B15

[HE 2nd CIB W78+W74 SEMINAR
September 1990, Tokyo, Japan.

Non-Procedural Systems : the key to the Successful Implementation of
IT in Construction Management

1. Pantouvakis’ , M.Eng., M.Sc., Ph.D., C Eng,
PLEGMA S.A. - Management Consultants,

41, Ethnikis Antistaseos st.,

152 32 Athens, Greece.

Abstract

This paper outlines the basic concepts and principles involved in the development of non-procedural systems for
construction management. A non-procedural system allows the user to express his intentions about any of its features in
a"what is required” (as opposed to the traditional "how to do it") manner. In this way the overall usability of the system
is increased since its development and/or modification can be undertaken by the user himself. The case of using such
non-procedural systems in construction management is strong due to the very nature of construction which may
necessitate the use of different data and procedures from one project (and/or one company) to another. According to this
paper the development of a non-procedural system is based upon two distinct, yet interrelated software modules:
"SYS_SPE" which assists the user in the definition of the required system and "SYS DEF" which implements the
specified system on a particular software and hardware configuration. -

1. Introduction

Construction management is as old as the practice of building under a contract. It incorporates such
diverse functions as planning, estimating, cash flow forecasting, valuations, cost control and
accounting. The need to handle large quantities of data and to produce results speedily has led to the
introduction of computer systems in the field. A number of specialized programs for construction
management have been developed over the years (CICA, 1979; Wager and Scoins, 1984) and a
plethora of them is now available (CICE, 1990). These programs are based upon a model of the
actual process which is implemented on a particular software and hardware configuration.]

The fundamental problem with these construction management systems lies in the very nature of
their designs; systems must be formalized before they are implemented. Moreover, these
formalizations are hard-coded and, therefore, cannot change easily. The formalization of data and
processes, however, is in principle contradictory to the nature of construction which aims at the
production of unique projects. More precisely, there may be situations in which different data and
procedures should be employed due to the peculiarities of the project in hand. In these cases the
ungierlying formalization of the computer system hinders the effective management of the project.
This may affect drastically the competitiveness of the construction company and/or the profitability of
the project. The validity of the above argument in real world situations is demonstrated by the well-
known difficulty of construction professionals to locate suitable construction management software
(CICA, 1987, 1950). ,

The problem of developing computer systems for constructioq management in sgch a way as to
ensure that different practices can be employed is addressed in this paper. The solution is sought in
.the dcvelopmcnt of non-procedural systems. Non-procedural systems allow the user to t_:xpres‘s his
Intentions about their functions or features in a "what is required” (as opposed to the traditional "how
0do it") manner. In this fashion the following three objectives are fulfilled:

—————

L} , .]
The work Presented in this paper started at the Department of Computer Science, University of Nottingham, U.K.

1P, Patouvakis Non-Procedural Systems : the key to the Successful Implementation of IT in Construction Management

—177—

(a) The flexibility and generality of approach of the computer SysStem are ensureq
(b) Any incorporated formalizations are defined by the user himself who i Considereq
expert in his field. _ o 0 be 4,

(c) When modifications to the underlying formalizations are required, these can be im

easily (i.e. in a non-procedural manner) by the user.

In the reminder of this paper, the basic principles involved in the developmens of non-py
systems will be presented. The necessary software will also be identified and defined F;i)nf’?ledural
benefits accruing from the development of non-procedural systems for construction ma”égemd Y. the
be discussed. et wi)|

2. The Development of a Non-Procedural System

The development of a non-procedural system is based upon the following principle:

Plememed

The specification of a computer system, i.e. its menu structure, input, processes and oUtpug cap
thought of as datg (termed system definition data). This data is the resulr of a process by Wh‘_chn he
user defines his intentions about the features of the computer system. This datq is afs, the in [e
a second process by which the required system is implemented, Pl

The process is presented schematically on Fig. 1.

<P)

APPLICATION
PACKAGE

15)
SYSTEM
DEFINITION
Fig. 1 Development of a Non-Procedural System DATA

Initially the user interacts with a specially developed software module (named "SYS SPE")
which the required characteristics of the System are defined. Subsequently "SYS SPE" performs the
required calculau_ons (e.g. normalization of data, integrity and consistency checking etc) in order 0
convert the user intentions to the logical model of the system. The logical model of the system is
stored in the "System Definition Data" file.

A separate software modyle (named "SYS_DEF") accepts as input the logical model of the system

and generates as output the corresponding implementation of the system on a particular computer
configuration.

