Embedding Garifuna Shape Grammars in a Parametric Design Software

Dulce Andino
National Cheng Kung University, Taiwan
dma_22@hotmail.com

Abstract

Sheng-Fen Chien
National Cheng Kung University, Taiwan
schien@mail.ncku.edu.tw

The Garifuna are a group of people that live on the northern coast of Honduras and the coast of Belize. They have a very distinct and

vibrant culture. Minority cultures are currently absorbed by mainstreamed cultures and the Garifuna ethnicity is directly influenced by

this phenomenon. In this research it is of special concern to encapsulate Garifuna vernacular architecture by means of shape grammars.

The research provides a clear documentation of the grammars implemented in Grasshopper, as well as discusses about the issues of

embedding shape grammars in the Rhino/Grasshopper environment.

Keywords: Garifuna; shape grammar; Parametric shape grammars; Grasshopper.

Introduction

Minority cultures are currently being absorbed by mainstreamed
cultures. Consequently, in some cases this fact leads to cultural
identity issues, and observable among these issues is the
discontinuation of a particular vernacular architectural style. The
Garifuna ethnicity is directly influenced by this phenomenon,
henceforth the urgency of decoding the style of Garifuna
architecture. The importance of vernacular architecture is a
matter of cultural identity (Rudosfsky, 1964). In this research it is
of special concern to at least try to encapsulate vernacular
construction knowledge and patterns. The shape grammar theory
enables the possibility of achieving this in a very accurate
documentation. The investigation focuses on digitally capturing
the vernacular architectural style of the Garifuna people by means
of a parametric shape grammar in Grasshopper software.

The Garifuna

The Garifuna are a group of people that live on the northern coast
of Honduras, on the Pacific coast in Guatemala, and the coast of
Belize. The Garifuna have a very distinct and vibrant culture. They
are descendant from Carib and Arawakan Amerindian tribes, as
well as escaped African slaves. In 1635 two Spanish ship loaded
with black slaves sunk off the coast of San Vicente. The Africans
quickly mixed with the natives to avoid being sent back to their
owners as slaves, the Garifuna culture emerged from this mixture.
Through a series of disputes and battles between the French and
English, the Garifuna were expatriated to the northern coast of
Honduras in 1797 (Gonzalez, 1997).

Garifuna settlements are located in the tropical coastal region. The
sea works as a delimitation frame in their villages (Salinas, 1991).
Their houses are located behind the coconut tree palms, along a
main street that goes right through the village. The houses are
oriented towards the street, they do not have any private yards,
and this provides a solid communication between the dwellers in
each house.

SIGraDi 2013

The Garifuna Grammars

The Shape Grammar methodology (Stiny, 1980) is utilized to
capture the style of Garifuna architecture. The Shape Grammar
Theory has aided contemporary researchers to untangle the
mysteries of architectural styles or an architect’s style, either from
the past well as present day (Koning & Eizenberg, 1981). There are
different methods to conceive shape grammars. Shape grammars
are entirely flexible to behave or conform to each specific
requirement (Knight, 1999). One of the methods to create shape
grammars is in a two-dimensional approach (Stiny & Mitchell,
1978, 1980). Flemming (1981) established that a two dimensional
grammar deals with the blueprint definition, while a three
dimensional stage builds up the walls, positions the roof, places
openings and so on.

In this research two sets of grammars are developed: the Garifuna
settlement grammar, and the Garifuna hut grammar. The Garifuna
settlement grammar is developed to generate the settlement
patterns observed in Garifuna colony. The Garifuna hut grammar
deals with the form and construction of a typical Garifuna hut.

The settlement grammar (Figure 1) has one basic shape and a
symbol. There are four rules. Rule 1 is an addition rule to create a
neighboring hut. Rule 2 is the addition rule for kitchen. Rule 3 is a
reorientation rule that adjusts the label, and removes label. And
rule 5 is a termination rule. The initial shape is a labeled shape,
settlement.

representing the new

S: D Lio

very first hut in a

)

Initial Shape: I:]
o
Rule 1: I:] — E]

Rule 2: E] - 0O E] Rule 4: D

Figure 1: Garifuna Settlement Grammar.

