

 199

Java Based Solution for Generic Product Data Browsing

Kari Kaitanen
VTT Building Technology, Espoo, Finland

ABSTRACT

In its’ earlier and on-going research projects VTT has developed generic meta-level prod-
uct data models considering especially the needs of the construction industry. In this par-
ticular approach a new application, generic product data browser, has been developed on
top of this fundamental modelling work by using the new Java technology.

Java is a fully object-oriented platform independent programming language, which enables
you to make easily robust, multi-threaded implementations fully integrated to Internet. The
new technology supports also component based programming (JavaBeans, CORBA) and
derived objects. The browser application, called “Starlet”, is fully implemented with Java
and can be run anywhere through any Java-supported web-browser like Netscape or MS
Internet Explorer. The applicavpvption can be run also locally as a stand-alone program.

The product data model used by “Starlet” is based on a generic meta-model. This high-
level schema, defined by EXPRESS-G, supports generic product data management and
gives the application a lot of flexibility and scalability in describing your product data class
structures and for example object grouping. The schema supports easier mapping to and
from e.g. already available and yet to come IFC-schemata without any loss of product data
information.

1. JAVA TECHNOLOGY

Java is a fully object-oriented platform independent programming language, which enables
you to make easily robust, multi-threaded implementations fully integrated to Internet
[Heller et al. 1997]. The new technology supports also component based programming
(JavaBeans, CORBA) and derived objects.

Java technology is a very rapidly growing technology nowadays. However many things that
you would expect to exist already in the other environments, like MFC (C++), can still not
be implemented with Java. The standardisation does not yet fully support things like mouse
dragging or other very useful things in good software development.

Many things can be however implemented in other, very often more difficult - and unfortu-
nately non-standard - ways. In most of the times it would be better to just wait the standard
to expand enough, but the process has still been quite slow. The new forecoming standard

C
on

st
ru

ct
io

n
In

fo
rm

at
ic

s
D

ig
ita

l L
ib

ra
ry

 h
ttp

://
itc

.s
ci

x.
ne

t/
pa

pe
r

w
78

-1
99

7-
19

9.
co

nt
en

t

http://itc.scix.net/
http://itc.scix.net/
http://itc.scix.net/id.cgi/w78-1997-199.content

 200

of Java however does promise a lot and e.g. I/O methods that have been made very secure
in the earlier versions is going to be handled in the future in a more open way.

1.1 Limitations of current development tools

One major problem in implementing Java is that the Java based development tools are still
a bit immature. In this approach VisualJ++ development tool was chosen. VisualJ++ be-
haved rather well and almost no crashes with the system or development tool was hamper-
ing the work. This is probably because the tool is mostly based on VisualC++ which has
already got rid of the major child diseases it has had before. Of course, as Java is growing
very fast, better versions of these tools are likely to appear while typing on this document.

One major point and a good example of deficiencies in the used development tool was the
need of an outline box -control, which could be found in the control menu of the interface
wizard (VisualC++) - but no Java code was yet generated for this control. As said these
kind of weaknesses are of course disappearing very quickly as the tools are developed fur-
ther.

2. USED META-MODEL SCHEMA - “OOCAD 6.0”

In its’ earlier research projects VTT has
founded the research of product model-
ling on quite high-level schemata. The
idea of using a meta-level schema is
that they are very scaleable and flexible.
More detailed models can be easily ex-
tended from the meta-level schemata if
the model has the needed structures for
flexible object grouping etc. Therefore
the schema supports also any forecom-
ing standard as IFC or ISO/STEP and
product data mapping from these more
detailed schemata can be easily trans-
ferred to OOCAD meta-model (picture
2.1) without any loss of information.

2.1.1 Single heritance only sup-
ported

The schema - as well as the implemen-
tation - could very easily support multi-
heritance but for practical reasons it’s
not accepted. Multiheritance often leads
to awkward problems in for example

Picture 2.1. OOCAD 6.0 model - as implemented.

 201

method handling.

2.1.2 Free grouping

Another very interesting property of the OOCAD 6.0 is that objects can be set to any num-
ber and any kind of groups. In any field - but maybe in the construction business especially
- it’s necessary to offer grouping for different kind of objects. The group can be related to
almost anything: ownerships, materials, suppliers, timing, etc. For these reasons the object
grouping is on purpose modelled to be very flexible in OOCAD 6.0; for a group any num-
ber of subgroups as well as many supergroups are supported. I.e. groups are stored in a ‘di-
rected net’ for maximum flexibility and minimum redundancy of stored data.

3. “STARLET” - GENERIC PRODUCT MODEL BROWSER

“Starlet” generic product model browser has been implemented with Java. The browser can
be opened by any standard 32-bit browser like Netscape or MS Explorer
(http://www.vtt.fi/cic/java/starlet/starlet.html) or it can be run as stand-alone program on
any environment where Java Virtual Machine is present.

