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ABSTRACT: The paper outlines an information model that organizes the wealth
of data used and generated during the conceptual design stage. The building is
represented as an assembly of entities with relationships among them. Each
entity represents a meaningful concept to design participants such as a beam, a
room or a structural frame. Each entity contains data about its design aspect, its
function aspect and its behavior aspect. Furthermore, each entity stores its geom-
etry, its topological relationships with other entities, its aggregation relationship
(made-of and part-of) and a reference to the technology (a set of knowledge and

- procedures) that is used to derive it. The geometry and topological relationships
for the entity are obtained from a non-manifold skeletal geometrical representa-
tion common across all views. Multiple views representation is supported by
dividing the attributes of an entity into small cohesive subsets, which we call
primitives. These primitives are then used as construction blocks to present dif-
ferent views of the entity. The goal of this representation is two fold: to support
case-based reasoning and to store the design data as it is generated during the
conceptual design.

1. INTRODUCTION

In this paper, we present a proposed information model for the Configuration module of
SEED (Software Environment to support the Early phases in building Desig-® currently under
development at Carnegie Mellon University [Flemming et al. 93]. This module supports the
generation of a 3-dimensional configuration of spatial and physical building components based on
schematic layouts [Flemming and Woodbury 95]. The objective of this information model is two-
fold. First, it records the design data as it is generated during schematic configuration design.
Second, it serves as the foundation for case-based design, allowing building designers to retrieve
and adapt previous designs as an aid in solving the current design problem.

Building designers need to be able to retrieve and reuse cases throughout the design process
from architectural programming to detail design. The retrieved cases must match the desired
level of.detail. For instance, in the early design stage, the architect may be interested in an overall
summary of building cases while in a more advanced design stage the structural engineer may be
interested in the design of a particular floor slab. The retrieval of cases should support different
levels of problem definition according to the designer’s need.

Several participants are involved in the bulldmg design process and each has a different
perception of the evolving product. A building information model needs to integrate all the views
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of the design participants in order to ensure compatibility, reusability and integrity of the data.
Such an information model fosters efficient data communication between participants throughout
the full life cycle of the building and would have a positive impact on productivity, costs and

quality.
2. BUILDING ENTITIES

Buildings are made of entities. An entity is a distinguishable object meaningful to a building
designer. An entity can be a system, a sub-system, a component, a part, a feature of a part, a space
or a joint [Gielingh 88]. An entity can then be a building itself or a building component at any
level of decomposition, from a building wing to a nail. For instance, a building, a building wing, a
room, a frame, a beam and a bolt are all entities.

An entity is an object that is to be represented in the database [Date 95]. Information about
these entities needs to be recorded for archival purposes, for communicaﬁng design decisions, for
. obtaining approval by the owner and so on. The entities have to be unique across the database. To

do so, each entity has a unique identity which uniquely identifies the entity during its lifetime. An

entity includes four necessary types of data to fully describe it: attribute-value pairs, geometrical

description, relationships and technologies. Zamanian had identified the two first types which he

called functional and spatial data [Zamanian 92]. We add relationships to allow the representation

of interactions among entities, and technologies to record references to the procedures that are

used in designing the entity. Figure 1, below, shows the four types of data and their subcategories.
- The four types of data are explained in greater detail in the following four sub-sections.

Building Entity

- Attributes-value pairs
Functional Unit
Design Unit
Behavior Unit

Geometrical descriptions

Primary spatial representamn
Spatial abstracuons

Relationships
Part-of

Made-of

Others

Technologies

Figure 1. Abuilding entity description.

