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Introduction  
A great deal of work has been carried out in the area of information modelling to 
support the sharing of information across participants in a construction project. Efforts 
in this area include projects such as ATLAS (Bohms et al., 1994) (for large scale 
engineering), COMBINE (Dubois et al., 1995) (for HVAC and building design), 
RATAS (Björk, 1994) and ICON (Aouad et al., 1995) (for building design and 
construction management). It is also the subject of standardization efforts such as 
STEP (ISO/TC184/SC4, 1994), and more recently the IAI (see: 
http://www.interoperability.com/) 

In order to support collaborative engineering, however, it is important not only to 
share information, but also to manage that information in a manner that actively 
promotes integration. This paper describes the central models underlying the 
COMMIT project, which is defining mechanisms to handle a number issues relating to 
the management of information to support decision-making in collaborative projects. 
The project is being carried out in consultation with a well-established steering group 
comprising standardisation bodies, industrials and researchers. However, the paper 
describes ongoing research, and comments are invited regarding the models to allow 
improvements to be made over the remaining life of the project. 

The COMMIT project is supported by the Engineering and Physical Sciences 
Research Council in the United Kingdom. 

The COMMIT Project 
This project is concerned with the management of information to support decision 
making in multi-actor environments. Whilst the work of the project is not construction 
specific, it is being carried out within the context of construction, and therefore 
emphasises construction project integration as an important goal. 

COMMIT addresses six primary issues that are central to information management: 

• ownership, rights and responsibilities; 

• versioning of information; 

• schema evolution; 

• recording of intent behind decisions leading to information; 

• tracking of dependencies between pieces of information; 

• notification and propagation of changes. 
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Whilst many of these are distinct issues, they have been found to be closely inter-
related, making it difficult to address them individually. Indeed, much of the 
modelling effort is expended on the need to understand the interplay between these 
different issues, as will be illustrated later 

The project is being carried out in two phases. The first phase is primarily concerned 
with the creation of an object model describing the concepts and the interplay between 
them. This is the role of the CIMM (see below). The second part of the project 
concentrates primarily on the capture of intent behind decisions in a matter that 
involves only the smallest possible intrusion into the process. This work is currently 
being carried out. Throughout both of these phases, implementation work is being 
carried out on the creation of prototype software 

Modelling Methodology 
The COMMIT project is committed to a fully object oriented approach, in which an 
emphasis is placed on inter-working between software objects rather than on sharing 
of data using common formats. This approach provides a number of advantages in 
terms of the ability to use abstraction to handle complexity. (See: Cooper, 1995; 
Booch, 1994). 

Initially, the models were defined using a CASE tool called Object Engineering 
Workbench. This is an object-oriented CASE tool that is quite closely bound to the C++ 
programming language, and uses a proprietary modelling language. The current version 
of the COMMIT model is being re-built using UML (the Unified Modelling Language) 

in the Rational Rose CASE tool. This language is rapidly being established as a de facto 
standard for object-oriented modelling, and is well supported by the Rational Rose 
CASE Tool. UML is developed primarily from two of the most popular modelling 
formalisms for object-oriented modelling, OMT (Rumbaugh et al., 1991) and Booch 
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Figure 1 Illustration showing the main elements of a UML class diagram 
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(Booch, 1994), and currently being considered for adoption as an international standard 
within the OMG (Object Management Group). The models shown in this paper are 
expressed in the UML. Figure 1 illustrates the main elements of UML that are used in 
this paper. Further information on UML can be found in (UML, 1997). The use of a 
CASE tool such as Rational Rose is helpful because the tool can automatically generate 
both C++ code and CORBA IDL (Common Object Request Broker Architecture 
Interface Definition Language). This allows the COMMIT implementation immediately 
to take advantage of the inter-working facilities provided by an Object Request Broker 
and the CORBA standard. 

