Pushing the Envelope: Stretching the Limits of Generative Design

Antonio Leitdo
INESC-ID/Instituto Superior Técnico, Portugal
antonio.menezes.leitao@ist.utl.pt

Rita Fernandes

Instituto Superior Técnico, Portugal
rita.serra.fernandes@gmail.com

Abstract

Luis Santos
University of California, Berkeley, USA
luis_sds82@berkeley.edu

Design is characterized by change. Nowadays, addressing change in design requires enormous efforts, particularly, when the designer is
exploring different solutions or when it is necessary to adapt the design to evolving constraints. This paper discusses the potential of

Generative Design to help designers handling change, namely in the generation of several alternative design solutions. We propose a

programming-based approach that, although requiring an initial investment, dramatically reduces the efforts of design modification. We
evaluate the approach in a case study and we show that it is cost-effective in the development of an architectural design.

Keywords: Design process; Change; Modeling; Generative design; Programming.

Introduction

Generative Design (GD) (McCormack, 2004) helps overcome these
limitations. GD can be summarily described as form creation
through algorithms (Terdizis, 2003). One of the main benefits of
GD is the fast and effortless generation of a wide range of
solutions, exploring different design approaches and implementing
the continuously changing constraints and requirements which
characterize the design process. Thus, it supports the architects in
the exploration of a larger solution space as well as in the
conceptualization of innovative solutions through the interaction
between design constraints and parameters (Kilian, 2006).

Writing a GD program that describes an architectural model
requires a large initial effort, and might be less cost-effective than
the typical digital modeling approach. However, this initial cost
can be quickly recovered when it becomes necessary to
incorporate changes in the design. This happens because the
design is unambiguously represented in a parameterized GD
program and a significant number of changes only require
different values for its parameters. These parameters might
represent numerical values, geometric shapes, mathematical
functions, or even subprograms. The important idea is that by
changing the current values of the parameters or by including
additional parameters, the designer can quickly generate a
different model that expresses the changes in the design.
Obviously, not all changes are trivial to implement and some might
require additional efforts to adapt the GD program. Thus, the
research question which can be posed is: how far can we go with

this approach?

Case Study

In order to answer the previous question, we made an
experiment: we formalized the design of a building in a GD
program which supports as many changes as possible. We then
tested the resilience of our formalization by simulating several
realistic changes and measuring their impact, particularly, in the
time and effort required for their implementation compared to
the conventional use of CAD tools. Our case study was focused on
a large and complex commercial building that is under
construction: MVRDV’s Market Hall (Boranyak, 2010). This building
is characterized by an unconventional bent shape, which is closed
by two glass facades. Because it constraints both the building
elements and the interior spaces, the shape of the building was
the starting point for our modeling approach. However, instead of
capturing the exact geometry of the building, we captured the
underlying ideas of the design, and formalized them in a
corresponding GD program.

The modeling process we used can be divided into four phases: (1)
formalization of the building shape, (2) modeling of building
elements (walls, slabs, etc.), (3) openings and frames, and finally
(4) detailed elements (posts, the elements of a glass facade, etc.).
In the first phase, we defined the underlying geometry that
captures the overall shape of the building. This geometry was then
used as input for the remaining phases of the modeling process.
The decomposition of the process into four phases, each one
increasing the detail of the model, led to the existence of
dependencies between elements. Their sequence ensures that the
geometry produced in each stage fits in the one produced in

previous phases, allowing automatic change propagation. This

Parametric Modeling



means that a change in, e.g., the building form, causes a
correspondent change in the window openings, frames, shape of
the walls and slabs, etc.

It is precisely these changes that are visible in Figure 1. The variant
building (below) was generated by simply changing the building
form. The remaining parameters were kept identical to those used
to generate the Market Hall (top). The instanced model reveals a
large number of differences in the elements of the building,
including their geometry, position, direction, and number of sub-
elements.

