Construction Informatics Digital Library http://itc.scix.net/

paper w78-1995-233.content

A MULTI-PARADIGM MAPPING METHOD
SURVEY !

Marcel Verhoef 2, Thomas Liebich 3, Robert Amor *

ABSTRACT

Recent research into integrated engineering applications has shown that the
definition of a shared product model only solves part of the data exchange
problem. When product data models are taken from their modelling environ-
ment to be used in practice, integration problems occur due to the unavoidable
semantic mismatch between the models, representing the different actors in the
system. To solve this problem it is necessary to support multiple views on the

-application domain from within this integrated system. Futhermore, when an

integrated system is developed, product models can not be treated as static
and frozen but need to be adjusted frequently, requiring existing instances of
the model to be migrated from one version to another.

Hence, the mapping problem domain is identified. In the emerging field of
mapping languages, many solutions are proposed by research and industry, all
having merits and weaknesses. We present an overview and a brief comparison
of several approaches in this field from the system-developer’s perspective.

INTRODUCTION

We present an overview of some of thé mapping methods currently available
in the product data technology arena. Methods based on different program-
ming and specification paradigms will be discussed, including: declarative style
(VML); functional style (VDM-SL); knowledge based (XP-rules, KIF); and
imperative programming styles (EXPRESS-V, EXPRESS-C, EXPRESS-M,
SDAI and C++).

This overview was established from a questionaire which was sent out, along
with a mapping example, to a selection of developers and users of these meth-

~ ods. The example was comprised of five mapping exercises between two pairs

of EXPRESS schemas, a building system structural component (BSSC)
schema and a simple geometry (SG) schema as source schemas along with a

1The full specifications mentioned in this paper are available electronically on the World
Wide Web http://dutcuils.tudelft.nl/“marcel/mapping.html or by anonymous ftp
from dutcui5.tudelft.nl (130.161.136.157) in the directory /pub/mapping.

’m.verhoefQct.tudelft.nl, http://dutculs. tudelft.nl/~marcel, Delft University
of Technology, Faculty of Civil Engineering, Building Engineering Group, P.O. Box 5048,
2600 GA Delft, The Netherlands

31iebich@cab-muenchen.de, Computer Anwendung in der Bauplanung, Osterwald-
strafie 10, D-80805 Miunchen, Germany

“trebor@cs.auckland.ac.nz, http://www.cs.auckland.ac.nz/~ramo01, Department
of Computer Science, University of Auckland, Private Bag 92019, Auckland, New Zealand

233

preliminary structural system (PSS) schema and a structural system
geometry (SSG) schema as target schemas. Included with the schemas was
an ISO-STEP part 21 physical file containing an instance of the EXPRESS
source schemas and a STEP file containing the expected output. Using the
results from the questionaire and the specifications of the different mapping
examples, we have initiated a comparison of the languages (see the electronic
documents referenced at the start of this paper) using the following criteria:

e coverage (what kind of problems can the mapping approach handle),

e adaptability (how easy is it to adjust the mapping to accommodate new
issues), ' '

e specification clarity (what kind of abstraction mechanisms are available),

e reading clarity (how‘understa.ndable are mappings from a laymans point
of view), ‘

e tool support (support inctemental development, graphical support),
e ease of integration (can it be plugged into a data exchange system),

e granularity of mappings (does the whole model get mapped, or can in-
" cremental updates be handled).

In the remainder of the paper we will discuss the problem domain in gen-
eral. Then the mapping case will be presented and we will take one of the
problems from the case study to illustrate all the mapping formalisms consid-
ered in this paper. Finally, a comparison will be made of the languages and
some conclusions will be drawn.

The scope of the mapping problem domain

Although mapping problems are not limited to the domain of product data
technology (e.g. relational databases) we have focussed our investigation on
mapping methods that have emerged in this field, i.e. methods which are able
to manipulate data models specified in the EXPRESS modelling language
[Expr92], either directly (e.g. EXPRESS-C, SDAI) or in some abstract form
(e.g. VDM, KIF). Some of the types of mapping problems that could be
considered with these languages are as follows: :

1. transformations performed within the context of a single schema (e.g.
-adding, deleting or updating instances: instance versioning) ° or

o

transformations performed on two schemas which differ very little se-
mantically (e.g., version migration) or

5We do not consider this to be a mapping problem at all. This example was merely
included to sketch the problem domain as a whole and to position the mapping problem
domain within it.