The COMMIT Information Management Model (CIMM) 
At the core of the COMMIT architecture is the CIMM (COMMIT Information 
Management Model). The purpose of the CIMM is to model the concepts that 
surround the six issues addressed by COMMIT. This model forms the framework in 
which information management is carried out within COMMIT, and is used to 
generate the software object classes that make up to realization of these concepts 
through the COMMIT prototype. The model is described in detail in the following 
sections. It is important to remember that the scope of the CIMM covers information 
management only. In particular, it does not include project management, and this has 
been an important guiding principle in defining the scope of these models. 

Versioning and Schema Evolution 
If we are to record the relationships between information that is current in a project 
and information that was defined at some earlier time, it is necessary to keep old 
versions of information. It can also be useful to keep alternative versions of current 
information to deal with situations in which a decision has not yet been made from a 

number of possible alternatives. Figure 2 shows some of the object types that are 
versioned in the current version of the CIMM. In addition to these, all the core project 
objects such as Wall, Task, Resource, etc. are versioned (though they are outside the 
scope of the CIMM itself). 
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Figure 2 Versioned objects in the CIMM 
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Figure 3 recognizes that object types themselves are versioned, and thereby introduces 
the concept of schema evolution. This is important because the schema (or model) 

provides a semantic context for all objects in the system, but may itself need to change 
over time. Thus, earlier versions of object classes need to be kept in order that the 
semantics of earlier versions of objects may be understood. 
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Figure 3 Versioning and Schema Evolution in the CIMM 
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Figure 4 Roles, Rights and Responsibilities in the CIMM 
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Project Roles, Rights and Responsibilities 
Figure 4 shows the basis for the handling of ownership, rights and responsibilities in 
the CIMM. All actors participate in a project by means of one or more roles. Thus it is 
the concept of a role rather than an actor that falls within the scope of the CIMM. 
Through a role, an actor exercises authority over some parts of the project 
information, and each Authority is characterized by a number of responsibilities that 
relate to a particular object. In order to discharge those responsibilities, the actor 
(through the role) needs to have certain rights to perform actions (or Operations) on 
the object in question. 

An important principle here is the use of operations on objects to define rights. This is 
in contrast to the conventional approach of assigning rights as: Create, Read, Update 
and Delete. In the COMMIT approach, the emphasis is on using real world concepts 
through the abstractions that may be represented in a true object-oriented model. For 
example, a project manager might have authority over a task in the project plan. In 
order to discharge the responsibilities associated with that authority, the project 
manager would need the rights to assign resources to the task, to move the start date of 
the task, etc. However, he or she might not have the right to delete the task, or change 
its duration. Naturally, this would depend on the specific situation, and the rights that 
the project manager would have over tasks might be different for different tasks. This 
suggests that rights must ultimately be defined at the instance level (e.g. over a 
particular task rather than over tasks in general). 

In practice, however, there could be a huge number of combinations of rights to be 
assigned to roles and objects. For this reason, mechanisms are provided in the CIMM 

to allow default authorities to be defined over all objects of a given type. These 
authorities would apply in the absence of a specific authority for an instance. Similar 
mechanisms are being developed in relation to containment, whereby default 
authorities may be allocated in respect of an object by virtue of its being contained, or 
owned, by another object. 
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Figure 5 Use of type to define default Authorities. 
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Change Notification and Propagation 
Notification is the process by which amendments made to objects are notified to other 
objects that may have an interest. Figure 6 shows how this is handled conceptually in 
the CIMM. A notification obligation represents the fact that an object is required to 
invoke some operation on another object whenever a particular kind of change occurs 
(i.e. whenever an operation is performed on it). The invocation of an operation is 
considered to be identical to the passing of a message to an object. It is then the 
responsibility of the object receiving that message to decide how to respond. This is 

an important element of abstraction in object-oriented systems and makes for a good 
separation between the semantics of an object in terms of its interface, and the 
implementation of that object in software. 

