Construction Informatics Digital Library http://itc.scix.net/

paper w78-1993-38.content

mmmmwm:mmmmmwmmm

I D TOMMELEIN

Assistant Professor, Department of Civil and Environmental Engineering
The University of Michigan

Ann Arbor, MI 48109-2125, USA

R] DZENG

PhD Pre-Candidate, Department of Civil and Environmental Engineering
The University of Michigan

Ann Arbor, MI 48109-2125, USA

ABSTRACT

The conceptual design of a case-based planner, named CasePlan, is
presented to plan and schedule construction activities by comparing a new
facility with those described in cases, and adapting the selected cases’

plans to suit the new construction needs, For effective case retrieval and
new case indexing, CasePlan relies on a product model, that describes a
prototypical power plant facility. Each construction product in a project is
a specialization of this product model. A library of construction techniques
and methods is also related to this product model. This well-structured
organization of detail enables CasePlan to construct executable project
plans. This is in contrast to most other artificial-intelligence based planners
that generate only least-commitment plans, which must be detailed further
manually. CasePlan thus exploits the power provided by a well-structured
model to capture human expertise in design and construction planning
cases, and demonstrates how such a product model can effectively be used.
A operational prototype of CasePlan is currently being developed.

T

case-based planning; construction management; scheduling;
knowledge-based systems; artificial intelligence

INTRODUCTION

Product modeling provides the back bone for life cycle facility engineering.
A facility's product model evolves over time as its design gets specified,
created, planned and constructed, and updated during maintenance. Upon
termination of its useful life, the facility might be demolished into
recyclable components. Each participant in the facility life cycle
engineering process contributes a different part to the model. This is

illustrated in Figure 1.

The CasePlan work that is presented here, focuses on the contribution of

the contractor to this process. It is assumed that a project has been
designed and that blueprints and specifications are available. Before
commencing the work, the contractor must then plan the major
construction activities, select construction technology and methods to
perform the work, and create a project schedule. These activities are being
automated by CasePlan.

Case-based Reasoning

A case-based reasoner solves problems using knowledge about previous
problems, how those were solved, and the problem ' s solution. Such
knowledge is stored as cases, which are generated by human experts, other
systems, or have been generated by the case-based reasoner itself. In
addition to those cases, the reasoner also has knowledge about how to use
(i.e., retrieve, adapt, generalize, refine, and store) cases. This method of
problem solving differs from that used by systems that solve problems
from scratch. '

One way to catalog cases is to index them by the product to which they
pertain, Products define a project, including its initial design, specifications,
and site conditions, and also provide a good indication of what the solution
of the case will look like. Thus, when solving a new problem case, it makes
sense to search cases based by their associated products, so that solutions
to old problems can be retrieved to obtain the solution to the new
problem. The concept of product modeling is extensively used in CasePlan
and drives the organization of existing cases and the search for cases for
reuse.

Figure 1: Product Model as a Back Bone for Facility Life Cycle
Enginecering

Product Modeling

The product modeling used in CasePlan is based on STEP (STandard for
the Exchange of Product-model data). STEP is the first international
standard for data exchange, and also a logical successor of current national
standards such as IGES, SET, etc. STEP is an advanced standard for the
exchange of product definitions that is tailored to address the data
exchange of computerized systems (Gielingh 1988; Turner 1988) as
opposed to suiting human interfaces.

The products of choice in CasePlan are power plants, because their

designs are fairly standardized (engineering firms often use the
cookie-cutter approach toward their design) and there exist a number of
contractors who are specialized in their construction. Contractors who have
been involved with power plant construction for many years have
accumulated a wealth of in-house expertise. This expertise pertains to
planning and constructing facilities which are in many ways similar, so that
solutions from past projects can easily—possibly after minor adaptation—be
reused. To facilitate such reuse, past projects (including the original design,
the construction methods used to build the design, and possibly the as-built
drawings) must be described and encoded in a computer-based data
retrieval system as cases.

A case comprises: a product description and a construction schedule. A
product description is an instance of a generic product model. Such a
generic model may be composed of several generic products. Products that
are not composed of anything else are termed components. Associated
with each product and component are features that describe them. An
important feature of a generic product model is its product_technology.
This feature will have as value an activity network that describes the
sequence for constructing the components in the product. Each product in
an existing case has a product technology (i.e., a value for its feature
product_technology.) associated with it. An important feature of a generic
product component is its component_technology. This feature will have as
value an activity network that describes the method for constructing the
component.