234

3. transformations performed on two schemas with a large semantic mis-
match.

We consider the last category as the most important mapping problem.
We believe that the complexity of these mappings are mainly influenced by
the extent of the semantic mismatch between the source and target schemas.
In figure 1 (reproduced from [Bijnen94]), an overview is given of the types of
mappings that might occur within a typical mapping problem.

/\ Entity — Entity

Entity Entity — Attribute

Attribute — Entity
Attribute — Attribute:

g— Entity (creation)

g— Attribute (initialization)
Attribute Entity — ¢ (deletion) ‘

\/‘ Attribute — ¢ (remove value)

NV

Figure 1: Mapping problem domain brea.k-down

The definition of a mapping between the types described in figure 1 has to
deal with many issues that are independant of the language used to represent
them. Fundamentally, a mapping language needs to define the entities which
take part in a mapping. Where a different mapping needs to be performed
between the same entities, depending upon certain conditions, it is necessary to
be able to discriminate between these conditions. Where objects are created
in a mapping it may be necessary to provide initial (or. default) values for
attributes of the object. These issues are handled in different ways by all
mapping languages that we survey. .

As well as considering the types of mappings in figure 1 it is important to
consider the cardinality of the mappings that can occur. The 1:0, 0:1 and 1:1
cardinalities can be derived from the arrows in the figure, but it also covers
the 1:C, C:1, 'V, N:1, C:N, N:C and N: M cardinality cases ®. The last five
cases imply a conditional component to the mapping.

When performing the mapping of data between objects there are many
types of mappings that need to-be performed. The simplest can be expressed
through equations relating various attributes. Some mappings will require
the collapse, or construction, of links and structures, requiring methods for
referencing values through chains of pointers, or for creating objects to provide .
a chain of pointers. Complicated mappings will require large procedures to be

§C = constant, N',M = variable. Note that not all combinations of problem types and
cardinalities are valid combinations.

235

solved and many mappings will need to iterate over the values found in lists,
sets or bags. '

At a meta-mapping level, mappings will require unit conversion, or type
conversion. Where attributes reference other objects (through pointer struc-
tures) it will be necessary to map between the pointer types. Lists of object
references may have to be split or combined with other lists of object refer-
ences based on certain conditions. The complete list of the types of mapping
that can occur are detailed in the electronic files referenced at the start of this

paper.

TYPE connection_type = : TYPE support_connection = ENUMERATION OF
ENUMERATION OF (free_support, restrainted_support, un_known);
(support_connection, END_TYPE;
element_connection);
END_TYPE; TYPE element_connection = ENUMERATION OF
.) (joint_connection, rigid_connection, un_known);
ENTITY building_component EED_TYPE;
ABSTRACT SUPERTYPE OF (OKEOF
(structural_component, ' ENTITY structural.component
comporent_relationship)); ABSTRACT SUPERTYPE OF (ONEOF
ident : REAL; (structural_assembly, structural_element,
END_ENTITY; structural_connector));
identified_by : INTEGER;
END_ENTITY;
EFTITY structural_component
ABSTRACT SUPERTYPE OF (ONEOF ENTITY structural_connector’
(column, beam)) ABSTRACT SUPERTYPE OF (OBEOF
SUBTYPE OF (building_component); " (support_connector,element_connector))
specified_by : SET [1:7] OF SUBTYPE OF (structural_component);
product_characteristic; ' related, relating : structural_element;
represented.by : END_ENTITY;
geometric_representation_item; .
EED_ENTITY; ENTITY support._connector

SUBTYPE OF (structural_connector);
type.of : support_connection;

ENTITY component,.relationship END_ENTITY;
SUBTYPE OF (building_component);
related : structural_component; ENTITY element_connector
relating : structural_component; SUBTYPE OF (structural_conmector);
quality : connection_type; type_of : element_connection;
END_ENTITY; END_EBTITY;

Figure 2: The source and target schema excerpts for example 4

THE CASE STUDY

In the example used to survey the presented mapping languages we have at-
tempted to include the majority of the types of mappings and cardinalities
listed in figure 1. A relatively small mapping example was sent out with the
following five problems to be solved by each method:

1. bssc.material — pss.material, depending on the cardinality of the
attribute bssc.material.classified_by (attribute — entity mapping
with a 1:V cardinality). ’

236

2. sg.simplified_block — ssg.linear_geometry, a complex geometric
transformation is required, involving many different mapping problem
issues.

