

 329

The Role of Adaptive Software in Business
Process Re-engineering

Mark John O'Brien
Department of Computer Science, University of Nottingham,

Nottingham. NG7 2RD U.K.

Introduction
With their predilection for stasis economists are perhaps the only inhabitants of the
contemporary world who do not see change as a constant ingredient in human systems.
Certainly professionals in the computer industry positively embrace the exciting nature of
new concepts and the manifestation of those concepts in technology. Equally, if
somewhat more circumspectly, business managers feel compelled to alter their own
beliefs to meet the concrete manifestations of new ideas. A point in space rich in interest
is the intersection of the developmental trajectories of these two professional groups. But
it has become rather more than a point in space, it is rather more an inter-twining of
action and reaction, of need and satisfaction. The dynamics of change viewed from these
two quite different perspectives and the mutually destabilising effects of this interaction
form the subject of this paper.
The malleable nature of software has been, at one and the same time, one of its most
endearing yet frustrating characteristics. Programmers have the freedom to alter
behaviour and functionality of software through nothing more strenuous than editing a
file using a text editor. But the very simplicity of the tools hides a complexity of
structure which makes this apparently facile exercise one that is fraught with danger. To a
large extent the subject of software engineering is concerned with monitoring and control
of the change mechanisms available to programmers. The simple observation that the
vast majority of software development is concerned with the maintenance of existing
systems forcefully emphasises this concentration on the management of change of
software systems. It is only recently that some researchers have viewed the possibility of
change as something which can be harnessed positively where software is designed to
change.
Whereas software artefacts can be objects of scientific study the business world allows no
such dispassionate viewpoint. It is a world dominated by the present; practical
considerations of the possible consume much of the total management effort available.
Yet if managers recognise the dynamic nature of their environment they are not totally at
the mercy of that dynamism. If they cannot alter the world as it is, and as it will be, they
can at least alter their organisations to meet the changing circumstances of that world. At
root, this is the raison d'etre for the set of ideas and concepts that evolved into the subject
of business process re-engineering, or BPR as it is sometimes known. Despite the zeal
with which BPR has been promoted in many respects it is merely another branch of the
subject which goes by the name of business or corporate strategy. While it is true that
BPR involves much low level tinkering with processes the adherents of BPR state that its
real value lies in its global, corporate-wide application. The polemics of such arguments
need not detain us here, BPR exists and with the prevalence of software systems, both
BPR and the software must at some point mutually recognise one another.

C
on

st
ru

ct
io

n
In

fo
rm

at
ic

s
D

ig
ita

l L
ib

ra
ry

 h
ttp

://
itc

.s
ci

x.
ne

t/
pa

pe
r

w
78

-1
99

7-
32

9.
co

nt
en

t

http://itc.scix.net/
http://itc.scix.net/
http://itc.scix.net/id.cgi/w78-1997-329.content

 330

This paper draws these two strands together. If BPR demands change as a matter of
choice then any software systems embedded in those changing processes will also be
required to change. The degree to which the software facilitates or hinders such changes
can be taken as a measure of the quality of design of the software. This paper is
concerned with software systems where the possibility of change has been designed into
the systems from their very conception. In the case of software systems which have been
designed to meet requirements specific to a particular point in time and space, BPR can
be hindered by the relatively inflexible architecture of the software.
The structure of this paper is simple. It describes some of the issues relavent to adaptive
software. This description ranges over both the technical and economic factors in
building adaptive software. The aim is not to provide a detailed consideration of adaptive
behaviour but rather a comprehensive overview. The second section is concerned with
the conjunction of business process re-engineering and software, and the relavence of
adaptive behaviour to this conjunction. These sections are essentially generalised and
theoretical in nature so the final section describes a particular adaptive system that has
been built for estimators in the construction industry; this last section highlights the
theory and renders the ideas in a concrete form.

Adaptive Software
All software can be easily changed. This ease results from the basic alphanumeric form
of all programming; in essence an editor is all that is required to change the textual basis
of a program and through such a change the behaviour is altered. Yet the ability to
change a software system does not imply that all software systems are adaptive. To call
software `adaptive' requires a degree of volition on the part of the designers, it requires
the use of particular design techniques and the use of particular mechanisms during the
construction of the system.
Before proceeding any further a potential source of confusion should be removed: by
adaptive software we do not mean software that has been built to implement any flavour
of neural net. While neural networks have certain characteristics in common with more
general adaptive software they are too narrow in their abilities. No matter how complex a
neural net might be all that each net does during training is to create an algorithm to
recognise the inputs fed to it during that training process. The behaviour of the network,
while it may change over time, remains limited to a particular function.
More generally adaptive software monitors its own environment and alters its behaviour
on the basis of that monitoring. This type of environment-system interaction leads to a
form of evolution of the system. It changes with time as conditions change. Before
proceeding to the implications of such changes the mechanics of adaptation must be
described. These characteristics constitute a set of dimensions along which various forms
of adaptation can be measured.
Perhaps the most important question to be resolved in the design and construction of
adaptive systems is deciding on the agent of change. Simplistically, there are two
possibilities: the system can automatically adapt itself or some form of human
intervention can be the agent of change. The former is the more radical, and
problematical, approach. In general system induced change can only take place within
limits which have been predetermined by the designer of the system. This requires a
degree of foresight on the part of the designer. The issues behind such foresight are