Specific products have specific construction schedules. For example, a
schedule used to construct a 2-story wood-structured house is different
from that of a 10-story reinforced-concrete building. A product s schedule
reflects the contractor's experience in choosing technologies and methods
for constructing a specific product. They reflect what is feasible in practice.

When equipped with enough such experience-based cases, a case-based
reasoning system can thus match a new problem's product against the

known products, and retrieve the matching ones' schedule for reuse, to
schedule the construction of a new project that resembles old ones.

CasePlan Architecture
Building and Power Plant Product Models

Two generic product models currently exist in CasePlan. One is Building
and the other one is Coal-Fired Power Plant. Building is a product that
consists of several components such as Footings, Slabs, Beams, Columns,
Floors, and Roofs. The Building product is well-known to many, and will
therefore be used in this paper to illustrate the CasePlan architecture.
However, our research focuses on power plants because the payoff for
developing CasePlan is expected to much higher on this type of industrial
facility. Coal-Fired Power Plant is a product whose components include a
Building, Turbine Generator, Boilers, Condenser, Feedwater-Heaters, and
Cooling Towers. A coal-fired power plant project can be defined by
instantiating and refining the Coal-Fired Power Plant product model.

CasePlan’s Task

CasePlan's task is to schedule the construction of a new power plant. This
consists of: selecting a product technology, component technologies, and
construction methods. This results in a network of activities to which a
scheduling algorithm can be applied.

CasePlan accomplishes this task by retrieving and adapting old cases. It
learns how to schedule the construction of power plant projects by
generalizing from existing power plant cases. When presented with a group
of new, similar cases, CasePlan inspects them and creates generalized
cases for them. When a new power plant project is identified as being
similar to one of the existing generalized cases, CasePlan knows—from this
generalized case—what product technology should be used, which
component technologies can be used to construct each type of component,
and whick construction methods can be used to carry out the activitics.

Case Organization

Cases are organized in two layers. First, they are organized according to
which product model their product instantiates. In the example shown in
Fig. 2, all cases within the dashed region at the left-hand side have
construction products that instantiate the Building product model.
Likewise, all cases within the dashed region at the right-hand side
instantiate the Coal-Fired Power Plant product model.

Second, they are grouped by common features into generalized cases.
These hold the range of feature values that represent the set of feature
values of individual cases, or they can hold other generalizations shared by
several cases, such as their product technologies. Thus, all cases under a
generalized case can be reproduced using the information in the

generalized case. Most of the information in the case resides in the case's
product, though a case also comprises a construction schedule. Therefore,
generalizing a case is essentially generalizing its product.

Case Storage

Describing a new problem includes instantiating construction products that
are part of the design, from generic product models. A special class, called
Project, is created for holding pertinent descriptive features. Instantiation
involves specifying the product's feature values.

Figure 2: Case Organization

After solving a new problem, CasePlan creates a new case by associating
the project with the schedule that was generated. Not all new cases have
new knowledge that is not already contained in existing cases. Thus, not all
new cases need to be stored. :

During the schedule generation process, a user may interact with CasePlan
and modify intermediate results. If a user does so, the resulting case may
have new knowledge, different from that contained in the existing cases.
CascPlan uses a heuristic to determine whether a new case contains new
knowledge. If a new case can be represented by an existing generalized
case, the new case does not contain new knowledge and does not need to
be stored unless a user requests it anyway. If no existing generalized case
can represent the new case, the new case contains new knowledge and will
be automatically stored in the system. If a user does not interact with
CasePlan at all, the resulting case will not have any new knowledge
because its schedule can be, again, reproduced by CasePlan.

To store a new case, CasePlan searches its case library by matching

criteria at the product and at the generalized-case level. It stores the new
case under the generalized case that is most similar to it. Before storing
the new case, CasePlan also updates the generalized case so that it can
represent the new case.

Case Retrieval

To retrieve a case for reuse, CasePlan searches its case library in a similar
fashion, A case that is heuristically determined to be most similar to the
new project is chosen. Since there are many different types of tasks
involved with scheduling, the most similar case for one task is not
necessarily the most similar case for another task. Thus, CasePlan uses a
task-directed similarity function to determine the similarity between cases
for each type of task.