3. bssc.column — pss.column and in analogy bssc.beam — pss.beam
(mainly 1:1 attribute — attribute and conditional mapping, depending
on the entity type name).

4. bssc.component_relationship — pss.support_connector or
bssc.component_rélationship — pss.element_connector depend-
ing on the value of the bssc.component_relationship.quality at-
tribute. Reuse of the results from example 3.

5. Conditional creation of pss.simplified_frame entities, depending on
the relationships between bssc.component_relationship, bssc.column
and bssc.beam entity instances. This is not a typical type of mapping
problem, but a complex precondition for a mapping. -

Due to size limitations, we will only show excerpts from the mapping code
of all the methods based on example 4, unless otherwise indicated. For the
full mapping specifications we refer the reader to the electronically accessible
mapping code and questionaires. The relevant parts from the bssc and pss
schemas for example 4 are shown in figure 2.

SURVEY OF MAPPING LANGUAGES

In this section we will briefly describe all the mapping methods surveyed,
along with a mapping specification example. Initially we will present the four
imperative languages which are oriented towards EXPRESS, followed by two
EXPRESS related methods that use a non-imperative specification style and
the section will close with two general spec1ﬁcat1on paradigms that are not

EXPRESS specific.

The EXPRESS-M language

EXPRESS-M was developed, initially as part of a PhD project, to solve the
problem of AP inter-operability in the STEP standard [Expr-M]. As the
language was required for use in STEP it was developed to look very similar
- to EXPRESS, to use all the standard types and functions of EXPRESS and
to be useable with SDAL. EXPRESS-M is supported by a compiler which
generates C code that will work with any late binding SDAI that is properly
ISO-10303-22 conformant.

EXPRESS-M mappings are uni-directional and map a whole model at
a time (no partial updates of models). There is a single MAP defined for
each unique combination of classes in the two schemas and discrimination
between mappings based on values of an object must be made in the MAP
specification (as is shown in the example below). A full range of expressions

237

can be represented using all of EXPRESS’s functions and external functions.
EXPRESS-M uses an imperative programming style, utilising the iterative
constructs of EXPRESS and allowing local and global variables to be specified
for mappings.

EXPRESS-M allows for the specification of mappings between EXPRESS
defined types and utilises explicit casting to transform values between simple
types as well as complex types (as shown in the diagram below). EXPRESS-M
has evolved considerably in the last few years and has taken on-board many
of the good ideas from other mapping languages.

MAP ONEOF(support_connector, element_connector) <- component_relationship;
IF quality = support_connection THEN
MAP support_connector <~ component_relationship;
identified_by := {INTEGER}id; '
related := {structural_element}related;

relating := {structural_element}relating; -
.type_of := un_known; '
END_MAP;

ELSE

MAP element_connector <- component_relationship;
identified_by := {INTEGER}id;

related := {structural_element}related;

relating := {structural_element}relating;

type_of := un_known;

END_MAP;

END_IF;
END_MAP;

The EXPRESS-V language

At the Design and Manufacturing Institute of the Rensselaer Polytechnic Instl-
tute work has been undertaken to define the EXPRESS-V language as an addi-
tion to EXPRESS to accommodate views (comparable to relational databases)
[Hard94]. The implementation of EXPRESS-V is based on ST-Developer, a
product from StepTools Inc. EXPRESS-V allows the extraction of views from
integrated databases. The language offers methods for

1. selection of those entities from the integrated database that are actually
needed by an application and

2. simplification of the entities in an integrated database (e.g. from Ap-
plication Interpreted Model (AIM) to Application Requlrements Model
" (ARM) [Hard&94]).

