
 103

Notification and Change Propagation Support in a
Concurrent, Multi-actor Environment

Grahame Cooper, Yacine Rezgui, Paul Hayes, Mike Jackson,

Farhi Marir, Jim Yip and Peter Brandon

Introduction
A great deal of work has been carried out in the area of information modelling to
support the sharing of information across participants in a construction project. Efforts
in this area include projects such as ATLAS (Bohms et al., 1994) (for large scale
engineering), COMBINE (Dubois et al., 1995) (for HVAC and building design),
RATAS (Björk, 1994) and ICON (Aouad et al., 1995) (for building design and
construction management). It is also the subject of standardization efforts such as
STEP (ISO/TC184/SC4, 1994), and more recently the IAI (see:
http://www.interoperability.com/)

In order to support collaborative engineering, however, it is important not only to
share information, but also to manage that information in a manner that actively
promotes integration. This paper describes the central models underlying the
COMMIT project, which is defining mechanisms to handle a number issues relating to
the management of information to support decision-making in collaborative projects.
The project is being carried out in consultation with a well-established steering group
comprising standardisation bodies, industrials and researchers. However, the paper
describes ongoing research, and comments are invited regarding the models to allow
improvements to be made over the remaining life of the project.

The COMMIT project is supported by the Engineering and Physical Sciences
Research Council in the United Kingdom.

The COMMIT Project
This project is concerned with the management of information to support decision
making in multi-actor environments. Whilst the work of the project is not construction
specific, it is being carried out within the context of construction, and therefore
emphasises construction project integration as an important goal.

COMMIT addresses six primary issues that are central to information management:

• ownership, rights and responsibilities;

• versioning of information;

• schema evolution;

• recording of intent behind decisions leading to information;

• tracking of dependencies between pieces of information;

• notification and propagation of changes.

C
on

st
ru

ct
io

n
In

fo
rm

at
ic

s
D

ig
ita

l L
ib

ra
ry

 h
ttp

://
itc

.s
ci

x.
ne

t/
pa

pe
r

w
78

-1
99

7-
10

3.
co

nt
en

t

http://itc.scix.net/
http://itc.scix.net/
http://itc.scix.net/id.cgi/w78-1997-103.content

 104

Whilst many of these are distinct issues, they have been found to be closely inter-
related, making it difficult to address them individually. Indeed, much of the
modelling effort is expended on the need to understand the interplay between these
different issues, as will be illustrated later

The project is being carried out in two phases. The first phase is primarily concerned
with the creation of an object model describing the concepts and the interplay between
them. This is the role of the CIMM (see below). The second part of the project
concentrates primarily on the capture of intent behind decisions in a matter that
involves only the smallest possible intrusion into the process. This work is currently
being carried out. Throughout both of these phases, implementation work is being
carried out on the creation of prototype software

Modelling Methodology
The COMMIT project is committed to a fully object oriented approach, in which an
emphasis is placed on inter-working between software objects rather than on sharing
of data using common formats. This approach provides a number of advantages in
terms of the ability to use abstraction to handle complexity. (See: Cooper, 1995;
Booch, 1994).

Initially, the models were defined using a CASE tool called Object Engineering
Workbench. This is an object-oriented CASE tool that is quite closely bound to the C++
programming language, and uses a proprietary modelling language. The current version
of the COMMIT model is being re-built using UML (the Unified Modelling Language)

in the Rational Rose CASE tool. This language is rapidly being established as a de facto
standard for object-oriented modelling, and is well supported by the Rational Rose
CASE Tool. UML is developed primarily from two of the most popular modelling
formalisms for object-oriented modelling, OMT (Rumbaugh et al., 1991) and Booch

Car

Person
1..1

OwnerChattel

0..*

Lorry Tachograph

1..11..1 1..11..1

Vehicle
Wheelbase
Max Power
Seat

Press Accelerator()
Turn Wheel()
Press Brake()

0..*
1..1

Vehicle Ownership

Wheel

1..*

0..1

1..*

0..1

Containment
relationships

Association
(relationship)

Relationship
name

Role of object
in relationship

Cardinality and
optionality

Operations

Attributes

Generalization/
specialization

Figure 1 Illustration showing the main elements of a UML class diagram

 105

(Booch, 1994), and currently being considered for adoption as an international standard
within the OMG (Object Management Group). The models shown in this paper are
expressed in the UML. Figure 1 illustrates the main elements of UML that are used in
this paper. Further information on UML can be found in (UML, 1997). The use of a
CASE tool such as Rational Rose is helpful because the tool can automatically generate
both C++ code and CORBA IDL (Common Object Request Broker Architecture
Interface Definition Language). This allows the COMMIT implementation immediately
to take advantage of the inter-working facilities provided by an Object Request Broker
and the CORBA standard.