. A similarity function is a sum of similarity elements. A similarity element
is associated with each feature of the compared products. Each similarity
element is a multiplication of: (1) similarity between values of a feature,
and (2) importance of the feature in terms of determining similarity
between products, which is called the feature weight. Because the
perception of similarity may vary with the type of task, each similarity
function has its own version of feature weights corresponding to the task it
is associated with, Thus, a task-directed similarity function can be
represented by the following formulas:

A task - directed similarity function

z similarity elernent for feature.

i & teatures of compared products

i

= (similarity of feature.) x (weight of feature: for task:)

i ¢ festures of compared products

Given a new project to schedule, CasePlan first uses an appropriate -
task-directed similarity function to identify the most similar generalized
case, which becomes the retrieved generalized case for the entire planning
process. The cases stored under this generalized case is the current search
space for case retrieval. During the scheduling process, CasePlan may use
the knowledge in the generalized case or reuse the best case retrieved
from the current search space, where best is measured as the highest
task-directed similarity function corresponding to the task at hand.

When no cases in the current search space can accomplish the task at
hand, CasePlan may switch to another generalized case, and repeat its
search process. After the task is accomplished, CasePlan then switches
back to the cases under the generalized case that was retrieved first.

Example Use of CasePlan

An example is used to describe case organization and retrieval by
CasePlan. The example also illustrates how the knowledge in cases can be
extracted by CasePlan. However, how CasePlan reuses this extracted
knowledge or existing cases to schedule a new project is beyond the
discussion of this paper, and can be found in Dzeng and Tommelein
(1993).

Case Library Creation

Assume that CasePlan does not have any case in its case library. It only
knows about two product models, namely Building and Coal-Fired Power
Plant. Two existing cases from human planners are available, namely
Case-1 and Case-2. Case-1 is a 2-story steel-framed fire-station, and Case-2
is a 4-story steel-framed university building. Each case describes its
construction product as an instance of an existing product model (ie.,
Building for both cases). Each case also has a schedule whose format
conforms to CasePlan's specification. These two cases will be given to
CasePlan sequentially to train it to plan for similar projects.

When Case-1 is given to CasePlan, the program tries to look for an
existing generalized case that is similar to it and that involves the same
product model. Of course, no generalized case at first exists under the
Building product model. Thus, a new generalized case, GCase-1 is created
with information identical to that of Case-1 because (GCase-1 only
represents Case-1.

When Case-2 is given to CasePlan, again, CasePlan tries to look for the
existing generalized case that is similar to it and involves the Building
product model. Because there is only one generalized case under that
product model, CasePlan tries to use GCase-1 to represent Case-2. (If
more than one generalized case had been present, an appropriate
task-directed similarity function would have been used to decide on the
most similar one.)

To decide whether GCase-1 can represent Case-2, CasePlan checks if the
value of each feature in GCase-1 can represent the value of the same
feature in Case-2. Because each feature value in GCase-1 corresponds to a
feature value in Case-1, GCase-1 can only represent the features of Case-2
that have the same values. To represent Case-2's features with different
values, CasePlan needs to use its generalization process to expand the
feature values in GCase-1.

For a feature in GCase-1 that has a specific value v, to represent another

value v, (assuming v, s v,), CasePlan substitutes v; with a range of values
(range vy v, s;). The s, in (range v; v, 5,) is a strictness that indicates the
degree to which the range can be extended for the associated feature. For

example, the feature number_of floors in GCase-1 had the value 2. After
generalization, that value becomes (range 2 4 0.5). Thus, for the feature
number_of floors, GCase-1 now can represent not only Case-1 and Case-2,
but also other cases that are Building instances and that have 2 or 3
stories.

This simple generalization method can be applied to all the features whose
values are integers, floating-point numbers, or keywords. However, for a
feature, such as product_technology, component_technology, or plan,
whose value is an activity network, a more complicated generalization
process is required. The generalization of product_technology is described
next.

An activity network in CasePlan is represented as a list, where each list
element consists of an activity and a list of its predecessors. Fig. 3 shows
an example of an activity network in the product_technology feature of
Case-1 (the verb of each activity is omitted for brevity). The feature
product_technology in a product is used to describe the construction
sequence of product components for the product.

(((Footings -1) ()) (((Footings B) ()
((Stabs 1) (Footings -1)) ((Slabs G) (Footing G-2))
((Columns 1) (Slabs 1)) ((Columns G) (Slabs G))
((Beams 2) (Columus 1)) {(Beams G+1) (Columns G))
((Floors 2) (Beams 2)) ({(Floors G+1) (Beams G+1})
({Columns 2) (Beams 2)) ({Columns G +1) (Beams G+1))
{(Beams 3) (Columns 2)) ((Beams T) (Columns T-1))
{(Roofs 3) (Beams 3))) ((Roofs T) (Beams T)))

Figure 3: Product Technology Figure 41 Product Technology
for Case-1 in GCase-1

The activity network shown in Fig, 3 says that: Line 1: "All the footings at
floor level -1 are constructed first." Line 2: "Slabs at floor level 1 cannot
be constructed until all the footings at level -1 are completed.” Line 3:
»Columns at floor level 1 cannot be constructed vntil all the slabs at level
1 are completed.” Etc. To represent this in GCase-1, CasePlan generalizes
the network by substituting the floor-level values with the variables
corresponding to the three features of an associated product, namely
bottom_level (B), ground_level (G), and top_level (T). Fig. 4 shows the
network in the product_technology of the resulting GCase-1.