EXPRESS-V explicitly distinguishes between the support of read-only
views and read-write views. It introduces the view declaration to EXPRESS
which defines the selection and transformation process. A view declaration can
include create and delete clauses and a special update clause for read/write
views.

238

In the exa.mple case, the source schema is first mapped onto an intermediate
schema (e.g. the selection takes place in this process) and the result is mapped
onto the target schema .

VIEW support_connectorl
FROM (component_relationship)
WHEN (component_relationship.quality = ’support_connection’);
VIEW_ASSIGN
identified_by := Real_to_Integer(component_relationship\
building_component.id); :
type_of := ’un_known’;
FROM (structural_elementi)
WHEN (structural_elementl.off = component_relationship.reldted);
BEGIN related := component_relationship.related; END;
FROM (structural_elementi) ' ‘
WHEN (structural_elementi.off = component_relationship.relating);
. BEGIN relating := structural_elementl; END;
END_VIEW;.

VIEW support_connector
FROM (support_connectorl)
WHEN TRUE;
VIEW_ASSIGN
identified_by := support_connectori\building _component.identified_by;
type_of := support_connectori.type_of;
related := support_connectorl.related;
relating := support_connectorl.relating;
END_VIEW; '

The EXPRESS-C language

"Within the ESPRIT-III project- PISA, the information modelling language
EXPRESS-C -has been defined [Expr-C] (where ”"C” stands for conceptual).
EXPRESS-C extends and enhances the capabilities of EXPRESS by modelling
both static and dynamic (behavioural) properties. It can be considered as a
first step towards a fully object-oriented version of EXPRESS, as suggested
. within the EXPRESS V2.0 development targets.

At the University of Karlsruhe, a generator called ECCO has been devel-
oped that produces code out of an EXPRESS and EXPRESS-C specification
and incorporates a level 2 compliant implementation of ISO-STEP part2l
physical file read /write functionality. ECCO also provides a graphical support
environment. EXPRESS-C was not primarily intended as a mapping notation,
its usage as a mapping language has been a more recent initiative.

In EXPRESS-C, the mapping is described in a transaction clause, which
is called in the context of an event. EXPRESS-C is an imperative modelling
language. It allows bi-directional views by specifying transaction clauses for
both directions.

“Only the case of the support.connector is shown here, similar code exists for the
element_connector. ’

239

TRANSACTION t_map_component_relationship;

LOCAL
socr : SET OF component_relationship;
sosc : SET OF structural_connector := [];
END_LOCAL;

socr := POPULATION(’BSSC.COMPONENT_RELATIONSHIP’);
REPEAT i := 1 TO HIINDEX(socr); :
sosc := sosc + map_component_relationship(socr[il);
END_REPEAT;
END_TRANSACTION;

FUNCTION map_component_relationship
(cr : component_relationship) : structural_connector;
LOCAL ' C
sc : structural_connector;
END_LOCAL;
IF (cr.quality = support_connection) THEN -
sc := compare (support_connector(support_connection.un_known) ||
structural_connector (map_structural_component(cr.related),
map_structural_component(cr.relating)) ||
structural_component(cr.id));
ELSE
sc := compare (element_connector(element_connection.un_known) ||
structural_connector (map_structural_component(cr.related),
map_structural_component (cr.relating)) ||
structural_component(cr.id));
END_IF;
make_instances_persistent([sc]);
RETURN(sc);
END_FUNCTION;

The SDAI API and C++

One could claim that the current solutions provided by the ISO-STEP stan-
dard itself are mature enough te solve these issues and no new formalism or
specification language is necessary. Wasn't part 22, the Standard Data Ac-
cess Interface [SDAI], intended to adress these kinds of problems? SDAI does
not offer the conceptual clearness as the more specialized methods do, but
still it promotes an application programming interface that facilitates model
transformations.

Within the COMBINE project, a parser kit and a data exchange system
[Lock&94] where developed; both implementing large parts of the SDAI bind-
ing for C++. Both tools allow the user to generate a set of C++ classes
directly from an EXPRESS schema thus giving the programmer access to the
richness of the product model in C++ 8. The parser kit is used for building
interfaces to off-line tools that manipulate a central database in an integrated
design system and the data exchange system is used to facilitate the on-line
tools. Both systems have a generic, schema independant part, which performs

-8An early-bound C++ model is meant here, although late-bound access to the data
model is possible in both cases at all times.

