Construction Informatics Digital Library http://itc.scix.net/

paper w78-1995-223.content

A DECLARATIVE APPROACH TO INTER-SCHEMA
MAPPINGS

_ by _
Robert Amor, John Hosking, Warwick Mugridge*

ABSTRACT

The requirements for the specification of mappings between tools in an integrated and
interactive design system are described in this paper. The declarative mapping
language, VML, is introduced. VML allows a high level, bidirectional specification
of mappings between two arbitrary schemas. To illustrate the utility of VML a
demonstration system consisting of plan definition and code conformance tools is
integrated via a common data model using VML mappings. The VML mappings are
capable of handling both relational and object-oriented style schemas as well as
interactive and batch style design tools. We illustrate the use of VML to specify
correspondences between classes, conditional application of correspondences,
different styles of equivalence, initialisation conditions as well as method handling
for interactive systems.

INTRODUCTION

Our group has had a long term interest in the computerised interpretation of codes of
practice. However, to be useful, such applications need to be integrated both together
and with other tools, such as for editing plan information. In recent work we have
defined a common schema for two applications concerned with checking compliance
with codes of practice, as a first step in an evolutionary approach to a more complete
common schema (Mugridge and Hosking, 1995). This work highlighted the need for
a means to define and implement mappings between applications and the common
schema. The mapping implementation needs to maintain or manage the consistency
between the multiple instances of the schemas involved. In this paper, we describe
VML (View Mapping Language), a declarative language for defining inter-schema
mappings, and its application in a demonstration integrated building design system.

A DEMONSTRATION SYSTEM

To act as a focus for our work, we have been developing a demonstration system
integrating two of our previously developed code of practice conformance tools,
together with a plan drawing system, a materials editor, and a 3-D visualisation tool.
The architecture of the system is shown in Fig. 1. ThermalDesigner (Amor et al,
1992) checks building designs against the insulation requirements of a draft New
Zealand insulation code. WallBrace (Mugrldge and Hosking, 1988) checks building

Department of Computer Science, University of Auckland, Private Bag 92019,
Auckland, New Zealand e-mail: {trebor john, rick} @cs. auckland.ac.nz

223

designs against the wall loadings requirements of a New Zealand code for loadings in
light timber framed buildings. These two tools were used to define the initial
Integrated Data Model (IDM) as described in (Mugridge and Hosking, 1995).
PlanEntry is a novel constraint-based plan drawing system (Hosking et al, 1994). The
materials editor is a constraint-based tool for specifying materials and bracing to
cover wall faces, and VISION-3D is a tool for visualising and manipulating 3-D
models (Bourke, 1989). The IDM schema is developed in EXPRESS, using the EPE
environment (Amor et al, 1995a), which supports translation to an object-oriented
implementation for use in model instantiation.

The mappings between the various tools and the IDM are specified using VML. In
practice the mapping is implemented in two parts. An EXPRESS schema defining the
data requirements of the tool is first specified using EPE. VML is used to specify the
mapping between the IDM schema and the tool schema. A very simple mapping,
implemented conventionally, is used to map from the tool schema into whatever
actual format is required for the design tool. For example, for VISION-3D this
involves walking the hierarchical object structure to produce a flat file acceptable as
input to VISION-3D. These simple mappings are not described any further in this
paper. The arrows on the mapping indicate directionality of information flow. For all -
tools except VISION-3D, information flow is bidirectional, meaning that changes in a
model at either end of the link may cause changes in the model at the other end. In
the demonstration system, VISION-3D is used purely as a rendering tool, and hence
has only a one-way mapping defined between it and the IDM.

WallBrace

Integrated
Data
Model

’/‘\VML rd

mappings

Materials

Editor ThermalDesigner

Figure 1: Architecture of the demonstration system

The nature of the tools to be integrated and the way in which we wish them to interact
places some requirements on the mapping implementations. Firstly, the tools, with
the exception of the VISION-3D interface, all have object-oriented data models, in
contrast to the relational models assumed in many integration projects. In addition,
we desire -an interactive environment, so changes need to be propagated between the
tools as quickly and incrementally as possible to maintain consistency between the

224

various model views. This, again, is in contrast to the batch view taken in most other
integration projects. : :

In this paper we detail experience in using VML to vintegrate the PlanEntry, materials
editor, and VISION3-D tools with the IDM. The integration of WallBrace and
ThermalDesigner is currently proceeding. : : '

VML

VML (Amor 1994) is a high level declarative language (as compared to other
mapping languages which are procedural in nature) for specifying inter-schema
mappings. As VML is primarily declarative, a single mapping specification can often
be used to map data in either direction between instances of the two models. A
mapping is specified through a set of inter-class definitions. Each definition specifies
correspondences between classes in the two models involved along with the
conditions under which the correspondences hold. For example, Fig. 2 shows a
simple inter-class definition between the idm_plane class in the IDM and the
pf_plane_object class in the PlanEntry tool. The equivalences specify mappings
between attributes in each of the classes involved. In this case the equivalences are
direct equalities.

inter_class([idm_plane], [pf_plane_object],
equivalences (
name = planename,
axis = axis,
offset = offset,
@view_plane = @select
) .
y.

