil
for helping to organise the workshop, and all

the participants, particularly Carolina Briones
Lazo, Przemek Jaworski, Takehiko Iseki, Michael
Georgiou, Yiannis Kanakakis Wei Shan Chia, Fred
Guttfield and Martha Tsigkari, who have allowed
their work to be published.

References

Kolarevec B (2003): Architecture in the Digital
Age: Design and Manufacturing.

Taylor & Francis, London.

Loukissas Y and Sass L (2004): Rulebuilding: a
generative approach to modelling architecture
using 3D printers. In Beesley P, Cheng NYW and
Williamson RS (eds.) proceedings: ACADIA 2004.

Woodbury R (2006): Every Designer is an Editor.
In Beesley P, Hirosue S, Ruxton J, Turner C and
Trankle M (eds.) Responsive Architectures: Subtle
Technologies 2006. Riverside Architectural Press.

Keywords:
Parametric, Generative,
Fabrication, Programming.