The COMMIT Information Management Model (CIMM)
At the core of the COMMIT architecture is the CIMM (COMMIT Information
Management Model). The purpose of the CIMM is to model the concepts that
surround the six issues addressed by COMMIT. This model forms the framework in
which information management is carried out within COMMIT, and is used to
generate the software object classes that make up to realization of these concepts
through the COMMIT prototype. The model is described in detail in the following
sections. It is important to remember that the scope of the CIMM covers information
management only. In particular, it does not include project management, and this has
been an important guiding principle in defining the scope of these models.

Versioning and Schema Evolution
If we are to record the relationships between information that is current in a project
and information that was defined at some earlier time, it is necessary to keep old
versions of information. It can also be useful to keep alternative versions of current
information to deal with situations in which a decision has not yet been made from a

number of possible alternatives. Figure 2 shows some of the object types that are
versioned in the current version of the CIMM. In addition to these, all the core project
objects such as Wall, Task, Resource, etc. are versioned (though they are outside the
scope of the CIMM itself).

Object Type

1

Versioned Object

Create New Version()

version

1..*

Object Version
11..*

Versioning

Authority

Assign Right()

Project Role

Notify Change()
Allocate Authority()

Figure 2 Versioned objects in the CIMM

 106

Figure 3 recognizes that object types themselves are versioned, and thereby introduces
the concept of schema evolution. This is important because the schema (or model)

provides a semantic context for all objects in the system, but may itself need to change
over time. Thus, earlier versions of object classes need to be kept in order that the
semantics of earlier versions of objects may be understood.

Type

1

Object TypeInstance

0..*

version
1..*

1

Versioned Object

Create New Version() 10..*

Instantiation

Type

1

Object Type VersionInstance

0..*

Object Version

1..*

1

Versioning

10..*

Version Instantiation

{The COMMIT Object of which the
Object Version is a version must be an

instance of the Object Type of which the
Object Type Version is a Version}

Figure 3 Versioning and Schema Evolution in the CIMM

0..1

0..*

0..*

1
Project Role

Notify Change()
Allocate Authority()

0..1

0..*

Consists of

1..*

1

Authority

Assign Right()

0..*

1

Exercises

1

0..*

Right1..*

1

Confers

1

0..*

Specific Authority

0..*

Operation

1

0..*

Determine Access To

1..*

1

Versioned Object

Create New Version()

1

0..*
Applies to

version 1..*
Instance

0..*

Object Version

1

1..*

Versioning

Type

1

Object Type Version

0..*

1..*

Applies to

0..* 1

Version Instantiation

Figure 4 Roles, Rights and Responsibilities in the CIMM

 107

Project Roles, Rights and Responsibilities
Figure 4 shows the basis for the handling of ownership, rights and responsibilities in
the CIMM. All actors participate in a project by means of one or more roles. Thus it is
the concept of a role rather than an actor that falls within the scope of the CIMM.
Through a role, an actor exercises authority over some parts of the project
information, and each Authority is characterized by a number of responsibilities that
relate to a particular object. In order to discharge those responsibilities, the actor
(through the role) needs to have certain rights to perform actions (or Operations) on
the object in question.

An important principle here is the use of operations on objects to define rights. This is
in contrast to the conventional approach of assigning rights as: Create, Read, Update
and Delete. In the COMMIT approach, the emphasis is on using real world concepts
through the abstractions that may be represented in a true object-oriented model. For
example, a project manager might have authority over a task in the project plan. In
order to discharge the responsibilities associated with that authority, the project
manager would need the rights to assign resources to the task, to move the start date of
the task, etc. However, he or she might not have the right to delete the task, or change
its duration. Naturally, this would depend on the specific situation, and the rights that
the project manager would have over tasks might be different for different tasks. This
suggests that rights must ultimately be defined at the instance level (e.g. over a
particular task rather than over tasks in general).