Figure 2: Simple VML inter-class definition for classes representing planes

An interesting feature of the language is that both data and method invocations may
be mapped between the two schema. For example, in Fig 2 the view_plane method of
idm_plane is mapped to the select method of pf_plane_object (the @ symbol
indicates a method). Data mappings, such as the equality between the name attribute
of the idm_plane and the planename attribute of pf_plane_object, effectively define
bi-directional constraints between the attributes and objects involved. Thus a change
to either attribute will propagate to the other. Method mappings trigger invocation of
mapped-to methods whenever a method on either side of the mapping is invoked.

Figure 3 shows a more complex mapping between the idm_space_face class of the
IDM and the fe_face and fe_face_window classes of the Materials Editor. The
Materials Editor provides a two dimensional view (the face window) of a plane
through the building containing a collection of space faces over which can be laid
material and bracing data. This is not the only mapping involving these classes, so
invariants specify the conditions under which this mapping applies. In this case the
type_of_space attribute of idm_space_face must not be opening, and the fe_face
object must be a member of the walls list-attribute of the fe_face_window object.

225

The "dot" notation (eg fe_face_window.walls) is used to disambiguate attributes if an
attribute of the same name exists in another class. .

inter_class([idm space face], [fe_face, fe face window],
invariants(
type_of_face \= ‘opening’,
member (fe_face, fe_face window.walls)
),
equivalences(
min=>x = x0,
min=>y = y0,
max=>x = X1,
max=>y = yl,
plane = fe_face window,
).
initialisers(.
face_property = 'idm_space_face’
fe_facelcreate(idm_space_face.plane, idm_space_face.plane,
‘space’', 0, 0, idm_space_face.min=>x,
idm_space_face.min=>y, idm_space_face.max=>x,
idm_space_face.max=>y)
}
).

Figure 3: Mapping from IDM space faces to Materials Editor facés and editing
' windows ‘

The equivalences in Fig. 3 are, again, direct equalities, but require some additional
explanation. The arrow notation (eg min=>Xx) indicates an indirect attribute reference.
In this case, the min attribute of the idm_space_face class is a reference to a point
object, and the equivalence is with the x attribute of that point. The plane =
fe_face_window mapping is another interesting one. The plane attribute of
idm_space_face is a reference to the parent idm_plane object that this face is attached
to. A different inter_class definition specifies a mapping between idm_plane objects
and fe_face_window objects. The plane = fe_face_window equivalence then indicates
that the fe_face_window object involved in this mapping is the same object that is
mapped to from the idm_plane object referenced by the plane attribute. Figure 3 also
shows two initialisers. The first initialises the attribute specified whenever its parent
object is created. The create method initialiser specifies parameters required for
object creation. In this case parameters are needed for the fe_face object creation call.

equivalences (
plane=>offset = (offset - x)*scale, :
map_face_type from orientation(type_of_face,pe_face.orientation,
pe_face, spaces)

Figure 4: Example of more complex equivalences
Figure 4 Hllustrates other variants of the equivalence specifications. In addition to

direct equivalences, VML supports equations, such as plane=>offset = (offset -
x)*scale. Equations can involve attributes from several classes and are inverted

226

appropriately to solve for mapping in either direction. Equations can involve both
invertible arithmetic operators, and a range of special operators, such as the aggregate
operators (sum, count, minimum, maximum, average) to derive values from lists of
values or references, which simplify the specification of correspondences. Mapping
predicates may also be specified, such as map_face_type_from_orientation. These are
implemented as Prolog code, which must be able to run in either direction to support
bidirectional mapping. For particularly complex mappings, an equivalence may be
specified as calls to two procedures, one for each direction of the mapping. None of
this latter type of equivalence were required in this project.