Initial Shape: [_| Labels:A f,d,w, @00 9006 @

Rule 8: —o
Rule 1: | — Y Rule 9: o—o
Rule 10: o
O e ey Rule 11: °
b4 °
Rule 2: — Ey o
Povros]
PO .
Rule 12: b
“’A”A"A“ o o 0
Av ° I—¢ o—l
Rule 3: A I — : :
9 o . ,
}. » Rule 13: L d
oA ot oty I . —0
2e223m
Rule 4: o e e ° — ° PYRRRPS o
Rule 14: N
Rule5: © ¢ & —° — o9 9 o
Rule 6: o—o —_ o' o
Rule 7: o—o — o ‘e Rule 15: o e

Figure 2: Garifuna Hut Grammar.

The hut grammar (Figure 2) is to produce the actual construction
of a traditional Garifuna hut. The hut grammar assumes that a
settlement has already existed. Therefore, the initial shape should
be a rectangle representing a footprint for a hut. The grammar is
divided into three parts: frame generation, skin infill, and the roof
frame generation. The frame generation grammar takes the
footprint of a hut, adds columns, and allocates walls and openings,
and establishes the grid that the roof base will be built upon. The
skin infill grammar deals with the infill rules within a frame, and
finally the roof frame generation grammar refers to the gable’s
roof positioning and construction. To consider the materials and
sizes of the actual construction of a hut, the hut grammar is
implemented as a parametric grammar.

Garifuna Hut Grammar in Grasshopper

Implementation strategy

The shape grammar is implemented using Rhinoceros’ (Rhino)
plug-in, Grasshopper. By merging different components into
clusters, the left hand side (LHS) and the right hand side (RHS) of
the rules in the grammar enable the rules to be executed
precisely. For LHS pattern matching, a predefined geometry
component is utilized to select desired geometry. For example, to
match on point elements in a cluster of shapes, the cluster of
shapes is first obtained from a “Geometry” component and then
passed to a “Point” component; the Point component outputs all
point elements (with warnings if there are elements of different
type). This is a kind of an “automatic pattern matching”
To take

mechanism provided by Grasshopper (Figure 3).

— e Rule 16: oo e —° 5 o ooo o
v =
—_ o e
° *
— o ‘o vz
Ru|e17- o o o o o —_— o o o o o+
. wtm t—wtm
Rule 18: © 9o ¢ o o —_ *——o
¥
- ‘ 4& ‘Ah
1 Rule 19: —
Rule 20: °e ° - o
- Rule 21: e o — oo
Rule 22: ° g .
JE0E
N Rule 23: o . - .
a2,
et Rule 24: b
b2
— 1
L, & camensizen
200,

advantages of this feature, all shape rules are implemented in
separate Grasshopper documents.

Furthermore, we have limited ourselves from using scripting or
customized components in Grasshopper so that we may explore
the extent of its possibilities. The application of shape rules is
performed manually where RHS outputs of each rule are baked
into Rhino to be ready for use in the next rule application.

~27 9080008 10U 2x bt m 0 hnORE i

£
=7 ==l

—— f

Figure 3: Two illustrations of the implementation strategy.

Shape Grammars

Rules

Rule 1 states the parameters of the hut’s width and height. To
achieve this in Grasshopper, the LHS is established as a rectangle.
This geometry is then connected to another group of components
that together allow the RHS transformation of the shape. The RHS
utilizes an exploded B-rep component that works with an edge at a
time to scale the length and the width of the shape (hut area).
Once the desired dimension is obtained, and then one must bake
the geometry into Rhino (Figure 4).

Rule 2 parameterizes the labels for the column positioning (Figure
5). The LHS is a surface geometry acquired through Rule 1. The
RHS consists of an exploded B-rep component to work with edges
of the surface independently. Each edge is divided into segments
of equal length. At each division point, a tag component is
implemented as the label, which is required to work as a LHS for
the upcoming Rule 3. The points and the tags have to be baked in
Rhino.

