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ABSTRACT
Neural networks are Al-based computational tools with powerful
capabilities of effective capturing and re-use of domain knowledge that are
inherently implicit. This paper describes the modelling capabilities of neural
networks with respect to construction problems, emphasizing the advantages
associated with their representation of knowledge in the form of patterns.
Several aspects related to proper management of knowledge are addressed for
the purpose of developing practical and more reliable neural network models
of complex construction problems. These aspects include: 1) problem
structuring and patterns formation; 2) knowledge acquisition and data
validation; 3) preparation and transformation of acquired data; and 4) analysis
and interpretation of network state of knowledge. Guidelines pertaining to
T these aspects are provided along with considerations for modelling with noisy
S data and under high degree of uncertainty. The issues discussed are illustrated
g through a case study of a neural network for bidding decision support,
S developed based on knowledge acquired from contractors in Canada and the
= U .S. The case study demonstrates neural network modelling and illustrates the
benefits gained through better management of acquired knowledge.
Key Words
neural networks; knowledge acquisition; construction; information technology;
bidding strategy

TTERN RECOGNITION IN CONSTRUCTION PRACTICE
Reasoning, deduction, and pattern recognition are among the fundamental
pects of human intelligence. Among those, humans exhibit phenomenal
gplhties to recognize patterns of information in the environment and respond
© them in a speedy and effortless manner, even under extremely difficult
gonditions (Rothman, 1992). Obvious human experience that involve patterns
include the recognition of speech utterances and the understanding of images
uch as handwriting, despite major distortions or omissions. This outstanding
g)ility of humans, observed also in the decision-making capability of domain
gxperts, have stimulated growing research and developments in statistical
Pattern recognition and Al systems such as neural networks (NNs). The
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interest in these areas of research has several motivations, including: 1)
capturing of scarce and implicit domain knowledge; 2) developing intelligent
machines with human-like abilities; and 3) developing effective decision
supports for complicated real-life problems. Background matcrial regarding
neural network variations, characteristics, and mathematical formulations is
well documented elsewhere (Moselhi et al, 1991a; Pao, 1989).

Recently, NNs have been suggested for modeling a number of
construction engineering and management problems that are solved in practice
based primarily on holistic analogy and "gut feeling” rather than detailed
deduction and reasoning (Mosclhi ef al, 1991a; 1992). Some construction
examples include the prediction of productivity levels achievable under a
particular job site conditions, the assignment of a percent markup before
submitting the bid price, and day-to-day decisions regarding the allocation of
resources, minimizing idle times, and solving disputes. Neural networks derive
their analogy-based and pattern recognition capabilities from a process of
learning a set of examples representing previous encounters of a certain
problem. NNs utilize these holistic examples (without their underlying logic),
as patterns, to simulate complicated decision processes and their related
knowledge. Much of neural networks® power, as such, stems from their
representation and processing of knowledge in the form of patterns. A pattern
consists of a group of factors that distinctively characterize the cause
(situation) or the effect (consequent decisions) associated with a particular
problem. In a typical bidding situation, for example, the causc pattern, on one
hand, consists of a number of risk-related factors that influence contractors "
decision of an optimum percent markup to add to their cost estimates. The
effect pattern, on the other hand, incorporates other factors associated with
the decision made and the consequences of such decision on winning/losing
the job and actual profitability attained. The advantages of such type of
knowledge representation is the holistic and problem-less manner by which
knowledge can be acquired from experts and further managed to develop
practical models of complex problems. Given a sufficient number of cause and
associated effect patterns that well represent the domain knowledge, neural
networks can be trained to extract and generalize the implicit relationships
linking causes to effects. The trained network, thus, becomes able to predict
the effect (solution) given only the causes pertaining to a future or new
situation,

KNOWLEDGE MANAGEMENT USING NEURAL NETWORKS

It is apparent from the aforementioned discussion that the practicality and
effectiveness of neural network models are highly dependent on: 1) patterns
structure and the relevance of their constituent factors to the problem;
2) sufficiency and representativeness of the knowledge acquired to the domain;
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and 3) suitability of the method used for transforming the data into format
usable by neural networks. This is in addition to a suitable neural network
paradigm, an optimum network configuration, and sufficient training. Despite
the importance of proper management of knowledge to the powerful
modelling capabilities of neural networks, however, the task of structuring the
problem patterns and processing their numeric and non-numeric data is a
highly problem-dependent task that is not simple and straightforward, and
lacks structure and organization.

