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Abstract

This paper will articulate on how the intrinsic principles of gem making could be applied in architectural form finding. It will speculate that
the technical accumulation of expertise and knowledge in this crafty technique could be implemented algorithmically. This robust and

efficient process could provide solutions for architectural design problems. It will conclude that faceting, as we can observe it in jewelry

making and lamp design, produces facets that are not just reacting to an underlying geometry, but also add expression and articulation to

an object.
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Introduction

The paper “Gemming” presents a research and design project that
focuses on faceting of surfaces as a method to design intricate,
highly articulate surfaces. The process of faceting is not so much
understood as an optimization process of a double-curved surface
in order to match the original intent of the designer (J. Glymph et
al., 2004), but more as a process of obtaining design knowledge
that allows enriching the quality of the surface. Gemstones are
facetted in order to enhance their optical performance so that the
different angles used for each facet can create reflections and
refractions. For this effect gem cutters use an analog faceting
machine that consists of a grinding wheel working with a mast and
a quill. In order to achieve the same effect digitally most
approaches extract points on a Nurbs surface with different
distribution, which will be discussed in detail. Furthermore we can
differentiate between flat facets, that follow a given surface
curvature as well as facets that transform a surface within a
certain range and apply another set of 3-dimensional facets to it.

In order to develop computational strategies to create facets and
other variations of faceting we look at triangular facets,
quadrilateral facets, diamond shaped facets, hexagonal facets,
voronoi-based faceting (M. Stavric + A. Wiltsche, 2011), natural
faceting in quartz crystals, n-sided faceting in jewelry making
(Swarovski) and mosaic facets (Tiffany lamps).

In Swarovski crystals that are cut and shaped into dolphins,
gorillas, bears and swans, we can see how the geometry of facets
transforms and adapts, as the operation transitions from various
parts of the modeled animal. Sometimes a hexagonal system is
used to articulate the back

Tetragonal Facets .

Figure 1: Swarovski Crystals.

of a lion, while a triangular system is used for the mane to add
variation to the design. If we think about the digital consequences
of these transformations, it means that on one hand we have an
underlying system of points reacting to the surface curvature,
while the type of facets is determined by a design decision
creating pleasing results. By studying these concepts, the paper
will present different faceting outcomes based on different point
morphologies on a surface. This is investigated in an algorithmic
approach towards converting complex surfaces into planar
polygonal tiles.
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In the following section three approaches are presented that
traverse through the point information of a curved surface
generated by the designer. The approaches include a plane
intersection method, a Boolean splitting method, and a population
method that we call “gemming”. The first algorithm operates using
intersections of three planes to define facet points. The second
approach uses planar solid geometries for Boolean operation. The
final approach recognizes the curvature of the surface and
converts it into approximated planar tiles (Cohen-Steiner et al.,
2004, Wenping et al., 2008).
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Figure 2. Tiffany‘lmps.

The next stage of our implementation is the coloring of these
surfaces, which will be based on visual and lighting angles that are
defined by the designer. This way the tessellation shows variations
and gradations of various coloring effects that will enhance the
design intent. In the lamp designs from Louis C. Tiffany we can see
the use of multi-colored flashed, opalised and streaky mosaic
tilings. Tiffany produced paintings in glass (Koch, 1975), which are
not attempting to integrate structure and ornament fully. The
leaded seams are actually part of the expression of the glass
painting. The seams thicken, bifurcate and bundle to create a
network of lines to enhance the glass painting. Koch points out
that the integration of structure and ornament has been
accomplished later in the glass works of Frank L. Wright as a logical
outcome of the glass experiments of Tiffany.

Plane-Plane-Plane Intersection

On our first attempt we revisited a common approach to get
subdivision through the construction of planes tangential to the
surface. This approach follows the generation of an arbitrary or
constrained point cloud over a surface to extract surface normal
directions. Using these points and normals of the input Nurbs
surface we first compute a Deleunay triangulation to extract
adjacency of nodes. The triangles store the vertices with the
surface normals that will be later used to compute the intersection
point of the planes. These plane points are stored on each triangle
that is then used to generate flat planar surfaces (Fig.2).

Although this is the mathematically most accurate method to

construct the planar tangential surfaces the algorithmic

implementation poses certain problems when the input surface is

SIGraDi 2013

too complex or the normal distribution and directions are not
consistent.

input surface + point cloud triangulation facets

Figure 3: Diagrams showing the implementation steps of plane-plane-
plane intersection. The mathematically calculated points that are not
consistent are shown on the right side.

In many cases the intersection points of the planes might occur
outside of the triangles or they might not even be found due to
parallel normals. These problems cause the algorithm to perform
unstable surface constructions at low Gaussian curvatures. This
problem can be fixed by using certain optimization methods such
as offsetting normal planes (Zimmer et al., 2013) or edge offset
meshes (Pottmann et al., 2007) or using P-Hex meshes (Wenping
et al., 2008).
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Figure 4: Diagrams showing various iterations of the Boolean method. This
method enables the user to populate n-gon shapes over a Nurbs surface

Although such methods provide an optimized mesh planarization,
the variations of offset causes the geometry to be locally adjusted
or the topology of the tiling to change based on the curvature.
Another solution could be found through mesh optimization
methods that are computationally expensive methods (Cohen-
Steiner, 2004). Although this automated process maintains overall
features and symmetries of the geometry, it gives less control to
the user as the conversion is executed through mathematical
approximation. In many optimized solutions the output geometry
contains irregular concave polygons that disrupt topological
consistency and patterning over the surface.
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Figure 5: Diagrams showing the conversion of the mesh surface into planar components. The length of the polygons are used as a

thickening parameter for panel computation.