3.1 Main approach

The basic idea of this generic product
model browser is that you can examine
the product model from many (8) differ-
ent viewpoints - via Internet. In a way
you can understand these different views
as ‘sorting’ the product model based on
different entities.

In ‘Starlet’ the product model, i.e. it’s
objects, groups, classes, etc. can be
viewed for example as a decomposition
view to the product model; the parent
and child objects (‘parts of’) are shown
by intending the child objects. As well
you can check the class hierarchy (pic-
ture 3.1) or examine the objects sorted by groups and their subgroups. Any object can be
also be set to exist as a ‘type object’ and gathered up to the same database, but handled as a
separate library.

Picture 3.1. Browser’s main interface.

 202

3.2 Dynamic class handling

Classes are also - by the meta-level
schema - also generic entities and inherit
the same basic properties as all the other
entities in schema. Therefore new classes
can be created - or destroyed - dynami-
cally in the browser environment (pic-
ture 3.2). The generic properties: unique
entity id, name, status, description and
creation as well as the modification
times take care that class can be stored
into the database as any other entity.
New classes are accepted for the database if only the superclass is defined; only one class,
defined as rootclass, can be left without the ancestor class.

3.3 Type object vs occurrence objects

In generally it’s often important to be able to
separate logical type objects from occurrence ob-
jects. This is sensible not only for saving space
in the product model but for keeping the data
model as logic as possible. Type objects are ob-
jects that are used in the product model in many
places; whenever user might think that this par-
ticular object might be used also for describing
some similar substructure of some other object.

In it’s earlier versions [Hannus et al. 1995a/b]
the OOCAD schema separated distinctly the type and occurrence object (picture 3.3). The
problem in these separate objects was that even though it leads to very compact structure of
the database it also leads to very inflexible decomposition hierarchy; every other object in
the decomposition structure had to be presented as a type object - even if it would surely
occur just once in the model.

Picture 3.2. Dynamic class editing.

type_object occurence_
object

of_type

parts_ S[1:?]
(INV)part_of S[1:?]

object BOOLEAN
is_type_object

OOCAD 2.0 (conceptual)

OOCAD 6.0 (as implemented)

Picture 3.3.

Merging type and occurrence objects.

 203

Therefore in the last version of OOCAD
schema these type and occurrence ob-
jects were merged together and the user
may change the status of any object to be
a type or an occurrence object (picture
3.3/3.4). Though in case the object has
more parent objects than one, it’s auto-
matically forced to exist as a type object
- as it’s already presents a logical type
object in the product model.

3.4 Grouping of objects

Objects can be grouped to any number of
groups. Furthermore groups can be set
into any number supergroups - and they
can have any number of subgroups. I.e. the hi-
erarchy of grouping has not been limited in any
way (picture 3.5).

If an object is a member of subgroup it’s auto-
matically a member of its’ supergroups and all
the higher parent groups. In some cases the
same object - or group - can also appear in
many levels of the same hierarchy-tree; the ob-
ject could be a member of some group but also
a member of its’ subgroup. This way for the
user has been given the possibility of deleting
the object from some place of the grouping hi-
erarchy so that it still might appear in the group
in some other place. This characteristics of very flexible object grouping has also taken ac-
count in “Starlet” product model browser; the object can appear in many different levels in
the group hierarchy tree, but is shown only once to the user.

3.5 Dynamic relationship typing

There are a few common relationship types - as supporting or attaching - that can be found
usually in any product model describing the data of buildings. OOCAD 6.0 supports mak-
ing any amount of relationship types and the user can also create new types dynamically
while building the product model (picture 3.6).

Picture 3.4. Interface of a general object.

Picture 3.5. Object grouping in “Starlet”

 204

3.5.1 Symmetric vs asymmetric relationships

Compared to the earlier versions of OO-
CAD [Hannus et al. 1995] it’s now also
possible to categorise some relationship
types to ‘symmetric’ or ‘one-way’
-relationship types. Symmetric relation-
ships present the relationships that have
the same characteristics both ways. For
example relationship types ‘attaching’ or
‘touching’ are clearly symmetric rela-
tionships, as the roles of participating
objects are exactly the same both ways.
Both objects are ‘touching’ each other -
in case no other specific role is defined - i.e. ‘touches’ and ‘being touched’ has exactly the
same effect by the participating objects.

3.5.2 Objects’ different roles in relationships

On the other hand ‘supporting’ is a good example of asymmetric relationship as the other
object has a distinctly different role, e.g. in this case the other object ‘supports’ when the
other is ‘supported’. With “Starlet” browser the user can handle both symmetric and
asymmetric relationship types (picture 3.6). Different relationships can also be limited - by
it’s role - between objects of some specific earlier determined classes. For example only
the objects generated from the ‘Beam’ -class could be set to share relationships that are
‘supporting’ other objects. On the other hand some secondary building parts - like windows
or doors - could be set only to be ‘supported’.