In an effort to guide the process of capturing of construction knowledge
and its successful utilization in the development of neural network models, the
following aspects are addressed: 1) problem structuring and patterns
formation; 2) knowledge acquisition and data validation; 3) preparation and
transformation of acquired data; and 4) analysis and interpretation of network
state of knowledge. These issues are discussed in detail in the following sub-
sections.

Problem Structuring and Pattern Formation

It is assumed that there is at hand a problem that lends itself well to
neural network modelling. As a case study, the problem of deciding a percent
markup in competitive bidding situation is considered and the backpropagation
NN paradigm (Rumelhart et al, 1986) is selected as most suitable for its
modelling (Moselhi et al, 1991b). In general, one approach to validate an
application is to compare its characteristics to those of potential neural
network applications. The selection of a neural network paradigm can also be
based on a comparison of the application requirements to the paradigm
capabilities and limitations (Moselhi et al, 1991a).

Problem analysis, structuring, and patterns formation represent major
steps in the design of a neural network model. Problem analysis consists of
(Bailey and Thompson, 1990): (a) identifying all data that in any way relate
to the application area; (b) removing data sources that are regarded as
peripheral or unreliable; (c) filtering out data sources that are impractical for
technical or economical reasons; and (d) exploring methods of combining or
preprocessing data to make it more meaningful (eg, ratios are often more
significant than numbers and provide the relevant relationship explicitly).
Based on such analysis, the problem governing attributes, representing the
system input, and the problem output attributes, representing the system
conclusions, can be identified. These attributes, if well selected, normally
represent a high order of abstraction from the data. They are independent
with little correlation between any two of them. This ensures that the
attributes adequately define the problem and require less network design and
implementation cffort. For the present case study, characteristic factors that
need to be considered in formulating a successful bidding strategy were

333



Hegazy, Moselhi and Fazio

identified through a survey conducted among the top 400 contractors in the
US. (Ahmad and Minkarah, 1988). Percent markup decisions were
predominantly attributed to the group of factors that arise from uncertainty.
Accordingly, these factors are grouped to form the risk pattern associated with
individual projects.

Once the problem input and output attributes are identified, a number of
feasible problem structures has to be determined. This depends on several
factors including: (a) the number of input and output attributes identified and
their data types; (b) constraints on the acquisition of training examples
(number, time needed, and cost needed); (c) clarity or fuzziness of the
problem; and (d) availability of domain heuristic knowledge that may guide
the search. A direct structure is often done by presenting all inputs at the
network input buffer and all outputs at the output layer. This structure works
well for small sizc problems with definitely relevant and consistent data (a
non-consistent data would include mixed short term and long term data, for
instance). However, more often this is not the case. Problems vary in size
(number of input and output attributes), complexity, data type, and solution
requirements. There is no one single approach that can be used for direct
structuring of a problem. It is important, however, to identify more than one
structure since successful implementation of any structure is not guaranteed
to suit the problem. This step is necessary before conducting knowledge
acquisition since alternate structures may require additional information to be
elicited.

For the markup problem, two structures were determined at that stage:
1) a direct structure with one large neural network having all the identified
factors as inputs (Figure 1); 2) a five-network hierarchical structure with the
factors divided among four small sub-networks that are linked to an additional
global network (Moselhi ef al, 1991b). The hierarchical structure was sought
on the assumption that it may require less number of training examples to
produce the same level of accuracy of the single-network structure. Such
structure takes advantage of an inherent hierarchical structure of the problem
itself.