Boolean Method

The second approach is based on a series of Boolean operations
that are applied to a surface. A hexagon grid is created on a
surface. Based on these points a circle is created that is
perpendicular to the normal vector at each of the extracted points
on the surface. In order to create a multitude of different
polygonal polylines the circle is divided into different amounts of
points ranging from 3 to 10 points. This division can be based on
the random point generation or it can be based on another rules
set. The polygon is then created through these points on a circle
and the outer polygon that point going to shape is moved inwards
in direction of the normal vector. The inner polygon is scaled to 50
% of its original size. In a next step the outer polygonal and the
inner one are lofted, which creates a tapering volume. The
tapering allows to overcoming the problem of the polygonal edges
and to change from convex to concave curvature. In a last step
each solid is subtracted from the given surfaces, which creates the
final faceted surface.

This approach produces a huge variety of facets and enables the
designer to intentionally highlight areas of the fagade design.
Varying the size of the Boolean n-gon, the amount of n-gon, the
distribution of n-gons and the tapering of each n-gon has a drastic
impact on the emerging qualities of the surface ranging from
jagged to almost homogeneous appearance (Fig.4).

The technical implementation has proven to be unreliable,
because the Boolean operations often fail in Rhinoceros / Python.
That makes the execution of a script only possible to a certain
extent and leaves the last step, the Boolean, to manual modeling
in a trial and error procedure.

Curvature-based Gemming

In our final approach we have generated a mesh based surface
approximation that combines plane intersection and n-gon
panelization without requiring any Boolean operations. We start
with any triangulated mesh surface to compute polygonal regions
(P) that surround a mesh vertex (V) (Fig.5). Using the mesh
connectivity, we compute an average surface normal (N) located
at the center of the polygon (X) that will be used to generate flat
panels. We use the normal to define two sets of points. The first
point (A) defines the location of the inner plane of the tessellation
while the second point defines an extrusion point (B) that is used
for plane3 intersection. These points are informed by the length of
the polygons that define the depth of the panels as a controllable

parameter.

To find the facet points we traverse the outer polygon vertices (P;
and look for the plane3 intersection among A(P;, Pi,1, B) and A(Pi,1,
Pi:2, B) and Plane (A, N). After this operation is done we sort the
facet points to define the inner
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Figure 6: Diagrams showing a color method that blurs the edge of facets

n-gon and the side panels that are both flat pieces. We repeat this
process for all the surface polygons. Using outer polygons for
planarization creates consistent edge connectivity and planar
approximation using volumetric panels. In addition, the algorithm
follows the input mesh geometry efficiently and produces n-gon
shapes that repeat and create surface guided tessellation patterns.

We have tested our gemming approach on various complex
surfaces to test the performance of our algorithm over

pinched, double curved, convex and concave surfaces. The results
show that the algorithm is able to maintain consistency while
following the input mesh curvature and connectivity. There are
various parameters that could be controlled during this process
such as the depth of the panels and the angles of the side panel
faces. When the depth parameter is ignored the algorithm
approximates the surface into planar convex polygonal
tessellations (Fig.5) . However these facets do not maintain edge
connectivity due to the simplicity of the implementation, yet they
create a continuous surface specific ornamental pattern. For
constructability the irregularity of the edge conditions need to be
compensated by the joining elements. Like the edge conditions in
Tiffany lamps, these discontinuities could be compensated by
using supporting material that enable different intersections with

the flat surfaces on both sides.

Coloring — Sharpening

As an extension to our construction algorithm we have added a
further step to add color to the computation based on the angle of
the faceted surfaces. Using gradients of multiple colors we assign
surfaces facing the same direction the same colors. This way the
overall surface acquires a gem-like quality where the coloration
emphasizes the angles of the facets as well as gives the surface
geometry a colorful pattern. We have tested the coloration on
volumetric facets as well as planar facets where the thickening
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parameter is set to zero. While the former produces a continuous

pattern, the latter creates an ornamental arbitrary color
distribution due to the surface angles (Fig.5-6). Furthermore the
volumetric panels could be used to highlight the directionality of
the surface using color that can give the design an opulent and

textured effect.

Coloring — Edge Blurring

Whereas color sharpening tries to enhance the visual quality of
each facet by applying color to each facet, the edge blurring
method tries to create an additional reading of another pattern
that operates against the individual facet (Fig.6). Color is applied
around the nodal points, which unifies parts of different facets.
This approach blurs the edges. While the first approach towards
color can be seen in analogy to Tiffany lamps, this approach
follows a technique that we can see in Frank L. Wright’s treatment
of surfaces, for example in his project for Unite Temple in Oak
Park, where Wright warps color and lines around corners of wall
and balustrades. This allows multiple readings and creates visual
continuities, where no geometrical continuity exists.

Conclusion

In this paper we have presented three approaches that can
convert surfaces into planar facets that can facilitate various
coloring and patterning effects. Among these methods we have
consider the gemming approach to provide control over surface
input, parameterization of panels and coloring based on the angles
of the generated facets. Although gemming provides an efficient
tool for design further research on construction detailing and
optimization of joints would be necessary. We believe that
following a design oriented approach using the tectonic qualities
of Tiffany lamps and F. L. Wright’s edge operations could lead to
outcomes for planarization.
methods that focus on

interesting aesthetic surface

Compared to other computational



optimized solutions, we give the design intent a higher priority to
give more control over the outcome of computation.

The integration of structure and ornamentation as we can find it in
Gothic stained glass windows seems to be promising in this regard
for further research: In Gothic rose windows different figures
allow to integrate structure through scaling and further
subdivision. Ornament operates as structure and structure
operates as ornament (L. Spuybroek, 2011). This supports the
aesthetic experience of colored light.
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