2.1 Attribute-Value Pairs

Designing involves the generation of design descriptions of a potential entity intended to
satisfy the specified qualities to be exhibited by that entity [Coyne et al. 90]. These design
descriptions and requirements (i.e. qualities to be exhibited), as well as the behavior of the artifact,
can be represented as attribute-value pairs where the value may be an atomic type (i.e. integer,
float, string, boolean and so on), a matrix, a derived value (which may depend on other attribute-
value pairs), and so on. In this model, a value cannot be a geometrical description, a relationship
with another entity nor a reference to a technology.
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The attribute-value pairs characterizing an entity are grouped into three subsets: the
functional aspect, the design aspect and the behavior aspect. The functional aspect includes the
intended purposes, the requirements and the constraints on the entity; this aspect is called the
functional unit. The requirements have to be satisfied to realize the intended purpose. The
functional unit can be seen as a design-problem statement [Gielingh 88]. The design aspect
includes all the physical and spatial characteristics that define the actual design of the entity; this
is called the design unit. The design unit can be seen as the solution to the design-problem. The
design aspect can be compared with the original requirements to verify compliance. The behavior
aspect includes the response to stimulations associated with different design conditions, and is
called the behavior unit.

The multiplicity of the three units for a given entity is as follow:

* anentity may have only one functional unit, '

* it may have several design units correspondmg to different alternatives, but it may only
have one current design unit at any given time in a given design state, and

* it may have several behavior unit corresponding to different design conditions.

These three sets of data are necessary to completely define an entity in terms of what it is
intended for, what it is and how it responds throughout its working life. This represents a richer
data model than the ones supported by current CAD systems which store only the design results,
since the reason why a particular design was selected can be understood and justified from its
function, behavior and instantiating technologies.

2.2 Geometrical Descriptions

We are following the approach developed by Zamanian for the geometrical description of the
entity [Zamanian 92]. This description is classified in two categories: the primary spatial
representation of an entity is its high-level geometric description which is used primarily for
reasoning about its topological relations with other entities, and the spatial abstractions of an
entity are its discipline-specific geometric representations. Each entity has only one primary
spatial representation, but it may have several spatial abstractions. This representation scheme
relies on the main premise that “topological relations of physical entities are invariant with respect
to their discipline-specific spatial abstractions”. [Zamanian 92]

The spatial extent of the primary spatial representation of an entity is defined by superior
elements. These superior elements are “reference geometric entities which can be linear or
curved, arranged in orthogonal or arbitrary directions, or be represented by zero- or higher-
dimensional geometric entities” [Zamanian 92]. The superior elements act as grids or boundaries
and hence formalize an intuitive and common technique where such elements are used to ldentxfy
and specify the spatial extent of individual entities or group of entities.

The non-manifold boundary representation scheme is used because topological relations can
be investigated without being affected by the various dimensionalities used in representing the
geometric entities. Since we often have to deal with line, plane and volume representations at the
same time (for beams, slabs and rooms for instance), the selection of this modeling scheme is
- justified. This scheme has the ability of “modeling and reasoning about mixed-dimensional
geometric models in a single, uniform paradigm” [Zamanian 92]. The non-manifold scheme has
also the advantage of being able to model “non-solid” objects.

2.3 Relationships

Every entity has some kind of interaction with other entities that need to be represented.
“Any dependency between two or more entities is a relationship” [Rumbaugh et al. 91]. Typical
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relationships include directed actions (supports, drives), communication (talks to, controls),
ownership (has, part of) and so on. “Relationships are just as much a part of the data as are the
basic entities” [Date 95], hence they should be represented as well in the information model.
Furthermore, relationships should be bidirectional meaning that they must be traversable in either
direction.

We isolate the aggregation relationships from others to ensure better access. The aggregation
relationship is very important in describing buildings because it captures the link between entities
and their components. Building entities are usually complex objects built from component entities
which may be complex themselves. The type of relationship which exists. between a complex
object and its component objects is called an aggregation. The complex object is treated as a unit
in many operations, although physically it is made of several component objects. The aggregation
relationship can be recognized by the phrase “part-of”, which can be used to describe the link
between the component and the complex object, and “made-of”, which can be used to describe the
opposite link between the complex object and the component. Other relationships are frequently
needed as well. Examples are: supports, encloses, connects, drives and controls. Topological

.relationships, such as above, next to, contained in and beside, are not stored explicitly in this
information model since they can be obtained directly from the geometric modeler.:

2.4 Technologies

We want to record how an entity has been designed in order to be able to make inferences
about the processes used to design it. We also want to be able to adapt and redesign an entity
"rapidly without having to start from “scratch”. To support this, we organize the design
knowledge into a hierarchically structured technology tree, where each node of the tree represents
a known altemative, the constraints that determine its applicability, the computational steps
_ necessary to assign values to the attribute(s) defining that alternative, and the elements of the
more detailed alternatives at the succeeding level [Fenves et al. 95]. Then, the de51gn of an entity
- canbe 31mply described by referring to the technology node that created it. ’