SRR
.-.-=|

Figure 1: Top: MVRDV’s Market Hall as generated from our GD program.
Below: A variant building generated by changing the overall shape of the
building.

Usually, changes in the overall shape of a building are very difficult
to accommodate using conventional modeling approaches.
However, using our GD-based approach, we implemented the

change in minutes.

In the previous example we simulated just a refinement in the
building shape, without changing its general dimensions. In the
next example we simulate a more extensive change, not only in
the shape, but also in the positions and dimensions of specific
elements of the building. In Figure 2 we show two outcomes
resulting from changing the parameters that control the form, the
number and position of the slabs and walls, the number of
windows, their position and dimensions, etc. The relationships

SIGraDi 2013

between elements were kept and adapted to a different scale.
Similarly to the first example, these results were produced by
changing a small set of parameters, a task that was implemented
in minutes. Compared to the previous example, these changes are
even more difficult to handle in a conventional approach because
it is not possible to reuse any element from one model to the next.

In the first two scenarios we modified the actual values of
parameters but it is also important to consider changes that also
require modifications in the implemented algorithms. For
example, Figure 3 illustrates changes on the geometry of the

fencing posts.

To implement this change we generalized the parts of the program
that dealt with fencing posts so that, instead of always using a
rectangular section (identical to those of the Market Hall, visible in
the top), they now accept an additional parameter for a procedure
that produces the desired shape. Figure 3 shows this feature by
replacing the default rectangular section with a circular one.

Figure 2: Two buildings generated by introducing several changes in the
shape and in the number and position of slabs, walls, windows, and other
elements.



A

Figure 3: Top: Posts with rectangular sections. Below: Posts with circular
sections.

The modifications we made to our GD program were completed in
less than an hour, a very short amount of time for a task that, in a
conventional approach, requires changing a large number of
elements and, moreover, must be repeated each time we try a
different alternative. On the contrary, in our approach, the
generalization effort only needs to be done once, allowing the
designer to effortlessly test many different alternatives.

Finally, we simulated a more drastic scenario: changing the
building from a bent and longitudinal shape to a parallelepiped
shape (Figure 4). In this case, we were forced to implement
additional algorithms that produce the specific geometry required,
and change some of the program parameters. The important
point, however, is that all these changes were made in
approximately half an hour. If an equivalent reuse is intended in a
conventional approach, the designer might reuse some elements
from other models, such as the frames of the lateral facades, but
only when their overall dimensions are identical. This is such a
severe restriction that, in practice, designers rebuild their models
from scratch.

Evaluation

To validate the results of our experiment we did an inquiry, asking
10 experts in several CAD tools to determine the expected time to
implement any of these changes using their conventional
approaches.

Figure 4: A parallelepiped building generated by changing the
formalization of the overall shape of the Market Hall.

In Table 1 we present the results of our inquiry. The analysis shows
that the expected times of the conventional approach are, without
exception, much longer than the actual times of our approach. As
a result, the inquiry corroborated our belief that GD helps
designers handling change.

Table 1: Results of the inquiry: comparison of the time needed to
implement the changes between the conventional and the programming-
based approach.

Time (hours)
Conventional Programming-
Change approach based approach
Building overall shape
(Figure 1) 70 <1/6
Building overall shape,
dl‘nr?enslons am}ll 92 <1/4
positions of specific
elements (Figure 2)
Shape of specific
elements - fencing 18 <1
posts (Figure 3)
Formalization of the
building overall shape 42 <%
(Figure 4)

During this experiment we noticed that when a change in the
overall shape was required, all the participants in the inquiry
would throw away their previous models and start the modeling

Parametric Modeling



process from scratch. At most, they would just try to reuse and

adjust specific elements with standard geometries, e.g.,
rectangular frames or revolving doors. This shows that, despite the
underlying logic inherent to a specific design and the application of
the same modeling process to change its features, the major
modeling task would always be repeated. This causes a
tremendous waste of time and effort that was already spent in

previous modeling activities.