CasePlan checks if Case-2 can be represeated by GCase-1 (Fig. 4) by
substituting values in Case-2 with B, G, and T. With the substitutions,
some partial networks in Case-2 turn out to be common to GCase-1.
However, Case-2 is a 4-story building that has partial networks for the
construction of its 3rd and 4th floors, which are not found in GCase-1. The
product_technology network for Case-2 is shown in Fig. 5. The partial

networks that can be represented by GCase-1 are omitted.

(.. same as Fig. 3 up to the next line ... (((Footings B) ())

((Columns G+1) (Beams G+1)) ((Stabs G) (Footing G-2))
a + lumns G+1 ((Columns G) (Slabs G))

((Fioors G +2) (Beams G +2)) (REPEAT (range G G+2 0.5)
{(Column G+2) (Beams G+2)) ((Beams G+1) {Columns G))
((Beams G+3) (Columns G+2) ((Floors G+1) (Beams G+1))
((Floors G +3) (Beams G +3)) ((Columns G+1) (Beams G+1)))
((Cotumn G+3) (Beams G+3)) ({Beams T) (Columns T-1))
((Beams T) (Columns T-1)) ((Roofs T) (Beams T}))

.. same as Fig. 3 from the line above .)

Figure 5: Product Technology for Case-2 Figure 6: New Product Technology in
GCase-1
CasePlan tries to find if the partial networks in Case-2 that cannot be
represented by GCase-1 can be represented by any part of the network in
GCase-1 by substituting variables. For example, the three underlined
partial networks in Fig. 5 can be represented by the three underlined
partial networks respectively in Fig. 4 by substituting G with G+1. This
implies that the underlined partial networks in Fig. 5 simply repeat the
underlined partial network in Fig. 4 with different variables. When
CascPlan identifies a repetitive pattern, it tries to extend the pattern as
much as possible. In this example, the largest repetitive pattern consists of
three underlined partial networks as shown in Fig. 4. Thus, these can be
substituted with a repetitive pattern to obtain a new network shown in Fig.
6. The new product_technology now can represent the product_technology
of Case-1 with the range set from G to G, and the product_technology of
Case-2 with the range set from G to G+2.

The generalized network in Fig. 6 says: Linel; "All footings at the bottom
level are constructed first." Line 2: "Slabs at the ground level cannot be
constructed until all the footings at the level 2 floors below it are
completed.” Line 3: "Columns at the ground level cannot be constructed
until all the slabs at that level are completed.” Line 4 to 7: *The partial
network enclosed in (REPEAT ..) can be repeated at most 3 times by
substituting G with G, G+1, and G+2." Line 8: "Beams at the top level
cannot be constructed until all columns at the level below it are
completed.” Line 9: "Roofs at the top level cannot be constructed until
the beams at that level are in place.” While planning for a new project,
‘CasePlan repeats a repetitive pattern within the range until it finds that the
new product has no corresponding product component or floor level.

Similar generalization processes are used to expand GCase-1 to represent
both Case-1 and Case-2 for all other features. Most feature values can be
generalized without difficulty. However, it is possible that a product
technology in a new case cannot be represented by the generalized product
technology, even when their associated products are the instances from the
same products. Although this does not occur in the example illustrated

here, it implies that there may be two cases that have similar products but
apply quite different product technologies. To store such a new case, a new
generalized case needs to be created under the same product model.

Case Retrieval to Schedule Case-3

Suppose now that CascPlan is given a new project to schedule. The new
project is a 7-story steel-framed hotel building. The tasks required to
schedule for the new project include: selecting a product technology for the
product, selecting a component technology for each component,
determining the interlinks between component technologics, and selecting
a construction method for each activity. Since the product of the new
project is a Building instance, the most similar generalized casc under the
Building product model is retrieved using an appropriate task-directed
similarity function. In our example, GCase-1 is chosen as the retrieved
generalized case.