A technology node is viewed as “a collection of computatxonal mechanisms that creates,
details and instantiates entities to satisfy the requirements defined in the functional unit of an
entity in a design context based on a specific construction technology or form generation
principles” [Woodbury and Fenves 94]. Technology nodes are oxgamzed in the form of a tree. In
the structural design domain, the technology tree represents the various alternative structural
system, subsystem and component types available to the designer. The root of a tree operates on
an abstract building as a whole, while succeeding levels of nodes operate on more and more
specific building elements. Hence, the technology tree may deal with elements ranging from the
most abstract (e.g., a full 3-D building for which a tube structure may be an alternative structural
system) to the most specific elements (e.g., individual beams or even connections, reinforcement,
etc.). Each node in the technology tree contains constraints on its applicability. If the constraints
are satisfied, the node defines- procedures either to assign attributes and attribute values to the

design unit of a current entity, or to subdivide an entity into constituent entities. Hence, nodes in
the technology tree may be categorized in two types: a technology refines another if it provides
additional level of detail by adding new attribute-value pairs to the design unit of the current
entity, while a technology elaborates another if it subdivides the current entity into constituent
sub-units by creating new entities and linking them to the current entity through the “Made-of”
relationship slot.[Fenves et al. 95].

A sample technology tree segment for slabs supported on steel framing elements is depicted
in Figure 2. Each child technology of “Decking” shows two sets of constraints (the maximum and
minimum spans and the maximum and minimum loads) which determines the technology’s
range of applicability. If the constraints are satisfied, the technology node generates an alternative
which may be selected later by the designer. The constraints shown in the figure were taken from

251




current product catalogs; if a designer disagrees with the constraints provided, he or she can.
modify them. The technology node “One-Way-Deck-on-joists” is an example of an elaborating
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Figure 2. A sample partial structural technology tree [Fenves et al. 95}

technology which subdivides. a slab entity into its constituent decking and joists entities. The
dashed node “Decking” shown as one elaboration component of “One-Way-Deck-on-Joists”
indicates the same subtree as “Decking”, the child node of “One-Way”. Thus, subtrees in the
technology can be used as elements of other technologies. '

3. HIERARCHICAL DECOMPOSITION

When faced with a complex design problem, a designer usually solves it by reducing it into a
set of smaller more manageable sub-problems. These sub-problems are, in turn, such that a
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solution can be easily determined. This “divide-and-conquer” strategy is typical for most design-
processes [Gielingh 88). The information model must therefore be able to support the
decomposition of design problems. Such hierarchical decompositions are used to divide and
conquer problems and to distribute tasks and responsibilities as well [Gielingh 88].

A building can be considered as composed of four major systems [Rush 86}: structure,
enclosure, services and interior. These systems can be further decomposed into more detailed
hierarchical levels of subsystems, components, etc. all the way down to distinct materials. Figure
3 shows the hierarchical decomposition of the building structural system. The structure of a
building may sometimes be broken down into independent sub-structures depending on the
building’s complexity. These sub-structures occur in buildings with expansion joints or in
buildings made of several independent structural systems. The self-standing structure is
decomposed into 2-D structural elements such as frames, walls and slabs. The 2-D structural
elements are further decomposed into 1-D elements or 2-D sub-elements (i.e. beams, columns and
slab elements). Note that the figure does not show all the relationships which may exist among
the entities shown (i.e. support, connected to and so.on). The black circle at the end of a link
indicates that many entities may be linked to the entity at the other end of the link. '

Building
I
| = | ] - |
Enclosure tructure | - Mechanical nterior
Eystem System  System System Systems
Self-standing ' Volumes
Structure '
[
Planes
Frame , Slab Wall
| f:;;;l | | ‘ Slab Wall
COI | Beam E]ement Element
Line Elements Plane Elements

Figure 3. Hierarchical decomposition of the building structure.