Rule 3 declares that the labeled points for column positioning are
to be projected in the z-axis and state a new set of labels for the
gable roof grid. However, when the attempt of making the tag the
LHS of the rule fails, the first limitation of the software is
encountered. At this point, we realized that the tag although
visible in Rhino cannot be identified as geometry in Grasshopper.
Therefore, the LHS is defined by a point instead of a labeled point
(Figure 6). The user has to pick the correct points manually for
LHS.

Rules 4 and 5 set the beam positioning parameter and beam
labels. The LHS of the rule is defined by geometries of points;
these points have visible labeled tags in Rhino. However, since

labeled points cannot be pattern-matched, these two rules are
identical in Grasshopper. Once the user defines the points, the
data is transferred to the RHS of the rule. The RHS draws the beam
and positions another set of labeled tags, both elements are to be
baked in Rhino (Figure 7).

Figure 4: Rule 1.

Figure 5: Rule 2.

SIGraDi 2013

Rules 6 to 10 set labels for doors, windows, and wall panels.
However, since the resulting labeled points cannot be pattern-
matched, these rules are omitted.

Rules 11 and 12 parameterize the labeled points into columns.
Without the distinction of they are
Grasshopper. The LHS takes a point, which is transformed into a

labels, identical in
column in the RHS of the rule. The RHS of the rule consists of a
vector component (pComp), to define the column length in the z-
axis. Then it draws the column (Figure 8).

Rules 13 to 15 parameterize the profiles of doors, windows, and
walls in a hut. The LHS sets two points (columns) as geometries
that the user has to pick if they are one next to the other. The RHS
then determines if it will become a door, a window, or a wall panel
(Figure 9). Each profile is defined by the loft component.

Rule 16 sets a label for the central end stud positioning (Figure 10
top). The LHS is defined by two labeled points, the end points of
the beam given after the execution of Rule 5. The RHS of this rule,
divides the beam in two equal parts, draws a point and sets a
labeled tag “C” to be baked in Rhino. Rule 17 assigns the
parameters for the central end stud and labels at the top for
further rules to be properly executed (Figure 10 bottom). The LHS
consists of a labeled point geometry provided by baking Rule 16.
The RHS takes the point and moves it drawing the central end stud
along with it in the z-axis with a span equal to half the length of
the beam, to create a 45-degree angle in the following rule.

Figure 6: Rule 3.

Figure 7: Rule 4 (Rule 5).

Figure 8: Rule 11 (Rule 12).

Figure 9: Rules 13 (top), 14 (middle) & 15 (bottom).

Figure 10: Rules 16 (top) & 17 (bottom).

Rule 18 draws the 45-degree angle rafters (Figure 11 top). The LHS
is represented by point geometries. The points used in this rule
are; the two labeled end points of the beam (Rule 5), and the
labeled point at the top of the central end stud (Rule 16). The RHS
basically draws the rafters from three points, similarly as drawing
a triangle from three points.

Rule 19 defines the remainder end studs along the beam (Figure
11 bottom). The LHS is determined by taking two geometries: a
point and a line. The labeled point is obtained from Rule 3, and the
line is a 45-degree angle rafter. The RHS takes these geometries
and finds their intersection point, and then labels the intersecting
point with a tag. It also draws the end stud between the rafter and
the labeled point on the beam.

—i gy
c 'H‘? Pl 5)
el ‘ ‘ “
®HS

Figure 12: Rule 20 (Rule 21, 22, 23).

Rules 20 to 23 draw linear elements between labeled points.
Because all of them have the same logic in Grasshopper; they are
identical (Figure 12). The LHS is defined by the geometry of two
identical labeled points. Then the RHS of these rules draws a joist
in Rule 20, another joist in Rule 21, a truss brace in Rule 22, and
the roof’s ridge in Rule 23.

A Garifuna hut

The Grasshopper rules are verified through reproducing traditional
Garifuna huts of various types. Figure 13 illustrates the derivation
process of rule applications to create an original hut (Salinas,
1991).

Shape Grammars

I

Figure 13: Design derivations of an original hut.