The user will

Fig. 1) then interact with the so-produced implementation (termed “application package” in

In a similar manner, the user can modif " " will provide the
] I, the user Y a non-procedural system. "SYS SPE" will pro
System definition data in an intelligible (to the user) format. This gata can then be edited by the user s

1P Pantouvakis Non-Procedaral Systems . the key 1o the Successful Implementation of IT in Construction Managemeni

~178—

hat the required modifications will be defined. The system will then be re-
:n:nnﬂ to that outlined above.

generated in a similar

should be cmphaSiZCd' at this stagE: that ‘tlhe development environ
; eItthc software modules "SYS_SPE and "SYS DEF" anqg the sys
m'sbecif}’ the characteristics of the required System. The application
of the development environment and can be thought

construction management systems already available The great bene

in the fact that any implementation of the application Package can be modified easily to cater for
different requirements.

In the next two sections, the design of the System specification ("SYS SPE") and the system
definition modules ("SYS_DEF") will be presented in more detail. It should be noted at this stage that

three sub-parts :

1. The upper part which provides information abouyt the
application (i.e. where he is and/or what he is doing).

2. The middle part which is used to display data and/or results and to enquire for input,

3. The bottom part which is used to display error and/or help messages and to display
verification questions when they are needed (e.g. "Press ESC to abandon" or "Are you
sure you want to delete this file? (Y/N)" etc).

(b) That the target computer configuration is standard (e.g. PC/AT compatible hardware, with a

EGAVGA graphics card, under the MS-DOS operating system). It should be noted that other

"SYS_DEF" modules will be needed for other computer configurations.

position of the user within an

Step | : The user provides the names of the data items needed by his application. These data iterns
may have been produced by using standard systems analysis techn_iqucs (e.g. SSADM-

("quantity").

SMep 2 : The user provides the relationships between the data items specified in step 1. A
relationship (or in database jargon a "functional dependency”) exists when the value of a
data item depends on the value of another data item. For example, the data items “project”
and "item" determine the value of "quantity” (see Fig. 2). This means that for a particular
value of "project” and "item" there is only one value for "quantity". _

Siep 3 : The characteristics of the data items defined in step 1 are given. For cxamplg, (s;c Fig. 2,
the data item "quantity” will be termed "qty"” by the computer system, and it will be ald

character wide number with two decimal places.

' Onge these three Steps have been completed, the system will eliminate redundancy and
mco"s‘“c"?y and it will organize the structures of the appropriate data files (see also Pantouvakis
(1988)). This information will be stored in the data dictionary.

1p. Pantoyvaiis Non-Procedural Systems : the key to the Successful Implementation of IT in Consiruction Management

—179—

LVl o

N INPUT FORMAT EXAMPLE OUTPUT
R
Project, Item,
;| Data ltem fieldi, fieldj, ... Description,
Names Quantity
aldi fialdi ject, ltem)
FOR (fieldi, fisldj, ... FOR (Project
pData | R EXACTLY ONE THERE IS EXACTLY ONE DIC%ATA
Relationships | (aigk. fieldl, .. (Quantity) ONARY
3 Data i« i~ Jfieldiiname:type:width:dec)| Quantity[qty:Numeric:10:2)
Characteristics
. ' INTEGRITY
Integrity ; : project.gty >= 0
4 Logical Expressions
Constraints 9 DICTIONARY
Definition via a specially roject Code
5 Data Input developed program by Eg?cription [] SCRERN
Screens which the user can "draw" Quantity -— DICTIONARY
the screen layout
Usage of a Very High * FILE : INCREASE.PRG
6 | Process Lev:-?l Language * Increase Quantities by 10 T(my
Definitions (see Fig. 3) qty :=qty + 10 D
Detinition via a specially item | Description Quantity
Report developed program by REPORT
" [Definitions | which the user can “draw" DICTIONARY
the report layout
Definition via a specially 1
8 Menu Structure developed program by p| -l MENU STRUCTURE
Definition which the user can define lietaass B DICTIONARY
the menu structure Quantitities

Step 4 : Given the data di
In Fig. 2, such an integ

message can also be defin
violated. Similarly to fu
redundancy and inconsis
which will appear eve

: The user defi
These screen
or modified
cxample is shown in Fj
that file with

Fig. 2 The SYS_SPE Module

which it is

ctionary and the semantics of the
the kind of constraints that should be imposed on th

rity constraint is stated as :

ed to appear every time
nctional dependencies, i
tency. The user can also
ry time this constraint is viol
constraint and error message) is stored in the integ
NES any number of input screens to
§ provide the end-user interface eve
to a file. The input screens are nam
g- 2. The name of the sc
associated are stored in

application, the user can decide upon
¢ data stored in the files of the system.
"project.qty >= 0" and should be readr
as : "the field ‘qty’ of the file project’ should be greater than or equal to zero". An errl;)e
the integrity constraint is about tof
ntegrity constraints are checked for
define an error message at this sta_g;'c’
ated. All this information (i.c. integnty
rity dictionary. _ e
béy used in conjunction with 2 d‘[ijta]gltlz
Ty time data should be app;ndt?d,h ‘:«j o
ed so that they can be distinguis ‘elds -
reen, its layout and the file and fie

the screen dictionary.