This hierarchical decomposition of the structural system follows the total-system approach
promoted by T. Y. Lin and S. D. Stotesbury where the  designer focuses first on the three-
dimensional implications of architectural space-form options, then on the more-or-less planar sub-
systems which make up the structure, and finally on the elaboration and refinement of individual
elements and connection details [Lin and Stotesbury 81]. Hence, a complex structural problem is
decomposed into simpler sub-problems that can be considered in a semi-independent fashion.
This “approach reflects the organic concept that the whole (of a design scheme) should give rise to
the need for details and not vice versa” [Lin and Stotesbury 81]. A

A similar hierarchical decomposition has been developed for the enclosure system by Rivard

et al. [Rivard et al. 95]. The enclosure system of a building is decomposed into envelope planes
such as roofs, exterior walls, slab on grade and cantilevered floors. Each envelope plane can be
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subdivided into envelope areas, each of which has one envelope section and corresponds to one
indoor space, and can be pierced by openings. An envelope section is a sequence of envelope
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Figure 4. Hierarchical decomposition of the enclosure system
. layers (i.e. construction products) such as cladding, membrane, insulation and finishing.

The information model, presented here, supports such hierarchical decompositions. Systems
and subsystems can be modeled as entities linked together by aggregation relationships. The
result of the hierarchical decomposition is a tree of entities. The designer can look at the system at
any level of abstraction simply by going to the corresponding depth in the tree. For instance, he or
she can look at the structure as a whole or as planes or as beams, columns and slab elements.

The information model also supports the design process as it unfolds by allowing designers to
populate the database in an intuitive manner from global system entities, to sub-system entities all
the way down to component entities. The root of a hierarchical decomposition tree is recorded
first, followed by the system entities and so on. New entities are added to the existing ones,
through aggregation relationship, as the design proceeds and becomes more and more detailed.

4. INTEGRATION OF MULTIPLE VIEWS

The entities presented in the previous section represent a logical manner for organizing the
building data and correspond to how designers see the building. But sometimes, it may happen
that an entity occurs in two different hierarchical decompositions. For instance, a load bearing
exterior wall is both an envelope plane in the enclosure system and a wall in the structural system.
Hence, there is a need to represent the multiple views.of an entity. In this section, we look ata
mechanism to record the set of attribute-value pairs in order to be able to provide different views.

The attributes of an entity may be organized as follows:

o the collection of all attributes defining an entity may be grouped into one flat structure,

* the attributes may be divided into small cohesive subset, or

» each attributes may be represented as a distinct structure.

The first and last approach correspond to the two extremes of a scale. The first approach leads
to the creation of exceedingly complex entities which are difficult to understand (for a single
specialist), to maintain and to extend [Howard et al. 92]. In the third approach, at the other
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extreme, each attribute is stored separately. The attributes are accessed by looking at their name.
This approach leads to complex naming conventions. :

The representation approach that we are investigating is located between these two extremes.
We intend to divide the attributes of an entity into small cohesive subset each of which we call a
primitive.  This approach, called the Primitive-Composite Approach (or P-C Approach), was '
originally developed by Phan and Howard (1993). It is a data model and a structured
methodology for modelling facility engineering processes and data to achieve integration. It has
the following advantages: it supports multiple views, schema evolution and data integration.

Cohesion is the only criterion used in decomposing the entities and it is defined as a
measurement that shows how closely the attributes of an entity relate to one another [Phan and
Howard 93]. They characterized cohesion into five specific criteria: the data attributes are stored
in one location (access-cohesive), related to the same concept (concept-cohesive), not derived from
each other (source-cohesive), instantiated at the same time (time-cohesive) and used at the same
time (use-cohesive). A functional and data flow analysis of the building design process is needed
" to evaluate the cohesion of the attributes of each entity. <o ' '

Our definition of a primitive is slightly different. We keep only three of the five original
criteria. Hence, a primitive is defined to be a group of closely related attributes which are found
together in a repository (access-cohesive), which are instantiated at the same time (time-cohesive)
and which corresponds to the same concept (concept-cohesive). The access-cohesive criterion

_ensures that attributes from different views are not put together (i.e. data found in structural
drawings are not mixed with data found in construction estimates). The time-cohesive criterion
ensures that if a user tries to access some data and sees that the corresponding primitive exists, he
or she can assume that all the attributes in it have a value. If the primitive does not exist, it means
that the data has not been generated yet, and he or she may create a new primitive. This criterion
implies that each primitive is generated by only one technology node. The concept-cohesive
criterion divides the attributes in at least three broad classes: function, design (form) and behavior
which were presented earlier in section 2.1. This criterion may subdivide the attributes further if
more concepts are considered.