Complex structural mappings require an additional feature of VML, illustrated in Fig.
5. This specifies a mapping between the PlanEntry pe_building and IDM
idm_building classes. These classes have a number of associated attributes which are
collections -of references to other objects. The class pe_building has attributes:
spaces, which is a collection object containing a list of references to pe_space objects;
roofs, which is a collection object containing a list of references to pe_roof objects;
and faces which is a list of references to pe_face objects, which specify face
geometry. Class idm_building has attributes: spaces, which is a list of references to
abstract spaces including roofs and spaces; and face_views, which is a list of
references to different views associated with faces and which can include geometry-
oriented views, materials oriented views, and bracing oriented views. There is thus a
partial overlap between the sets of objects referenced by the attributes involved in
each of the two classes. The idm_building spaces includes objects corresponding to
both the spaces and roofs attribute of pe_building, while the faces attribute of
pe_building contains objects corresponding to some of the idm_building face_views
objects. This form of partitioning associated with the structural mapping requires
more power than the invariant mechanism provides and necessitated the introduction
of the bijection equivalences shown in Fig. 5.

inter_class([idm_buildingl, [pe_building],
equivalences (. .
bijection(spaces[]@class('idm_space'), spaces=>list[]),
bijection(spaces[]l@class('idm roof'), roofs=>list[]),
bijection(face_views[]@class('idm_space_face') = faces[])
),
initialisers(
name = 'PlanEntry building’',
pe_building.plan=>building = pe_building
) e »
).

Figure 5: Example of bijections in mapping between PlanEnﬁ'y and IDM buildings

Bijections provide a sophisticated set selection and manipulation capability
associated with a mapping. For example consider the two bijections: '

bijection(spaces[]@class ("’ idrn__space"), spaces=>list[]),
bijection(spaces[]@class('idm roof'), roofs=>list[])

These together specify how the idm_building spaces are partitioned to the
pe_building spaces and roofs attributes. Consider initially mapping from the IDM to

227

PlanEntry. The [] symbol indicate an iterator, so spaces[] in the first argument of the
bijection indicates that the mapping needs to iterate over all of the elements in the
idm_building spaces list. The part following that (@class('idm_space') or
@class('idm_roof)) is a selection condition. Each object in the iteration that matches
the selection condition is selected to take part in the mapping. In this case, objects of
class idm_space are selected for the spaces mapping, while objects of class idm_roof
are selected for the roofs mapping. The actual mapping of the individual objects
involved is managed by another inter-class mapping relating the classes involved.
The reverse direction mapping is specified by iterators and selectors in the second
arguments. In this case, all elements of both the spaces list and the roofs list are
selected (as there is no selection condition) for mapping. Changes to either of those
lists then cause appropriate modifications to the idm_building spaces.

This bijection illustrates a problem unique to OO based systems. In a relational
system the correspondence between a building and its spaces would be through a join
of two relations, idm_building and idm_space, where the building key of the space
matches that of the building and an attribute of the space object would determine
whether it is a roof or not. In this OO system there is no need for a key to distinguish
between spaces and roofs, the objects have behaviour which defines their 'roofness' or
'spaceness'. To distinguish between the types of space we need to access meta-
information about the objects in the spaces list.

2k Planes Inter Class i e e s

—invarients —

Figure 6: VML graphical form of the inter-class definition in Fig. 2

VML has both graphical and textual forms, and is supported by a specification
- environment that permits rapid construction of mapping definitions in both forms.
The graphical form of the mapping of Fig. 2 is shown in Fig. 6. Some details of the
textual specifications, such as equivalence or invariant equations, are omitted from
the graphical form which just indicates the attributes involved in the relevant
equivalences and mappings.

DYNAMIC BEHAVIOUR
The VML implementation supports a sophisticated transaction-based approach for
managing consistency between an instance of a common schema and instances of

subordinate tool schemas. The granularity of the transactions between the schema
instances is under user control, and can vary from coarse, such as in updating the

228

central model with the results of a simulation, to fine, such as a change to an
individual attribute.

~

View 1 Plsn Mapping Manag
0 4h| i 4 1 [stop system) { connect Transaction Mapping) [sever Mopping]
[Connect Aivtomatic Mapping]
Connected
idm{1] - vision3d[1] &
iami1}] - faceediter{t)
iami1] - planentryl1}
View 3 Plan interbiew Manager for: ldmi1] - faceeditorit])
e “ﬂ:m P InterDiew ger for: idml1} - dltl
\ —_— ; [Apply to other view]
. j_—_-t 3 idmi{1] trensections . planentryl1] transactions
(5] PitiaT Desioe: FTI10GZ, = m
"%
=2
=
=
15 [

Figure 7: Completion of transaction in PlanEntry ready to be passed to the other tools

Here we illustrate the use of this transaction system in the current implementation of
our demonstration system. Figure 7 shows a building design for a simple L shaped
building constructed using PlanEntry. The user is currently in the process of mapping
the design (as a whole, in this case) to the IDM and then on to the other tools. The
additional windows provide information about the transactions involved in the
various mappings, and allow the user to instigate and control the mapping process.
Fig 8 shows the result of subsequently mapping the model through to VISION3-D (at
rear) and mapping one¢ of the faces through to the materials editor to allow addition of
materials and bracing information for that face.