In the single-network structure of Figure 1, thirty input attributes
represent the project environment pattern and seven output attributes
represent the output pattern desired to be predicted by the model for new
situations. Not only a markup value need to be estimated but it is also
required to give an indication about the implications of the project pattern and
the estimated markup on: the chances of win/lose; difference in ($) between
the winner and second bid; project potential for change orders; project
potential for claims; duration extension; and actual project profitability. A
pattern, as shown in Figure 1, is constructed from a chess-like grid of the
network attributes and the possible values of each. The possible values and

334



Managing Knowledge in Patterns

their associated literal meanings are shown in Table 1. The black spots on the
grid represent the attributes® values in a particular training example.

Values  (1:LOW, 5zHIGH)

ATTRIBUTENO.: |54 5

1 -OWNer tyPoucccecrecnns
2 -Contract type.......

3 -Totsl bl valus.... EE g
o o ] ™ o s e

Input Hidden Output

6 -Contractor size....

7 -Markup definition., Buffer Layer Layer 444 444,
8 -Markup components.
$-5ite conditions......

10-Ownaer attitude......

12-Safety hazard........
13-Insccurate estim,

15-Technology needed.
16-Resources nesded.,

18-Quality of design. ... NEURAL NETWORK
19-Stacking of trades..
20-% subcontracted......

21-Rigidity In specs.....
22-Infiation rete............

Z3-Escalation rate.......

1- Optimurm markup (%)

3- Diff. bet. winner & 2nd bidder ($)
4. Potential for C.O.s {L., M., H.)

5- Potential for claims (L., M,, H.)
6- Duration extension (ratio)

2- WINLOSE

27-Simiiar sxparisncs.,
28-Mgmt. & supervisn...
29-Confid. in work force
X-Financial capabll.......

Figure 1. A Single Neural Network for the Markup Problem

Knowledge Acquisition and Data Validation

Once there is a clear idea about some feasible structures and the
information needed to be elicited, necessary knowledge could be acquired and
the data validated. In this step, focus is on gathering as much training data as
possible within practical limits of time, money, and computer resources. More
important than the quantity of examples is their quality and representativeness
of the domain. A good training set should contain routine, unusual, and
boundary-condition cases (Bailey and Thompson, 1990). One measure of the
data's represcntativeness is the breadth of the problem covered by the
training cases, including the different types of patterns in a pattern-
classification problem and variety of significant cases in a decision-making
process. Potential data sources include historical records, test data, case
studies, instrument readings, simulation results, and hypothesized results.

In the present case study, necessary knowledge was acquired through a
questionnaire survey prepared based on initial interviews conducted among a
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Table 1: Description of Markup Attributes

Attribute Possible values Scaling operation
INPUTS:
1- Owner type - 1: Public; & 2: Private. - {(Value - 1),
2- Contract type « 1: Lymp Sum; 2: Unit Price; - (Value - 1).
3- Total bid valoe - Real Number ($ millions). - (Value / 20).
4- Contract duration - Real number (moaths). - (Value / 10).
5~ Need for work - 1: Low to §: High. = (Value { 5).
6- Contractor size ~ 0: Small; 1: Medium; 2: Large. - (Value / 2).
7- Markup definition - 0: a % of (DIR*); - (Value / 2).
1: 2 % of (DIR+P.0.**);
2: a % of (DIR+P.0.4G.0.**%),
8- Madup components - 0: Profit only; - (Valye / 4).
1: Profit+Cont *4++;
2: Profit+G.0.;
3: Profit+G.0+Cont.;
4: Profit+P.0.4G.0.+Cont.
9030 - 1: Low o 5: High. - (Value / 5).
OUTPUTS:
1- Markup - Real oumber (%) - (Value / 50).
2. Winflose - 0: Win; 1: Lose. - (Value).
3- Diff. between winner and - Real number ( $ * 10E-5). - (Value / 10).
second bidder
4- Potential for C.Os - 1: High; 2: Mediumn; 3: Low. - (Valoe / 5).
5- Poteatial for Claims - 1: High; 2: Medium; 3: Low. - (Value / 5).
6~ Duration extension - Real pumber (Ratio = Actual - (Value / 2).
duration / contract duration).
7- Actial profitability - 1: High; 2: Mediom; - (Value / 5).
3: Low; 4:loss.