I.P. Pantouvakis Non-Procedural Systems : the key 10 the Successful Implemensation of IT in Consiruction Management

(such as SUM() etc-see also Fig. 4). A simple example of a process file developed in this
language 1s presented in Fig.2. The command "qty := qty + 10" should be understood as
"increase all the ‘qty’ fields in file 'project’ by 10", These programs along with the names
of the data files and the fields the operate upon are stored in the program dictionary.

Step7 : The user defines the format of the output to be produced by the system. The format of the
output is termed a '”rcpor‘t". An example is presented in Fig. 2. The report layout, its
name, the file(s) with which it is associated and the fields of that (those) file(s) that it
contains are stored in the report dictionary.

Step 8 : The user specifies the menu structure of the required application. For each option he
specifies the text to be displayed (e.g. "Increase Quantities” in the example of Fig. 2) and
the program file (or command) that should be executed (e.g. "increase.prg” in this case).
The information relating to the menu structure of an application is stored in the menu
structure dictionary.,

4. The Systemn Development Modyle

particular software and hardware configuration. The main functions of "SYS DEF" are as follows:

(a) The implementation of the logical data model on a particular computer system (i.e. the
implementation of the data files)

(b) The implementation of the data entry programs (addition, deletion and update) incorporating
the specified data input screens and any integrity constraints.

(¢) The implementation of the processes incorporating any integrity constraints and report
definitions (i.e. the conversion of the processes as defined in the very high level language (see
Fig. 3 and Fig. 4) to executable files).

(d) The implementation of the required reports of the system.

(¢) The implementation of the menu structure of the application.

5. The Benefits of Non-Procedural Svstems
The main benefits of non-procedural systems are:
(2) Productivity Improvement : A construction management package can be developed much more
speedily and, therefore, at a stgnificantly reduced cost.
(b)R ion of Skill Requirem - The skills available to design complex computer systems are

in very short supply. By using the "SYS SPE" and "SYS DEF" modules the skill
requirements are greatly reduced.
i

(¢} nsisten rov ¢ All the systems generated by "SYS DEF" are of the
same quality. The consistency of the end-user interface is also guarantied. _
(d) ' : By using the system, the production of prototypes is facilitated.

This means that more than one designs can be examined in order to select the one that meets the
requirements of the application precisely.

(¢) Maintainability of the Application Pack : The modules "SYS_SPE" and "SYS DEF" can
handle effectively the modifications of the application package which may be requested due to
changes in practices, legislation etc.

I i ———— 0 g g
1P Pantcuvakis Non-Procedural Systems - the key to the Successful Implementation of IT in Construction Management

~181—

DESCRIPTION &

5 alug
I8 10 by

(b} by

—_—]

Snd COMVMMAND
Print c<message> on the 5Creen ang ggl—m-l:'--‘
DISPLAY <message> [GET <variables user (he value of <variables which hag initia) o
1 [INITIAL <initial_values [FORMAT <formats=]]] <initial_value>. The value of <variabig.
- printed/stored in the format specifieq.
2 A= B Assignement
IF <condition> THEN <action1>
iIF ... THEN ... ELSE .. co
3 ELSE <action2x> nstruct
FOR <condition> IN <file= DO For the records in <files that satisty the <Condition,
% <actions do <action>
When executed, leads to & full~scr9—9:—553—r§‘fo—n—”-‘-
. which the user is allowead to select records from
5 SELECT <file>.<figld> <file> by (a) selecting records one by ong
specifying a condition (c) by Using wildcharg
6 WITH SELECTION <file>.<field>= DO With the selected records (see command 5 -@bovae)
<actions= do <action>
7 CALL <filex Transfer controi to <tilgx
8 --. FOR <condition> Dsfines the scope of a command

——

ADD INTERACTIVELY TO <filos SCREEN <screenx
[CONSTANT <fieidi> = <OXpressionis, «fieldj> =

———]