The use-cohesive criterion is not considered for efficiency. It is difficult to predict all possible
uses of an attribute, and hence the corresponding attributes may be subdivided too much. It does
not really matter if all data attributes of a primitive are used at the same time or not. We do not
agree with the source-cohesive criterion. We think that dependent data can be recorded in the
same primitive. Methods could be used, from within the primitive, to compute the dependent
information. :

The primitive representation provides an abstraction of the entity to the designer. Views hide
the actual complexity of the entity by providing only the relevant information while hiding the
unnecessary details. Figure 5, below, shows a wall entity decomposed in a set of primitives. Three
different views are shown as referring to a subset of the primitives. Two of the primitives are
shaded to show the sharing of information between the different views. Hence, this model
supports the integration of the various views required by the design participants. This
characteristic ensures compatibility, reusability and integrity of the data. It also fosters efficient
- data communication between participants. : "

The definition of the primitives are inherited from a common structure which is shown in
Figure 6. A primitive class should have a unique name. Each primitive stores the name of the
person who is responsible for its creation. It stores the initial time when it is created and when it
is last modified. It also stores a reference to the technology node that was used to instantiate it and
a status which could take one of three values: candidate (alternative is not explored yet), explored
(alternative has been explored but not selected) and committed (alternative represents the current
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Figure 5. Multiple views of a wall entity [Rivard 94].

design). A primitive should include a reference to all the entities to which it belongs. The fact
that a given primitive may be referenced by several entities demonstrates the possibility for
reusing the same data (e.g. the type of concrete should be defined once and referenced by every

" concrete member). Each primitive should have a built-in help mechanism that would allow the

user to obtain a description of the data stored in it.A primitive can have both attributes and

Name of Class
Author
Instantiated time
Last modified

| Set of attributes or methods

fechnology node
ISitatus

nti
Hel;ty

| Figure 6. A generic primitive.

methods (or procedures). Methods are used to compute values based on other attribute-value
pairs. For instance, the density of an object can be computed from its mass and volume. It is
redundant to store the density data explicitly if it can be computed. The use of methods provide
support for dependencies among data.’

An entity contains a reference to the technology node that created it. As the entity is refined,
design unit primitives are added to the entity. Figure 7 shows the relationship between an entity,

_ its design unit primitives and a technology tree. This representation supports the generation of

solutions in staged steps so as to allow backtracking and generating different states within the
design space, representing alternative design solutions for the same subproblem. The hierarchical
structure of the technology tree (and thus the knowledge base) serves to meet these goals [Fenves
et al. 95]. The design process proceeds as follows: the child technology nodes of the current
technology test the entity against their own constraints and determine whether it is applicable or
not. If a technology node is applicable, it instantiates the appropriate design unit primitives and
assigns corresponding design attributes. The designer selects one of the candidate primitives to
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expand further with the technology tree. The selected primitive is automatically incorporated into
the entity.

Entity Technology Tree
Technology A \
DU Primitives
- -
g
= o

Selected Refinements Potential Refinements

Figﬁre 7. Anentity , its design unit primitives and a technology tree

5. CASE-BASED REASONING SUPPORT

Case-based reasoning is an analogical reasoning method which uses previously stored
solutions as a means to solve a new problem, to warn of possible failures, and to interpret a
situation [Kolodner 1993]. A design system based on this artificial intelligence methodology
would help the designer to remember previous and appropriate cases. The designer can use these
cases as sources of inspiration, or as drafts on the basis of which a more relevant solution to the
current problem can be developed. It is in the human nature to remember previous experiences in
order to develop solutions for new problems. Designers use previous designs because they save
time and effort and because the concept has been proven effective in a previous situation. Case-
based reasoning is an attempt to implement this natural design process in computers as a tool for
designers. The strength of computer programs augment the human abilities as follows:

* cases originating from different designers can be made available,

* cases are retrieved quickly and are not forgotten,

» aretrieved case can be used as a starting point to generate a new design, and

» the system learns as new cases are added to the case-base.