**+ G.0. = General Overhead cost.
*¢++ Cont. = Contingency.

* DIR = Direct cost.
** P.O. = Project Overbead cost.

number of Montreal area contractors. In an effort to maximize homogeneity
and minimize variability, questionnaires were sent to contractors in Canada

and the U.S. who appeared to: 1) work as general contractors; 2) specialize
mainly in building construction; and 3) obtain a large percentage of their work
based on competitive bidding. These critcria were used later to qualify the
respondents, ensuring some commonalitics among the qualified participants
and limiting the markup estimation model to a well defined domain. The
survey elicited information on the firm's policy with regard to bidding
strategy. This helps in making necessary adjustments to the training examples
obtained form different contractors, accounting for the different markup
definitions adopted by the participants. Alternatively, as shown in Figure 1,

336



Managing Knowledge in Patterns

two input attributes (7 and 8) were included to ensure generic model. The
survey, furthermore, elicited a number of complete bidding examples from the
firm s past records, including successful and unsuccessful bidding situations.
For each project, respondents were asked to provide complete data about:

- assessment of the various factors affecting markup, using a score from 1
to 5.

- contractor's bid data (total bid price and percent markup decided);

- bid outcomes (win/lose and difference in ($) between the winner and
second lowest bidder); and

- if successful, after construction outcomes (intensity of change orders
experienced; intensity of claims experienced; duration extension depicted; and
level of actual project profitability attained).

From the survey, 78 responses were qualified as they meet the criteria
mentioned above. With respect to the respondents* bidding examples, the
total number of cases received were checked for completeness and suitability
as training and testing (validation) examples. Based on this scrutiny, 65 and
7 project examples were suitable for training and testing the single-network,
respectively. It should be noted, however, that although the learning examples
used were complete in terms of information content, it was assumed that they
are not free of biased judgements and inconsistencies. The contractor
providing the historical example could have been biased towards his recent
experience. Such types of errors represent noisy training data to the neural
network models.

(%) MARKUP TASK NAME: TEST

-
e

B = NW AWM
g838eepesss
L.l
nja

] i Fy 1 i
1 2 3 L 3
Need for work
- ¥ axis H 1.88 Hhere, 1.00 = LOH
2.80 = LOW-AQUERAGE
3.00 = AVE
368 £ Qi
T M2 CEuRMTORIINYST  $5. ¢ 17006 —.334879 = x
- SUM OF SGUARE ERRORS: 837.4036 -
- X , ¥> on Regression line! 1.00, 6.28

<ESC-QUIT> <—->-RIGHT> <<(---LEFT)> <END, HOME) <F1-Z200%> (F2-RECR>

Figure 2. Relationship Between Markup and Need for Work
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In order to validate the information content of the acquired examples, a
simple test was conducted on the training data. The test is to examine the
relationship between the data pertaining to an input attribute and that of an
output attribute, depicted in all the training examples. These relationships (or
general trends) are established through simple regression analysis and then
compared with known industry heuristics to test the information content of the
training cxamples and their compatibility with current industry practice.
Examples of these relationships are presented in Figures 2 to 3 showing the
results of such analysis on the 65 training examples of the single network
model. It is clear that the training examples, exhibit trends that are in good
agreement with industry heuristics. This includes:

- Percent markup decreases with the need for work (Figure 2).
- Potential for claims increases with uncertainty due to site conditions
(Figure 3).