240

the transformation from part 21 physical file to the C++ model and vice versa.
The programmer can add behaviour functionality to the C++ classes and use
standard object-oriented programming techniques to structure, develop, main-
tain and reuse this functionality.

In this example, we will show an excerpt from the mapping code written
in C++ for the data exchange system (DES). The generated C++ class struc-
ture was used as-is, no functionality was added to the classes. All the added
mapping functionality is shown here, to give a good impression of the amount
of code necessary to implement even a trivial example °. The DES was im-
plemented using a commercial available object-oriented database ObjectStore
and much of the functionality shown in the excerpt relies on the C++ api that
ObjectStore supplies with its product.

. void Examplel(/* os_database *kdb, SdaiModel #mod */)
{ .
" 'SdaiString entname("bssc_material"); -
SdaiEntityExtents *ext = mod->GetEntityExtents(entname);
if (ext->Instances()~>cardinality() .!= 0) {
os_cursor cl(*ext->Instances());
bssc_material_ptr bmp = (bssc_material_ptr) cl.first();
while (bmp != NULL) {
if (bmp->ClassifiedBy() && (bmp->ClassifiedBy()->cardinality() > 0)) {
os_cursor c2(*bmp->ClassifiedBy());
CEString *name = (CEString *) c2.first();
while (name !'= NULL) {
pss_material_ptr pmp = &pss_material::create(kdb,mod);
pmp->Name (new (kdb, CEString::get_os_typespec())} CEString(*name));
‘name = (CEString *) c2.next();

}
>
bmp = (bssc_material_ptr) ci.next();
} .
}
}
XP-rules

XPDl is a toolset, developed by CSTB, for the specification and prototype im-
plementation of STEP product models. XPDI offers the modeller a graphical
and textual user-interface to develop EXPRESS schemas [XP-EXPG]. Futher-
more, a Lisp late-binding implementation of the SDAI interface definition has-
been implemented to enable dynamic interaction with the XP rule base lan-
guage [XP- SDAI]

The experiences drawn from solving rule-based problems by means of this
system lead to the development of the XP-rule language. XP-rule allows the
definition of hidirectional views and provides a high level of adaptability due
to the declarative aspects of the mapping method. Integration of Lisp or C

9Note that example 1 is used in this case in stead of example 4.

241

code is possible. The system can generate an executable from an XP-rule
definition that can interface to the SDAI repository. The notation of XP-rule
language has been kept as close to EXPRESS-M as possible. XP-rule has
been succesfully used by CAB to perform a mapping in the COMBI project.

RULE BSSC_component_relationship->PSS_structural.connector :
LET BSSC_component_relationship A component_relationship IN
MODEL BSSC THEN EXECUTE
IF (quality OF BSSC_component_relationship
IS EQUAL TO “support_connection"
THEN CREATE PSS_connector A support_connector IN MODEL PSS
ELSE EXECUTE
IF (quality OF BSSC_component_relationship
IS EQUAL TO "element_connection"
THEN CREATE PSS_connector A element_connector IN MODEL PSS))
AFFECT RESULT OF F_real2int (id OF BSSC_component_ relationship)
TO identified_by OF OBJECT PSS_connector .
EXECUTE conversion_GET (OBJECT BSSC_related , related OF
BSSC_component_relationship)
AFFECT OBJECT BSSC_related TO related OF OBJECT PSS_connector
EXECUTE conversion_GET (OBJECT BSSC_relating , relating OF
BSSC_component_relationship)
AFFECT OBJECT BSSC_relating TO relating OF OBJECT PSS_connector
AFFECT "un_known" TQ type_of OF OBJECT PSS_connector

 The View Mapping Language (VML)

VML is a bi-directional, high level and declarative language for the specifica-
tion of mappings between two arbitrary schemas (or versions of schemas). A
declarative style was chosen to enable the definition of a mapping at a level
closely aligned to the level a developer would conceptualise the correspon-
dences between classes. VML tries to distance the mapper from details of
implementation to concentrate on straight specification. To this extent VML
uses a very simple notation with a large amount of semantics implicit in the
operators used to describe a mapping [Amor94].