In practice, however, there could be a huge number of combinations of rights to be
assigned to roles and objects. For this reason, mechanisms are provided in the CIMM

to allow default authorities to be defined over all objects of a given type. These
authorities would apply in the absence of a specific authority for an instance. Similar
mechanisms are being developed in relation to containment, whereby default
authorities may be allocated in respect of an object by virtue of its being contained, or
owned, by another object.

10..*

Default Authority

Instance

0..*

Type

1

Object Type

10..*

Is Granted for objects of type

0..*

Specific Authority

1

Versioned Object

Create New Version() 0..*

1

Instantiation

0..*
1

Applies to

1

Project Role

0..*

Authority

Assign Right() 10..*

Exercises

Figure 5 Use of type to define default Authorities.

 108

Change Notification and Propagation
Notification is the process by which amendments made to objects are notified to other
objects that may have an interest. Figure 6 shows how this is handled conceptually in
the CIMM. A notification obligation represents the fact that an object is required to
invoke some operation on another object whenever a particular kind of change occurs
(i.e. whenever an operation is performed on it). The invocation of an operation is
considered to be identical to the passing of a message to an object. It is then the
responsibility of the object receiving that message to decide how to respond. This is

an important element of abstraction in object-oriented systems and makes for a good
separation between the semantics of an object in terms of its interface, and the
implementation of that object in software.

In general, some trigger is responsible for causing an operation to be invoked. A
trigger is a reason for some operation to be performed upon an object. In the current
version of the CIMM, there are two kinds of trigger. One is that a decision has been
made, and this is discussed in the following section. The other is that a notification
obligation has been discharged as a result of some other change. A notification
obligation is discharged whenever a particular operation is performed on a particular
object. It results in another operation being invoked on another object, and this
operation is considered to be a notification.

In some cases, the object to be notified of a change might be another object in the
project. E.g. a window may need to be notified that the position of the wall containing
it has been moved; or a project task to build a wall may need to be informed that the
wall has been increased in size. In other cases, the object to be notified might be a
role, in which case a message would need be sent to the actor or actors carrying out
that role.

Notification

Note: Invocation of an Operation
is viewed as message passing.
The response behaviour is
determined by the recipient.

A Notification
Obligation may only
result in a Notification

1

(Trigger)
0..* 0..*

Operation Invokation

1 0..*
Results In

1

0..*

1..*

0..* 1

1..*

Operation

0..*

1

Is An Instance Of

0..*

Instance

0..*

Type

1
Object Type Version

0..*

1..*

Applies to

Recipient
1..1

0..*

Sender1..1

Object Version
0..* 1

Version Instantiation

0..*

Notification Obligation

Discharge()

0..* 1
Requires Invokation of

1..*0..*
Is required on Invokation of

1..1

0..*

Is required for

1..1

0..*

Is required of

Figure 6 Change Notification and Propagation in the CIMM

 109

The spread of electronic mail and fax means that the CIMM can not only represent the
notification of actors through roles, but also can, to a large extent, automate it. Many
individuals will be unused to working in an integrated construction environment in
which shared project information changes at a rapid pace. A notification mechanism is
therefore essential for keeping actors aware of project changes and also supports the
automation of other information management processes such as approval. Propagation
involves changing the properties of a set of target objects because of a change
introduced to a source object.

It is important, however, that the concepts of notification of actors, and change
propagation, which is the notification of objects that will then automatically update
themselves, are unified under the general heading of Notification. This unification
allows decisions that are currently made by human beings to be automated at some
time in the future through the appropriate use of knowledge-based system
technologies.

Decisions, Interdependency and Capturing Intent
When a decision is made in a project, it should be made on the basis of available
information, and will result in new or changed information. This is the underlying
concept behind the tracking of dependencies between pieces of information in the

COMMIT system. Figure 7 shows the way in which decisions are recorded in the
CIMM, and the manner in which the dependencies are handled between decisions and
the various versions of information stored in the system. It shows that a decision is
influenced by a number of factors, each of which is determined by information stored
in the form of objects (or rather versions of objects). Once the decision is made, it is a

1..*1

Decision

0..*

Decision Factor

1..*1

Influences

0..*
0..*1

1

0..*

1
(Trigger)

0..*

Operation Invokation

1

0..*

Results In

Object Version

0..*

0..*

Affects

0..*1

Generates

Type

Instance

Object Type Version

0..*

1

Version Instantiation

Operation

1

0..*

Is An Instance Of

0..* 1..*

Applies to

0..*

1
0..* 1..*

Figure 7 Decisions and Interdependency in the CIMM

 110

trigger for operations to be performed on objects, which will result in the creation of
new versions of objects and new objects.