3.0g FOTENTIAL FOR CLAINMS TASK NAME: TEST
—_—
2.00 - é - - - -
1.0 | H - . -
@.00 i 1 1 i i
1 2 3 4 S
iinc. due to Site Cond.
- X axis H 1.80 Hhere, 1.00 = LOW
- ¥ axis P4 = Righ 2.00 = LOW-AVERAGE
2 = ium 3.00 = ¢ AGE
3 = Low 4.00 = AUERAGE-HIGH
T ORBG CRNMIORTINS 3. 5 (45279 sHiSleE-02 « x
- SUM OF SQUARE ERRORS: 29.815é1 )
- (X , ¥ on Regression line: 1.90, 2.38

<ESC-QUITY> <(~~>-RIGHT> <<(---LEFT> <(END. HOME)> <F1~ZOOM> <(F2-REGR>

Figure 3.  Relationship Between Potential for Claims and Uncertainty Due
to Site Conditions

This simple analysis shows that, despite the noise inherent in the data, the
training examples used, provide a good training environment that reflects
current industry practices and accounts for many quantitative and qualitative
factors used by contractors in this domain.

Preparation and Transformation of Acquired Data

Once enough data is elicited, it may need to be prepared and transformed
into another format to be meaningful to a neural network. Transformation
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and scaling of data are techniques that are commonly used to convert input
and output data into either binary or continuous formats (Mosclhi et al, 1992).
Binary-value transformation is done by assigning ones for the applicable
attributes and zeros elsewhere on the grid of a certain pattern (eg, the black
spots in Figure 1 become ones and clsewhere become zeros). A binary vector
is then constructed from all the zeros and ones in their sequence on the grid
and fed to the input buffer of the designed neural nctwork. The number of
processing elements (PEs) in the input buffer of that network is determined
by the number of clements in the transformed vector. In the continuous-value
transformation, the pattern is transformed into a vector of real numbers, each
assigned for a given input attribute. The numbers could be made to represent
the values of the scores assigned to the attributes. Alternatively, an index
identifying the position of the value on the grid could be used. The real
numbers assigned could then be pre-processed by a number of possible ways,
including: scaling, normalization, and function processing (eg, sine). These
methods have been described in recent literature providing guidelines for
preparing the data and preventing problems associated with the magnitude
and variability among the input attributes (Crooks, 1992; Knaus, 1991;
Lawrence, 1991; Bailey and Thompson, 1990). Adopting a certain method
depends on the characteristics of the neural paradigm used (eg, the existence
of a bias node), and the type of data available. It is noted that the transformed
output vector, in most cases, is constructed from attribute values confined (ie,
scaled) to a range from 0 to 1.0, as dictated by the transfer function of the
network PEs. In continuous transformation, the number of PEs in both the
input buffer and the output layer have to be set as the number of attributes
that represent the input and output patterns, respectively.

For the example problem at hand, the row data were suitably scaled
(Table 1 shows the scaling operation used for the different attributes). These
scaling operations transform the row data into continuous, rather than binary,
values suitable for neural network processing. The scaled data were then
utilized to implement, train, and test the two neural network structures. As a
result of the implementation process, the single-network structure was selected
for the markup model since it achieved better performance (less estimation
errors as opposed to the hierarchical structure). The network was configured
to have an input buffer of 30 elements (accepting the inputs), a one hidden
layer of 30 PEs, and output layer of 7 PEs (producing the outputs). Details
of the implementation process are described elsewhere (Moselhi ef al, 1991b),
along with the heuristics used to overcome the development problems
encountered.
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Analysis and Interpretation of the Network State of Knowledge

The major property that deems neural networks superior over
conventional algorithmic and other Al-based systems is their ability to learn.
Once a neural network is trained, the weights and bias values encode the
network 's state of knowledge gained during training. Utilizing the trained
network on new cases is a matter of mathematical manipulation of these
values with the outputs produced almost instantaneously. Usually, no logical
inferences or explanations are involved in providing the solution, making the
solution process non-transparent and non logically traceably. This has
contributed to the "Black Box" image of neural networks which researchers
have been trying to demystify.