9 F : The Data Entry Operations (addition, deletion
<expriessionj»...] [REPLACE <fieldk= WI(TH ! :
<OXpressionks>, <fieldl> WITH <@xpressionl>...] [UPdate}). They lead to full-screen Gperations

SCREEN :; defines the name of the screen to be used
 of DELETE INTERACTIVELY FROM <file> SCREEN CONSTANT:defines that the values of <fieldia, <field)
<screen> [VERIFY QOFF] will have a constant value during the Operation

REPLACE: replaces the value of <figldks, fisldls |
with the expressions provided
UPDATE INTERACTIVELY «file> SCREEN <sereen>|VERIFY OFF : indicates that the user will not be

N Y [REPLACE <fisldi= WITH <expressioni>, <fieldj- asked to verity the delstion of a record
WITH <expression]|> ..)

- APPEND TO <hito». clfigidis o <@ADresSsionis,

<fieldj> = <@xpressionjs .
Data Entry operations which do not lead

1 3 DELETE RECORDS FROM <filax to full-screen operations and thus can be used

by a program

2 MODIFY <tile= <fieldi> WITH =OXDressionis

<fieldj> WITH <8xXpressionj. .,
h COPY <fi!ei>.<fieldj>. <filok > <tigldia - TO
<fi!9m>.<fioldn>. <ﬁlop>.<fioldq>
Fite operations. More specifically:
b & CREATE «file> with -cfieldia-:<typsi>:<wid1hi>: i Il anothe r
<d9Ci>2<'i8ldj>:<typej>:<widthj>:<de¢j> COPY fields from one tlle to
CREATE a tile from the given definitions
' 7] DELETE «<filox DELETE a filg
RENAME a file
8 RENAME <file1s TS <lilg2s
BEGIN .
h o Defines blocks of commands (in a simitar manner
END o the corresponding statements in PASCAL;

J.P. Panlouvakjs Non-Procedyral Systems .

Fig. 3 Concise Description of the Very High Level Language

“the key 1o the Successful Implemeriation of IT in Construction MMW

~182-

FUNCTION

DESCRIPTION
SN
tolda) Returnse the sum of the the field <fields of the
1 SUM(<flex. <fleldx e <flles
Returne true It the valuee of the tllel.tield] are
c<ti@ld]>, <fllek> <tlald] L]
2 MATCHES((<fllel> <lield]>, < ==) edual to the values of tilek. fleid|
Returna the atrip <variable> glven |n upper
3 UPPER(<variablex) case letters g °

4 LTRIM(<variable=) Returne the atrin

B =<varlable> without
leading epacea

Ret & th tri i t it t trafli
& RTAIM{<variables} urn @ siring <variable> w hou ratling
6 LEN(<variables=) Returne the lenght ot the <variablas

Returns 1he tirat <poss characters of the
o=, o
7 LEFT(<varlable>. pos) varlable <variables

Returne the last <~PO®> caharacters of the
8 RIGHT (<variables, pos) variable <variablex

Fig. 4 Basic Functions
6. Conclusion

The traditional approach to the development of computer systems for construction management is
inadequate for the needs of the construction industry. A new approach is, therefore needed. This

References

(CICA, 1979) Construction Industry Computer Association (1979) Construction Programs for
Construction Management, Cambridge, UK. o
(CICA, 1987) Peat Marwick McLintock and Construction Industry Computer Association
(1987) Building on IT, 4 survey of Information Technology Trends and Needs for the
Construction Industry, Cambridge, U.K. . o
(CICA, 1990) Peat Marwick McLintock and Construction Industry Computer Association
(1990) Building on IT for the 1990s, Cambridge, U K. ' _

(CICE, 1990) Construction Industry Computer Association (1990) Construction Industry
Computer Exhibition, Barbican Centre, London, U.K. _ ‘

(Cutts, 1987) Cutts, G. (1987) Structured Systems Analysis and Design Methodology,
Paradigm Press, U K. _

(Pantouvakis, 1988) Pantouvakis, J.P (1988) Software Tools for the [mp!emgnmnon of
Relational Darabases Describing the Building Product, 1st CIB W78+W74 Seminar, Lund,
Sweden, o

(Pnntouvakis, 1990) Pantouvakis, J.P. (1990) Declarative - C opﬁgurable Estimating Systems
for the Construction Industry, Ph.D. Thesis, University of Nottingham, U.K.'

Wagﬂ and Scoins, 1984) Wager, D. and Scoins, S. (1984) More _ansrrucnan f’rogmms for
Construction Management, Construction Industry Computer Association , Cambridge, U K.

IPp anlouvak g Non-Procedural Systems : the key to the Successful Implementation of IT in Construction Management

—183—