We have presented in this paper an information model that can be used both for case
representation and for recording design data. Since the representation is identical for the two, no
translation is required to store the design data into a case. This simplifies the implementation of
the premise stated in Flemming’s paper {Flemming 94] that cases are accumulated as a side-effect
of a firm’s normal design activities. :

Hierarchical decomposition provides a mean of extracting cases at different level of details or
abstraction. It also provides the capability for retrieving solutions to any level of detail [Flemming
1994]. Hence, a case can be retrieved at different levels: from the system level (e.g. the structure of
a building wing) to the component level (e.g. a roof truss).

Cases are searched based on the current functional unit, the current hierarchical
decomposition and the problem context. When an entity is retrieved, all its constituent sub-entities
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are evaluated to see whether they also satisfy the new problem context. All the sub-entities that
are satisfactory are retrieved to a depth specified by the user. The unsatisfactory sub-entities are
pruned from the retrieved solution. Once a case is retrieved and approved by the user, it can be
added to the current design. It can then be modified, augmented and reduced.

Sub-entities are pruned using the technology tree referenced by the retrieved entity (or case)
and the current design context. If the design of the retrieved sub-entity is still within the range
of applicability of the technology node onceit is set in the new design context, its attributes are
re-evaluated and matching continues at the successor level of the technology tree. If the design of
the sub-entity falls outside the range of applicability, it is removed from the design state together
with all its subsequent refinements and/or elaborations. The designer can then proceed to
redesign the eliminated sub-entities. Designers have two .options to replace the pruned sub-
entities: they can execute a new case retrieval at the new, more detailed level; or they can complete
the design by themselves or with the help of a technology tree.

The primitive representation, discussed in Section 4, supports the retrieval of cases (or
entities) with multiple functions (or views). Multifunction entities are frequent in building design
and must be supported by a case-based reasoning system.” Whenever a case is retrieved for a
particular function and it is found to have more than one function, the designer has the choice to
keep those extra functions or to strip them from the case. Furthermore, searches for multi-
functional entities are supported. Hence, a designer is able to retrieve an entity that complies with
two or more functions. Here are a few illustrating examples:

* a case retrieved for an enclosure design problern may also be found to satisfy the

structural requirements of that entity;

¢ the case base may be searched for a case satisfying the requirements of more than one

view (e.g. the enclosure and the structural views of an exterior wall);

* a multi-function entity may be stripped of one of its design aspects if it is deemed useless

(e.g. one may remove the enclosure aspect of an exterior load-bearing wall case to be used
indoors). '

The recording of a reference to a node of the technology tree in a case provides several
advantages. It records both the results of the design as well as the design process itself. By
referring to the technology nodes that were used in designing an entity, we are also recording a
reference to the knowledge and process used in designing it. This is as important to the designer
as the design descriptions. It allows the designer to reuse the same design process. It is also
possible to limit the search of a case to a given technology (or one of its children) or to exclude a
given technology from the search.

6. CONCLUSION

In this paper, we presented an information model for the preliminary design stage. This
model decomposes buildings into hierarchies of entitiess which provide different levels of
abstraction. Each building entity contains: _

* attribute-value pairs organized into three subsets: function aspect, design aspect and

behavior aspect; '

* a high-level geometrical description which is used to reason about its topological relations

with other entities, and discipline specific geometric information;

* relationships with other entities; and

* references to the computational mechanisms (or technologies) used in designing it.

The attribute-value pairs of an entity are further grouped into primitives in order to integrate
multiple views, to facilitate data exchange between design tasks, to improve communication
between designers and to support the growth of data as the design process unfolds.
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We believe that this information model has the potential to support case-based reasoning and
to record design data as it is generated during the design process. We intend to implement this
information model in an object-oriented database management system. Subsequent validation
with end users will show to what extent the approach is appropriate in parts or in whole.

%
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