Several researchers have proposed innovative techniques that facilitate the
interpretation of the network weights and the understanding of their
underlying logic (eg, Garson, 1991; Howell, 1990; Touretzky and Pomerleau,
1989). The simplest and most interesting effort to the scope of this study is the
technique presented by Garson (1991) to interpret the relative importance of
each input attribute to the conclusions reached by the network. The technique
evaluates the relative importance of an input attribute (V) through a process
of partitioning output layer connection weights, for a network with one hidden
layer, into components associated with each input attribute. The technique
uses the absolute values of all weights, without considering the PEs' biases
into the computations. The process can be illustrated as shown in Figure 4,
where a weight connected to the output layer O; can be divided into
components cach corresponding to one of the input attributes. For a hidden
PE (J) the component of Oy associated with V is proportional to the weight
incoming from attribute V (Iy;) in relation to the sum of weights incoming
from all attributes. This can be expressed as:

I
Component of Oy associated with V = w_ . o, (1)

Ry

E IV.I
X

Performing this calculation for all the hidden layer and summing the
shares of each input attribute results in a total share or score for each
attribute. The relative importance of each attribute can then be calculated as
a percentage of the sum of scores (Eq. 2). The method, though simple, stands
in sharp contrast to misleading views of neural networks as "Black Boxes”
whose iterative processes are beyond human comprehension, even if
predictions are good.
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Figure 4.  Partitioning of Output Layer Weights into Componcnts
Associated with Input Attributes
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With respect to the case study, the technique of Garson was applied.
Based on the technique, the relative importance of the 30 input attributes to
the individual outputs are calculated for the network that is selected for the
markup model (Table 2). From the results obtained, it can be seen that:

- All the input attributes are highly relevant to the model formulation. The
values for the relative importance vary between 1.2 for a least important to 5.5
for the most important input attribute. Thus, none of the input attributes
could have been eliminated in the model formulation.

- The values for the relative weights determine the input attributes that
govern the conclusions derived by the individual outputs. For instance, the
network showed that " Competition", " Contract duration", and " Uncertainty
due to owner attitude™ are the most influential factors on the % markup
estimate.

- A certain input attribute impacts the individual system outputs with
varying degrees. For instance, "Need for work" influences more the win/loose
possibility, % markup, duration extension, potential for change orders,
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potential for claims, actual profitability, and the ($) difference between the
winner and second bidder.

The results produced by this technique can be further utilized to detect
causal rules and provide explanation facilities for neural network models.

Table 2: Relative Importance of the Markup Network Input Attributes

Input [ 2 OUTPUT ATTRIBUTES® _..............
Attributes 1 (1) (2) (3) (4) (5) (6) (7)

1. Contract type—————|
2 Owner type—-———w——— ]|
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4. Need for work—————-|
5. Total bid -~——
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8
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18. Job size————wvo——|
19. Quality of Drawings]
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22. Rigidity in Specs.—|
23. Inflation rate— ]
24. Escalation rate—-——|
25. Economic growth——|
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30. Financial ability-—j|
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* {1): Markup Estimate (%). {2} : Win/Lose. {3): § Difference,
{4) : Potential for C.0.’s. {S): Potential for claims. {(6): Duration extension.
(7} : Project profitability,

SUMMARY AND CONCLUDING REMARKS

The importance of pattern recognition to human problem solving abilities
is briefly described and neural networks are used to provide pattern
recognition capabilitics in the modelling of complex construction problems. As
opposed to traditional Al techniques, neural networks process implicit
construction knowledge in the form of patterns that can be extracted from
experts with relative ease. In order to facilitate proper management of the
captured knowledge and the successful development of neural network
models, guidelines are provided pertaining to several aspects: 1) problem
structuring and patterns formation; 2) knowledge acquisition and data
validation; 3) preparation and transformation of acquired data; and 4) analysis
and interpretation of the network state of knowledge. The modelling issues
discussed are illustrated through a case study of a neural network for bidding
decision support. It is apparent from the study that, unlike most other
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software systems, the performance of a neural network is as much determined
by the data in its experience as by the algorithms used to build it. The
developments made in this study provide insights into proper NN design and
implementation, irrespective of the neural paradigm used. The guidelines
proposed could be readily adopted in developing neural network models in
other construction domains where solutions are generated based primarily on
analogy and traditional algorithmic tools may prove inadequate.
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