Discussions and Conclusion

Our experience of implementing the rules of the Garifuna
grammars has allowed us to gain insights of the fits and misfits of
embedding shape grammars in Rhino/Grasshopper. A shape
grammar system should allow designers to (1) create and modify
the shape grammar, (2) compile the grammar, and (3) explore the
language of designs defined by the grammar (Tapia, 1999). Below,
we discuss issues of implementing shape

Rhino/Grasshopper according to the three phases.

grammar in

Key issue in the creating and modifying of the shape grammar is
representation of shapes and rules. The representation of rules in
Grasshopper is straightforward: a cluster of components
performing LHS and another cluster of components performing
RHS (e.g., Figure 12). The representation of shapes to allow for
subshape detection and emergent shapes, however, cannot be
easily achieved in Grasshopper without additional scripting. The
scripting or textual programming usually involves breaking down
geometric elements into lines and vertices (points) to recompose
into new shapes (e.g., Celani & Vaz, 2012; Grasl & Economou,

2011).

For compiling the grammar, the key issues are pattern matching
for LHS and shape substitution for RHS. Grasshopper provides
convenient pattern matching of typified geometry. However, for
matching onto subshapes or emergent shapes, scripting is needed
(as described in the preceding paragraph). For labeled shapes, the
tag component is convenient for label creation but the labels are
not geometric elements therefore cannot be used for LHS pattern

SIGraDi 2013

matching. So performing LHS pattern matching in Grasshopper is
limited to predefined shapes. In terms of RHS shape substitution,
removing or replacing geometries in Rhino may cause the
Grasshopper system to fall into an execution loop. Therefore,
shape substitution is not likely to achieve in Rhino/Grasshopper
environment.

To explore the language of designs defined by the grammar, the
convenient RHS pattern matching (described in the preceding
paragraph) can potentially perform multiple activations of rules.
Essentially having the effect of parallel rule firing in a rule-based
system. To control the design exploration process, the designer
may activate/deactivate (load/unload) in the
grammar or adjust the shape database (input shapes) for each rule.

certain rules

These two design exploration schemes, rule activation
management and input shapes management, are those used in

our research.

In conclusion, we found several limitations when embedding
shape grammars in Rhino/Grasshopper. However, designers may
still utilize the system to implement shape rules and explore
designs. Nevertheless, to gain the full power of shape grammar
systems, designers at least need the ability of scripting (beyond
visual programming) to achieve.

References

Celani, G.,, & Vaz, C. (2012). CAD scripting and visual programming
languages for implementing computational design concepts: a
comparison from a pedagogical point of view. International Journal of
Architectural Computing, 10(1), 121-138.

Flemming, U. (1981). The Secret of the Casa Giuliani Frigerio. Environment
and Planning B, 8, 87-96.

Gonzalez, N. L. S. (1997). The Garifuna of Central America. In S. M. Wilson
(Ed.), The Indigenous People of the Caribbean. (pp. 197-205).
Gainsville: University Press of Florida.

Grasl, T., & Economou, A. (2011). GRAPE: using graph grammars to
implement shape grammars. Proceedings of SimAUD 2011, Boston.

Knight, T. (1999). Shape grammars: six types. Environment and Planning B,
26, 15-32.

Koning, H., & Eizenberg, J. (1981). The language of the prairie: Frank Lloyd
Wright's prairie houses. Environment and Planning B, 8, 295-323.
New York:

Rudosfsky, B. Architecture without architects.

Doubleday.

(1964).

Salinas, I. M. (1991). Arquitectura de los grupos etnicos de Honduras (Vol.
1). Tegucigalpa, Honduras: Editorial Guaymuras.

Stiny, G. (1980). Introduction to shape and shape grammars. Environment
and Planning B, 7(3), 343-351.

Stiny, G., & Mitchell, W. J. (1978). The Palladian grammar. Environment
and Planning B, 5(1), 5-18.

Stiny, G., & Mitchell, W. J. (1980). The grammar of paradise: on the
generation of Mughul gardens. Environment and Planning B, 7(2),
209-226.

Tapia, M. (1999). A visual implementation of a shape grammar system.
Environment and Planning B, 26(1), 59-73.