RELATED WORK

Defining mappings for integrated design systems in the A/E/C domain is receiving a
lot of attention as the ISO STEP project progresses and as integrated design systems
move from the research projects out towards real world applications. There are
several specialised languages that have been developed (see Verhoef et al 1995 for a
review of mapping languages) for this domain. These languages are mainly
procedural in nature, requiring two mappings to define a bidirectional mapping and in
the main dealing with a batch oriented model of the integrated design system.

CONCLUSIONS

We have demonstrated the utility of a declarative approach to the specification of
inter-schema mappings in the context of a demonstration integrated building design
system. The VML language used for mapping specification provides a high level,
easily maintained, description of the mappings between the various tool and

229

integrated models used. The transaction-based mapping implementation demonstrates
the viability of the language for implementing inter-tool data transfer.

Diew | Plan sne

@ 0| oo SR

> =
A =

S iR AT R

Figure 8: Initial PlanEntry <_iesign propagated through to all connected tools

Through the specification of VML mappings for the design tools in this integrated
design system we noted difficulties in the specification of mappings to object-
oriented systems that do not occur in relationally structured applications. This
problem is to do with the notion of keys in relational database systems (RDBMS) and
the use of the object ID as an identifier in OO systems. The problem surfaces when
we need to modify the structural layout of objects between schemas being mapped. In
a RDBMS system the structure is defined implicitly through a series of operations on
keys of the various tables. When we need to create a different structure we need only
order the queries to utilise keys in a different manner. In an OO system the
relationships between objects is specified explicitly through references to other object
ID's and in many cases key information is not held in all the objects referenced in this
manner. Hence, if the structure needs to be drastically re-organised there may not be
enough information in the referenced objects to perform the rearranging
automatically. -

In VML there are several methods to manage this problem. Bijections allow the re-
arrangement of lists of pointers between two structures where there is enough

230

information in the referenced objects. VML's group() specifier in the inter_class class
specification allows sets of objects to be collected that match criteria in the invariants
section and these sets of objects can be a351gned to list attributes of a new class.

In the next stage of our work we plan to integrate the code conformance tools,
ThermalDesigner and WallBrace, to complete the demonstration system. Initially this -
will be by a direct mapping from the IDM to the existing structure of these systems.
However, of particular interest in ‘this work is the amount by which an application
such as ThermalDesigner could be restructured given that it no longer requires a
substantial data entry component. Much of the structure was originally imposed on
this application (and on WallBrace) to make the task of data entry simpler.
Eliminating the need for this via direct attachment to the IDM would make a
simplification of the application structure viable. Likewise, the approach to
developing new applications to be integrated via the IDM is likely to be considerably
different, with a more component-oriented approach taken rather than a stand-alone
application view.

A further area of research is that of extensions to VML. VML currently does not map
constraints, such as are used in both PlanEntry and the materials editor. This makes
the management of constraint interaction across multiple applications somewhat more
difficult. By including such constraints in the mappings a more effective approach to
integration could be made. In particular, it would avoid the assumption that
interdependencies of redundant data, such as the materials and bracing views, will be
managed properly by any tool that changes part of it.

ACKNOWLEDGMENTS

The authors acknowledge the financial support of the Building Research Association
of New Zealand, the New Zealand Foundation for Research Science and Technology,
and the University of Auckland Research Committee in performing this research.

REFERENCES

Amor, R. (1994) A Mapping Language for Views, Department of Computer Science,
University of Auckland, Internal Report, 30p.

Amor, R., Augenbroe, G., Hosking, J., Rombcuts, W. and Grundy, J. (1995a)
Directions in Modelling Environments, accepted for publication in Automation in
Construction. : : :

Amor, R.W., Hosking, J.G., and Mugridge, W.B. (1995b) A Review of Computerised
Standards Support in New Zealand, submitted to International Journal of
Construction Information Technology.

Bourke, P.D. (1989) VISION-3D User Manual, School of Architecture, University of
Auckland Auckland, New Zealand.

231

Hosking, J.G., Mugridge, W.B. and Blackmore, S. (1994) Objects and constraints: a
constraint based approach to plan drawing, in Mingins, C. and Meyer, B. Technology
of object-oriented languages and systems TOOLS 15, Prentice Hall, Sydney, pp 9-19.

Mugridge, W.B. and Hosking, J.G. (1995) Towards a lazy evolutlonary common
building model, Bulldmg and Environment, 30(1), pp 99-1 14.

Verhoef, M., Liebich, T. and Amor, R. (1995) Multi-Paradigm Mapping Method

Comparison, accepted for presentation at CIB workshop on Modeling of Buildings
through their Life-cycle, 21-23 August, Stanford, USA. ‘

232