In general, some trigger is responsible for causing an operation to be invoked. A 
trigger is a reason for some operation to be performed upon an object. In the current 
version of the CIMM, there are two kinds of trigger. One is that a decision has been 
made, and this is discussed in the following section. The other is that a notification 
obligation has been discharged as a result of some other change. A notification 
obligation is discharged whenever a particular operation is performed on a particular 
object. It results in another operation being invoked on another object, and this 
operation is considered to be a notification. 

In some cases, the object to be notified of a change might be another object in the 
project. E.g. a window may need to be notified that the position of the wall containing 
it has been moved; or a project task to build a wall may need to be informed that the 
wall has been increased in size. In other cases, the object to be notified might be a 
role, in which case a message would need be sent to the actor or actors carrying out 
that role. 
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Figure 6 Change Notification and Propagation in the CIMM 
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The spread of electronic mail and fax means that the CIMM can not only represent the 
notification of actors through roles, but also can, to a large extent, automate it. Many 
individuals will be unused to working in an integrated construction environment in 
which shared project information changes at a rapid pace. A notification mechanism is 
therefore essential for keeping actors aware of project changes and also supports the 
automation of other information management processes such as approval. Propagation 
involves changing the properties of a set of target objects because of a change 
introduced to a source object. 

It is important, however, that the concepts of notification of actors, and change 
propagation, which is the notification of objects that will then automatically update 
themselves, are unified under the general heading of Notification. This unification 
allows decisions that are currently made by human beings to be automated at some 
time in the future through the appropriate use of knowledge-based system 
technologies. 

Decisions, Interdependency and Capturing Intent 
When a decision is made in a project, it should be made on the basis of available 
information, and will result in new or changed information. This is the underlying 
concept behind the tracking of dependencies between pieces of information in the 

COMMIT system. Figure 7 shows the way in which decisions are recorded in the 
CIMM, and the manner in which the dependencies are handled between decisions and 
the various versions of information stored in the system. It shows that a decision is 
influenced by a number of factors, each of which is determined by information stored 
in the form of objects (or rather versions of objects). Once the decision is made, it is a 
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Figure 7 Decisions and Interdependency in the CIMM 
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trigger for operations to be performed on objects, which will result in the creation of 
new versions of objects and new objects.  

As an example, consider the situation in which the thickness of a wall needs to be 
maintained at the same width as that of an adjacent column, say for aesthetic reasons. 
A notification obligation would be placed on the column to inform the wall whenever 
its own thickness is changed (perhaps by the structural engineer). By default, the wall 
could inform the architect that the column has changed size and that its own size 
might need to be changed. It could even respond by asking for (or requiring) a 
message to go from the structural engineer to the architect explaining the reasons for 
the proposed change to the column, and asking for that change to be approved and 
taken account of. In this case, the content of the message could be captured and stored 
as part of the decision factors for the decision to change the width of the column. 
Later, as design technology improves, it may become possible for this change 
propagation to be automated through the use of knowledge based software embedded 
in the wall object. However, the underlying model of notification, propagation and 
capturing of intent remains the same. 

Conclusion 
This paper has described the underlying models of the COMMIT project, which is 
concerned with the management of object based information in a construction project 
context. These models are continuously being developed and improved in the light of 
experience from prototype implementation work, and feedback from the project’s 
partners in standardisation, industry and research. 

The emphasis in the COMMIT project has now moved onto ways of utilizing the 
models to improve integration and decision-making in practice. Issues are being 
investigated surrounding the capture of intent behind decisions, in ways that interfere 
as little as possible with the working practices of the construction project participants. 
This involves capturing information about the object versions that were consulted in 
reaching a decision, and the use of information captured in requests for approval of 
changes, etc. 

Also under investigation is the creation of techniques to analyse the network of 
information captured within the COMMIT system to improve the availability of 
timely and relevant information to support decision making in real time. This work is 
in its early stages and will be reported on in a future publication. 
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