The existing cases under the retrieved generalized case (i.c., Case-1 and
Case-2) become the current search space to search for a best case for
reuse. To make those planning decisions, CasePlan may use either the
planning knowledge in the retrieved generalized case or the information in
the existing cases. The discussion on how the generalized case or a case
can be reused to make those planning decisions can be found in Dzeng
and Tommelein (1993), and is omitted here for brevity. When a plan is
completed, CasePlan may start scheduling by reusing existing cases to
select a construction method for each activity. The program needs to take
into account that the contractor on project being planned, may have
limited resources. For the CPM calculation task, CasePlan uses a
predefined algorithm and does not rely on any case knowledge.

While trying to retrieve a best case during the planning process, CasePlan
may switch from the current search space to cases under another
generalized case. It does so when the reuse of all cases in the original
search space fail to accomplish a task. At the end of the planning process,
CascPlan generates a schedule for the new project and creates a new case,
Case-3. If the user does not modify any intermediate work of CasePlan,
Case-3 will use a product technology that is the same as that in GCase-1
(Fig. 6) with the range for the repetitive pattern set from G to G+5.

To decide whether Case-3 should be stored, CasePlan checks if it can be
represented by GCase-1's current value range. In this case, GCase-1's
repetitive pattern in the product_technology needs to be extended to
(range G G+50.4) to represent the product_technology in Case-3. This
means that Case-3 contains new planning information that does not exist in
the cases currently stored under GCase-3. Thus, CasePlan automatically
stores Case-3 under GCase-1 and GCase-1 is expanded to represent
Case-3.

Strictness Adjustment

Each time a feature 's value range is extended in a generalized case,
CasePlan decreases the associated strictness according to a user-defined
heuristic function. The farther the range is extended, the more the
strictness decreases. Every time an extension is made, the user must
confirm or deny it. The user can also define a threshold, below which a
range cannot be extended without user's confirmation, and above which
extensions are automatic.

When CasePlan s extension of a value range is denied by a user, the
associated strictness receives a big penalty and falls below the threshold.
This implies that the generalized case has reached its limit of applicability.
When a new case's feature value is out of this range, CasePlan should try
to reuse another generalized case instead of the current one.

On-going Research

The conceptual design of the CasePlan system as described here, describes
the general architecture of a typical case-based system. For such a system
to be useful in the construction scheduling domain, the notion of
»similarity” needs to be articulated more precisely. At this time, we are
collecting field data to understand in what ways field practitioners define
projects to be similar. Data is being collected on the construction of power
plant projects by talking to utilities (owners) and general contractors
speciaiizing in this type of construction. The resulting data includes plant
designs and construction schedules. The designs will be represented in
CasePlan as instances of Coal-Fired Power Plant. The corresponding
schedules will be used to train CasePlan. In similar vain, we will have to
experiment with different ways to produce generalized product models
from individual cases.

The CasePlan cases that have been described here comprise two parts: a
product description and a construction schedule. In reality, additional
constraints that will have an impact on a contractor's selection of
construction technologies and methods—and thus affect the schedule—are
imposed by the geography and location of the construction site, and special
requests or regulations imposed by the owner, architect, or local
government. It is our intent to take at least some of these constraints into
account when further developing CasePlan.

CONCLUSIONS

Product models can provide an index into a case library and allow for case
generalization. Besides having been suggested as a technique for
facilitating communication and data exchange, product modeling is

promising as a means for exchanging case bases as well.

The conceptual design of the CasePlan model was presented to illustrate
how product models can be used to form the back bone of a model for life
cycle facility engineering. Only the first three phases of this engineering
process were elaborated on here, though we think that the model will lend
itself well to extension into the areas of facility operation, maintenance,
and recycling.

Using product modeling allows CasePlan to efficiently organize and
retrieve existing cases. It will also enable the program to communicate and
exchange data easily with other automation systems such as CAD or
simulation tools.

Acknowledgments

This research is funded by grant MSS-9215935 from the National Science
Foundation (NSF), whose support we gratefully acknowledge. Any
opinions, findings, conclusions, or recommendations expressed in this
paper are those of the authors and do not necessarily reflect the views of
NSF.

References

Dzeng, R J, Tommelein, ID (1993), Using Product Models to Plan
Construction. Proc. 5th Intl. Conf. on Computing in Civil and Building
Engrg., Anaheim, Calif., ASCE, NY, NY.

Gielingh, W (1988), General AEC Reference (GARM). 1SO TC184/SC4
doc. 3.2.2.1,, Gielingh is at TNO, Delft, The Netherlands.

Turner, J (1988), AEC Building Systems Model. 1SO TC184/SC4/WG1
doc. 3.2.2.4., Turner is at The University of Michigan, Ann Arbor, ML