The mappings shown below highlight the qualities of VML. An inter_class
specifies that a mapping can occur between a class (or classes) from each of
the two schemas taking part in the mapping. The invariants section spec-
ifies conditions which must be satisfied for the mapping to take place. An
initialisers section specifies initial values for attributes of the entities which
get created in the mapping. The equivalences section specifies the relation-
ship between attributes in the classes being mapped between.

Equivalences can be specified through equations in a declarative manner,
or through functions, or if no specification is possible with the previous two
methods then through a procedural mapping. The mapping system associated
with VML performs automatic type conversion for basic types (e.g., real to
‘integer) and performs pointer conversion for attributes whose types are entity
" references (based on the inter_class mapping for the class of the referenced
entity, e.g., related = related in the mapping below).

242

inter_class([component_relationship], [support_connector],
invariants(quality = ’support_comnection’),
equivalences(id = identified_by, related = related,
relating = relating),
initialisers(type_of = ’un_known’)

).

inter_class([component_relationship], [element_connector],
invariants(quality = ’element_connection’),
equivalences(id = identified_ by, related = related,
relating = relating),
initialisers(type_of = ’un_known’)

).

The mapping system associated with VML takes a more general approach
to data mapping than the other languages specified here in that it is configured
* to perform in an interactive environment as well as handling full model con-
versions. The mapping system allows the simultaneous connection of multiple
design tools or databases and accepts incremental modifications to a model
which can be propagated through to all connected tools. This system can
therefore verify the global consistency of models in an integrated system by
tracking which modifications have been propagated to which design tools and
which changes are outstanding for a particular design tool.

The VDM specification language (VDM-SL)‘

One could question the need for dedicated mapping techniques and claim that
generally available specification languages are sufficient to adress the mapping
problem. In this section we will consider the suitability of the formal speci-
fication language VDM-SL for application in this problem domain. VDM-SL
is probably one of the best-known and mature formal specification languages
available at this time [VDM]. .

VDM stands for ”The Vienna Development Method”: a collection of tech-
niques for the formal specification and development of computing systems. It
consists of a specification language called VDM-SL; rules for data and oper-
ation refinement which allow one to establish links between abstract require-
ments specifications and detailed design specifications down to the level of
code; and a proof theory in which rigorous arguments can be conducted about
the properties of specified systems and the correctness of design decisions.

- - When using VDM-SL. the specifier is faced with two problems, a) VDM-SL

lacks an inheritance type model, therefore EXPRESS entity definitions cannot
be translated directly onto a VDM-SL equivalent, b) the resulting specification
still has to be integrated into a data exchange system with a well-defined api
(such as the ISO-STEP part 22 SDAI definition offers) before an executable
system can be delivered. However, not withstanding these limitations, the
mapping examples could be ::pec1ﬁed with relative ease in VDM-SL as the
following excerpt shows:

243

1.0 MdeompRela2StructCon : bssc-component-relationship —

1 pss-structural-connector-type
.2 MapCompRela2StructCon (cr) &
3 let sc = mk-pss-structural-connector

4 (MapStructComp Tp2StructElemTp (cr.related),

5 MapStructComp Tp2StructElemTp (cr.relating)) in
- .6 if er.quality = SUPPORT_CONNECTION

7 then mk-pss-support-connector (sc, UN_KNOWN)

8 else mk-pss-element-connector {sc, UN_KNOWN)

VDM-SL has a very rich type system which compensates for the lack of
type inheritance'®. Futhermore, the abstraction mechanisms offered by VDM-
SL are very powerful and therefore the mapping can remain concise. For very
complex mappings, one could start by making a high-level implicit mapping
definition and incrementally lower the level of abstraction by e.g. using refine-

.ment calculus and hence create a fully explicit (and implementable) mapping
algorithm. Many excellent tools exist to assist the specifier during the devel-
opment process, such as the IFAD VDM-SL toolbox which was used to create
this mapping specification. This toolkit offers the possibility to generate C++
code from the resulting specification which makes integration into data ex-
change systems possible. At the Delft University of Technology this method
has been succesfully applied to a similar mapping experiment.