As an example, consider the situation in which the thickness of a wall needs to be
maintained at the same width as that of an adjacent column, say for aesthetic reasons.
A notification obligation would be placed on the column to inform the wall whenever
its own thickness is changed (perhaps by the structural engineer). By default, the wall
could inform the architect that the column has changed size and that its own size
might need to be changed. It could even respond by asking for (or requiring) a
message to go from the structural engineer to the architect explaining the reasons for
the proposed change to the column, and asking for that change to be approved and
taken account of. In this case, the content of the message could be captured and stored
as part of the decision factors for the decision to change the width of the column.
Later, as design technology improves, it may become possible for this change
propagation to be automated through the use of knowledge based software embedded
in the wall object. However, the underlying model of notification, propagation and
capturing of intent remains the same.

Conclusion
This paper has described the underlying models of the COMMIT project, which is
concerned with the management of object based information in a construction project
context. These models are continuously being developed and improved in the light of
experience from prototype implementation work, and feedback from the project’s
partners in standardisation, industry and research.

The emphasis in the COMMIT project has now moved onto ways of utilizing the
models to improve integration and decision-making in practice. Issues are being
investigated surrounding the capture of intent behind decisions, in ways that interfere
as little as possible with the working practices of the construction project participants.
This involves capturing information about the object versions that were consulted in
reaching a decision, and the use of information captured in requests for approval of
changes, etc.

Also under investigation is the creation of techniques to analyse the network of
information captured within the COMMIT system to improve the availability of
timely and relevant information to support decision making in real time. This work is
in its early stages and will be reported on in a future publication.

Acknowledgements
The COMMIT team wishes to acknowledge the contributions made by the members
of the ICON steering group through their involvement in the ICON, OSCON and
COMMIT projects.

This work is supported by the EPSRC under the project grant “Intelligent Integration
of Information for Construction”.

 111

References
Aouad, G. et al., (1994), ICON Final Report, University of Salford.

Björk, B-C. (1994). RATAS Project - Developing an Infrastructure for Computer-
Integrated Construction, Journal of Computing in Civil Engineering, Vol. 8, No. 4,
400-419. http://www.vtt.fi/cic/ratas/index.html

Bohms, M., Tolman, F. and Storer, G. (1994). ATLAS, a STEP Towards Computer
Integrated Large Scale Engineering, Revue internationale de CFAO, Vol. 9, No. 3,
325-337. http://www-uk.research.ec.org/esp-syn/text/7280.html

Booch, G (1994) Object-Oriented Analysis and Design with Applications, 2/e. ISBN 0-
8053-5340-2. Addison-Wesley.

Cooper, G.S. (1995) Object-Oriented Databases from an Information Technology
Viewpoint: Knocking Down Some Walls, in Object Technology and its Application in
Engineering. ISBN 0902 376 209, Ed. Professor James Powell, proc Conf on Object
Technology and its Application in Engineering, Glasgow, March 1995. DRAL (1995).

Dubois, A.M., Flynn, J., Verhoef, M.H.G. and Augenbroe, F. (1995) Conceptual
Modelling Approaches in the COMBINE Project, presented in the COMBINE final
meeting, Dublin. http://erg.ucd.ie/combine/papers.html

Froese, T. and Paulson, B. (1994), OPIS: An Object Model-Based Project Information
System, Microcomputers in Civil Engineering, No. 9, 13-28.
http://maillist.civil.ubc.ca/~tfroese/pubs/

ISO/TC184/SC4 (1994), STEP Part 1: Overview and Fundamental Principles,
International Standard, ISO, Geneva, (11). http://www.igd.fhg.de/www/igd-
a2/hyperstep/iso-10303/part1/gen.html

OMG (1995), The Common Object Request Broker: Architecture and Specification,
OMG. http://www.omg.org/corbask.htm

UML (1997) UML Document Set, Version 1.0, 13 January, 1997 (Rational Software
Corporation). http://www.rational.com/uml/index.html

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. (1991), Object-
Oriented Modelling and Design. Englewood Cliffs, New Jersey: Prentice-Hall.