Although our proposed approach shows large gains in handling
change, these gains depend on the development of a GD program
that, obviously, requires time and effort. As a result, it is crucial to
this research to also evaluate this effort. To compare the time
required to develop this program with the conventional modeling
task we made a second inquiry to the same participants, asking
them about the time they would need to model the Market Hall
building. As we predicted, the results, shown in Table 2, proved
that the initial development cost using our approach is larger than
using the conventional one. However, when we analyze the
cumulative time to implement the initial model and handling the
changes, we verify that the initial investment in the GD program
was highly rewarded.

Table 2: Results of the inquiry: comparison of the time needed to produce
the model / develop the GD program.

Time (hours)
Conventional Programming-
approach based approach

Production of the

131 160
model / program

Conclusions

We designed this experiment to determine how far we can go
using a pure programming approach to architectural design. The
results of the experiment allow us to conclude that it is possible to
go very far indeed.

Given that this was an experiment, we decided to stop it as soon
as we had collected enough information, but it was clear to us that
we could go much further. Although more experiments are
needed (e.g. implementing this programming-based approach in
an architecture office during a real architectural design process),
we believe that it is not only possible but actually cost-effective to
develop designs with the aid of a pure programming approach.

Designs that can be formalized by explicit and implicit patterns
and rules, such as the Market Hall, are prime candidates for
applying this
programming modeling method can be integrated in the design
process right after the first crystallization of the architectural

approach. Our experiment proved that a

concept. This approach may be also useful during the design
conceptualization phase, allowing the quick production of simple
models that explore different conceptual alternatives.

SIGraDi 2013

Although a larger initial effort is needed to formalize a design, our
experiment shows that this effort is quickly recovered. Our
evaluation proved that this approach is sufficiently flexible, not
only to accommodate expected changes, but also changes that
were not planned. This conclusion can be extended to the
architectural practice, where changes frequently arise without
being anticipated.

An important lesson from this work is that the developed program
should attempt to generalize the design as a mean to simplify the
generation of different instances from an initial model. This is
possible due to the creation of parameter and variable
interdependencies that automatically propagate changes between
building elements. The proposed approach is aligned with the
requirements of the design process, by allowing an effortless
introduction of changes and also the exploration of different
design solutions, thus assisting the designers in decision-making
activities. Our evaluation shows that a programming approach can
also support large scale designs and can easily incorporate mass-
customization strategies (Duarte, 2005), in which the effort
required to produce one program is recovered by its use to model
several related buildings.

Finally, we should mention an important advantage of the
programming-based approach: any inconsistencies or errors in the
design quickly show up as bugs in the program. This allows early
discovery of problems that are more costly to solve using
conventional approaches.

Acknowledgments

This work was partially supported by Portuguese national funds
through FCT under contract Pest-OE/EEI/LA0021/2013, by the
Rosetta project under contract PTDC/ATP-AQI/5224/2012, by the
project PTDC/AUR-AQI/103434/2008 and by the PhD scholarship
SFRH/BD/91939/2012.

References

Boranyak, S. (2010). Archetype. Civil Engineering, ASCE, 80(2), 76-79.

Duarte, J. P. (2005). Towards the mass customization of housing: the
grammar of Siza’s houses at Malagueira. Environment and planning
B: Planning and Design, 32(3), 347-380.

Kalay, Y. (2004). Architecture's New Media: Principles, Theories, and
Methods of Computer-Aided Design. Cambridge, Massachusetts: The
MIT Press.

Kilian, A. (2006). Design innovation through constraint modeling.
International Journal of Architectural Computing, 1(4), 87-105.

McCormack, J., Dorin, A., & Innocent, T. (2004). Generative design: a
paradigm for design research. Proceedings of Futureground, Design
Research Society, Melbourne.

Terdizis, K. (2003). Expressive Form: A Conceptual Approach to
Computational Design. London and New York: Spon Press.