The Knowledge Interchange Format (KIF)

The agent communication language (ACL) is centred around the knowledge in-
terchange format (KIF) which was developed by the ARPA knowledge sharing
initiative and is currently being enhanced at Stanford University [Khedro&94].
ACL/KIF was originally developed to exchange distinct information between
applications, following the messaging paradigm, but due to the diversity of
the tools to be integrated, translation was also a major topic of research.
ACL/KIF identifies two kinds of translation problems:

1. vocabulary translation as it arises from the differences of the abstractions
inherent in the implementation of different agents (mapping in the sense
of this paper) and

2. the logical translation dealing with the consequences of the problems
arising from the lirnits imposed by agents on the logical structure of

" messages.’

The use of this language and the supporting agent-based architecture at-
tempts to take software integration beyond the exchange of data files or the
sole use of database mianagement systems. As the language -has to handle

10Within the Aprodite ESPRIT project, an object-oriented dialect of VDM-SL, VDM++,
has been defined together with tool support, solving this problem

244

bidirectional mappings between the messages sent by the different agents in
their native conceptualization, it can partly be considered as a formal mapping
notation [KIF].

The specifications are based on first-order logic with various extensions to
enhance its expressiveness. KIF follows the declarative and knowledge based
paradigms. The implementation of KIF axioms for mapping are based on
Lisp. KIF was not developed within the product data technology arena and
does neither support EXPRESS on schema level nor STEP physical file format
on instance level. However, the advantage of KIF is the data exchange and
translation on demand, since it is message based. Therefore very distinct
pieces of data can be exchanged between applications, rather than bulk data.

(<= (pss!support_connector 7ent) (bssc!component_relationship ?ent)
(= (bssc!component_relationship.quality ?ent) support_comnection))

" (<= (pss'element_connector 7ent) (bssc!component_relationship Zent)
(= (bssc!component_relationship.quality 7ent) element_connection))

(<= (= (pss!support_connector.identified_by ?ent) ?id)
(= (bssc!component_relationship.id 7ent) ?id)
(= (bssc!component_relationship.quality ?ent) support_comnection))

(<= (= (pss!elemeﬁt_connector.identified_by 7ent) ?id)
(= (bssc!component_relationship.id ?ent) ?id)
(= (bssc!component_relationship.quality 7ent) element_connection))

(<= (= (pss!support_connector.type_of 7ent) ?type)
(= (bssc!component_relationship.quality ?ent) ?type)
(= ?type support_connection))

k<= (= (pss!element_connector.type_of ?ent) 7type)
(= (bssc!component_relationship.quality ?ent) ?type)
(= ?type element_connection))

COMPARISON AND CONCLUSION

In this paper we have presented a wide range of mapping languages which

provide the ability to specify the mapping between two (sets of) schemas. In

many ways this is the only point of similarity between the languages as they all

target different areas of mapping with some very different language paradigms. '

The comparison of mapping lariguages based on the questionaires and example

code is available electronically from the location specified at the beginning of
“ this paper.

While the comparison provides a more detailed analysis of the mapping
languages we hope that this paper gives the reader an idea of the types of
languages available, their style of specification and the area that they were
developed to perform in. Perhaps the only conclusion that can be drawn from
this paper is that no one mapping language can be used in every situation and

245

depending upon the type of mapping environment an integration group finds
themselfs in this will determine which of these languages would provide the
best solution to their needs. A description of some mapping situations and
suitable mapping languages is described below.

If a requirement is for an interactive, integrated environment then a lan-
guage which provides for incremental updates and which maintains the con-
sistency between objects in the models being mapped between (i.e., VML,
KIF, EXPRESS-V, XP-rules) will be necessary. If your requirement is for the
mapping of complete models every time then the other languages may prove
more efficient.

If a high level modelling of mappings is required for a rapidly changing set of
schemas then a higher level mapping specification (e.g., VDM-SL, VML) will
prove the most efficient to describe mappings, and to modify them as schemas
are modified. Higher-level languages will prove to be easier for a lay-person to
understand if it is necessary to describe mappings to a group of non-experts.
A more iterative language will prove to be easier for a programmer to translate
into executable code, especially if the language or environment the integrated
system is being developed in does not support SDAI or other STEP parts.