3.6 Attribute handling

By OOCAD 6.0 schema all the attributes are handled in special groups, attribute sets. At-
tribute sets are defined by an attribute set definition -entity, which stores the information of
the attribute list. Attribute definition defines unit and datatype for each attribute. In “Star-
let” -browser the attribute definition entities are extended to contain also the default, mini-
mum and maximum values of the attribute [Kaitanen 1995].

“Starlet” -browser has a very flexible way of pointing the attributes so that no redundancy
in information storing is needed. One attribute can be pointed from any number of hosts,
i.e. attribute sets. That means that for example the same attribute for wall width can be
linked to present any other measurement in the building. This characteristics of free point-
ing can be used splendidly also for printing and viewing the product in 3D or 2D geometry;
for each building object there has to be a specific viewing object for this dimension defined
- that is in it’s simplest just a bounding box. This object can be set to follow exactly to the
same parameters of some critical measurements of any ‘real’ object in the database.

Picture 3.6. Creating new relationship types

 205

On the other hand this characteristics of pointing to any new or old attribute can be used in
almost any other data storing entity in the product model e.g. attribute set, attribute defini-
tion or attribute set definition -entities. In principally this gives the user two totally differ-
ent ways of describing similar objects (copies) to product model: by creating a type object
and multiplying its’ parent occurrence objects or by pointing to only one attribute set from
any number of occurrence objects.

For example a beam of similar measurements can be described in the model - instead of us-
ing a specific type object - by using the same attribute set for width, height and length but
different attribute sets for position and other data. This wide flexibility of defining similar
structures in different ways gives the researcher new good possibilities to study methods of
structuring non-redundant product models in practice.

3.7 Database connectivity

Because no outstandingly promising Java supporting object database was found for this
project while starting this project, “Starlet” browser is still transferring data to and from a
file where the product model is stored. But even though a clear interface between applica-
tion and (still virtual) database was made, so that in the future it’s possible to start using
any commercial object database. Please note that now there are already a few very promis-
ing object oriented databases available.

3.8 Support to standards (IFC/STEP)

The application doesn’t directly support any standard (ISO/STEP or IFC)
but as the used schema has been left to be very open - i.e. high level - any
standard can be quite easily mapped to OOCAD 6.0. STEP physical files
(SPF) will be supported in the future versions for these various (IFC-)
schemata (picture 3.7).

Please note that any schema of for example IFC standard can be already
built inside the browser so that when starting for example a new project
(picture 3.6) the current used class hierarchy is set as soon you open a new
building project based on for example core classes of IFC.

4. CONCLUSION

This paper introduced a new practical approach to product model research by offering a
tool - Java based product model browser - for viewing, editing and studying the structures
of product models and possible data models in the construction field. The “Starlet” tool
was not developed for handling construction projects in practice but is a handy tool for
studying possible solutions in similar future applications and data modelling projects.

Picture 3.7.

SPF I/O

 206

On the other hand this research does enlighten a lot the excellent possibilities of the new
Java programming language in the field of object oriented and nowadays much net-based
IT technology. Java gives an excellent ground for new product modelling research by its’
robust, multi-threaded architecture fully integrated to Internet.

REFERENCES

[Hannus et al. 1994] Hannus, M., Karstila, K. & Tarandi, Requirements on standardised
building product data models, In: Scherer, R.J. (ed.) Product and Process Modelling in
the Building Industry, Proceedings of ECPPM '94, Dresden 5-7 October 1994. Rotterdam:
A.A. Balkema. P. 43 - 50. ISBN 90-5410-584-8

[Hannus et al. 1995a] Hannus, M., Karstila, K.J. & Serén, Generic product data model
for product data exchange - Requirements, model and implementation, In: Pahl, P.J. &
Werner, H. (eds.) Computing in Civil and Building Engineering. Sixth International Con-
ference on Computing in Civil and Building Engineering VI-ICCCBE, Berlin 12-15 July
1995. Vol. 1. Rotterdam: A.A. Balkema. P. 283 - 290. ISBN 90-5410-557-7

[Hannus et al. 1995b] Hannus Matti, Karstila Kari, Serén Karl-Johan, A generic product
data model for building product models, Espoo, (draft 2.6.95) 1995, VTT.

[Heller et al. 1997] Heller Philip, Roberts Simon, Seymor Peter, McGinn Tom, Java 1.1,
Developer’s Handbook, USA, 1997, 1174 p., SYBEX Inc.; 1460, ISBN 0-7821-1919-0

[Kaitanen 1995] Kaitanen Kari, Geneerisen tuotetietomallin soveltaminen rakenne-
suunnitteluun (Applying a generic product data model in structural design), Espoo,
1995, VTT, 160 p.

[Serén et al. 1993] Serén, Karl-Johan, etc., Object-oriented CAD tool implementations
for the construction industry, Espoo, 1993, 90 p., VTT, VTT tiedotteita; 1460, ISBN
951-38-4354-8, ISSN 1235-0605