If compatibility with STEP and EXPRESS are required, then the languages
which are being developed as part of STEP (e.g., EXPRESS-M, EXPRESS~
V, EXPRESS-C) will have great appeal to the developers. If knowledge based

_systems are the main tools to be integrated into the system then one of the
knowledge-based languages (i.e., XP-rules, KIF) will probably provide the
best service.

The list of breakdowns above is by no means complete (you may require
bi-directional mappings, schema version migration, schema modification due
to mappings, etc.) the choice of mapping language is obviously very dependant
upon the project being tackled. Conversely, it is clear that no one mapping
language is capable of serving all the needs of every integrated design system
developer. To this extent we believe that many of the languages surveyed here
will evolve and grow over the next decade as STEP grows, with each of the
languages filling a particular niche in the broad field of integrated systems.

ACKNOWLEDGEMENTS

This paper would not have been possible without the collaboration of many
- contacts in the mapping. arena. We would specially ‘like to thank Martin
Hardwick (EXPRESS-V), Giinther Staub (EXPRESS-C), Alain Zarli (XP-
rules), Taha Khedro (KIF) and Ian Bailey (EXPRESS-M) for taking the time
to complete the questionaire and implement the presented case study in the
mapping formalism of their expertise.

Furthermore, the authors wish to thank their collegues within their respec-
tive institutions for valuable comments on early drafts of this paper and last
but not least for giving us the opportunity to write this paper. '

246

REFERENCES

[Amor94]

[Bijnen94]

[Expr92]

[Expr-C]
[Expr—M]

[Hard94]

[Hard&:94]

[Khedro&94]
[KIF]
[Lock&94]
[SDAJ]
[VDM]

[XP-EXPG]
[XP-SDAI]

Robert Amor, A Mapping Languages for. Views, Departmental report,
Computer Science Department, University of Auckland, New Zealand,
1994

Anthony Bijnen, Operation Mapping or How to get the right data?
First ECPPM conference, A.A. Balkema publishers, October 1994

1SO TC184/SC4, Industrial automation systems — Product data rep-
resentation and exchange — Description methods: The Ezpress lan-
guage reference manual, ISO, 1992

G. Staub, A. Nieva, F. Schénefeld, PISA Information Modelling Lan-
guage: Eapress-C, ISO TC184/5C4/WGS5 working draft, 1994

ISO TC184/SC4/WG5 N243, EXPRESS-M Reference Manual,
CIMIO Ltd, July 1995 :

M. Hardwick, Towards Integrated Product Databases Using Views,
Design & Manufacturing Institute technical report 94003, Rensselaer
Polytechnic Institute, 1994

M. Hardwick, D.L. Spooner, M. Kilty and Z. Jiang, Mapping EX-
PRESS AIM’s To ARM’s Using Database Views: A Comparison of
Three Approaches, Design & Manufacturing Institute technical report
94041, Rensselaer Polytechnic Institute, 1994’

T. Khedro, M.R. Genesereth, P.M. Teicholz, Concurrent Engineering
Through Interoperable Software Agents, In: First conference on Con-
current Engineering: Research and Applications, Pittsburgh, 1994

“M.G. Genesereth, R.E. Fikes, Knowledge Interchange Format Ver-

sion 3, Reference Manual, Computer Science Department Stanford
University, 1992 '

S.R. Lockley, W. Rombouts, W. Plokker, The COMBINE Data Fz-
change System, First ECPPM conference, A.A. Balkema publishers,
October 1994

ISO/TC184/SC4/WG7 N-350, Industrial automation systems —
Product data representation and exchange — Part 22: Standard Data
Access Interface, 15O Committee Draft, August 31, 1993

ISO/IEC/JTC1/SC22/WG19 N-20, Information Technology Pro-
gramming Languages — VDM-SL, First committee draft standard:

CD 13817-1, November 1993
XIG, XP-Ezpress-G ‘Referenc-e Manual .Version 2.0, CSTB, 1994

XIG, XP-SDAI Lisp Binding Ilog Tulk Implementation. Reference
Manual Version 1.0, CSTB. 1994

247