 331

complex and have far reaching consequences for the current approaches to systems
analysis. At the moment the aim of systems analysis is to elicit the user requirements and
then using a process of reductionism distill these requirements into the functional
description of a conceptually complete and internally consistent system. Systems analysis
for adaptive systems requires a quite different approach, an approach where diversity is
recognise d and maintained throughout the entire process: no reductionism takes place.
The diversity in fact comes to form the `envelope of adaptability' marking the boundaries
of the system's behaviour. This is not to say that the system cannot behave in manners not
lying within this envelope, merely that this is what is designed into the system at the
outset.
Where change is controlled by human actions it too can utilise the established envelope,
but quite naturally the possible system behaviour extends far beyond this envelope. At
the limit any of the forms of system maintenance can be viewed as adaptation. When
dealing with human invoked adaptation the question naturally arises as to who is, or will
be, performing the adaptation. Anticipating somewhat, in the adaptive estimating system
described below the system designers had hoped that estimators themselves would have
the requisite skills, yet during evaluation it was found to be beyond their capabilities.
This despite major efforts to relieve them of programming in any form.
The next dimension to be considered in designing an adaptive system is one of time:
exactly when is the system to be changed. Most systems involve a monitoring of the
environment and when certain metrics reach critical values they trigger the agents of
change into action. The design of these trigger metrics is a crucial element. Just as
important, however, is their treatment by the system. A system cannot respond instantly,
and continually, to changes in the environment. The resulting system would be extremely
confusing for the users since its behaviour would alter from moment to moment. Thus
some form of delay, or more precisely `momentum', must be embedded into the system.
The system will only change as the result of a set of cumulative environmental events;
moreover, the accumulation must be the result of a reasonably consistent and
homogeneous collection of events.
The most common form of environmental events that are monitored by adaptive systems
is the user interactions with the system itself. Thus a system may monitor the mistakes
made by the user and as a result the error messages and help information supplied to that
user would be couched in terms appropriate to the user. In such systems the user
behaviour comes to determine the system behaviour.
Finally, in this review of the dimensions of adaptation a brief consideration of the
mechanisms for embedding change must be given. In simple terms the primary method is
one of `design deferral'. Design deferral means that whenever the system designer is
confronted with a number of possible options to be included in the system he or she
includes all the options and leaves the decision as to the use of one or other of the options
to the agent of change. Given that most systems are implemented as run time executables
perhaps the most common form of implementing design deferral is through the use of
configuration files. A simple example of adaptation that is now available to most users is
the setting of screen colours. In the past this was established by the designer and coded
into the system; the users had no choice but to accept the colours selected by the system
designers. But with design deferral the screen colours are determined by the values held
in a start up file which is read by the system when it begins executing. It is revealing that

 332

configuration files are becoming enormous, controlling a wide variety of possible system
behaviour.
The use of configuration files is linked to a second method of achieving adaptability,
namely the use of parameterisation. Again rather than explicit values being embedded
into systems to determine system behaviour parameters are used to hold values which can
be altered as the system executes. More recently the use of polymorphic behaviour in
object oriented systems can be used to achieve a degree of adaptability. Finally the
system may include non-compiled code segments which are interpreted at run time. As
with configuration files these code segments can be edited while the system is running to
alter its behaviour. A key issue with such code segments is the language in which the
code is to be written; if it is intended for non-specialists to alter such code then it must be
simple to understand.
Technically much of this goes against some fundamental ideas of software development.
Take for example the idea of `referential integrity' which demands that when a block of
code is invoked using a set of values, then if those values are unchanged on separate
invocations then the behaviour of the code should be identical on each invocation. (This
is the reason why software engineers steer clear of global variables. Global variables are
the best way to undermine referential integrity.)
Drawing all these elements together a simple example might help to explain adaptive
behaviour in software systems. The example comes from the most studied area of
adaptive software systems: the user interface. The example is concerned with a simple
menu structure where a number of options are listed one below the other. In a traditional
non-adaptive system the ordering of the options is fixed by the system designer. The
ordering of the options bears no relation to the individual requirements of the user. Thus
in an adaptive system the system monitors the number of accesses to each option
performed by a user; each number is a montioring metric. After a certain period of time,
or number of accesses, the system is triggered to re-order the options such that the most
frequently accessed options for a user appear at the top and the most infrequently
accessed ones at the bottom. Over time therefore the system will create a number of
personalised menus appropriate to each user. Indeed the system could go further an d
begin to remove options from the menu which are never used by a particular user; this
action reduces the perceived complexity of the system. In a more advanced system the
links between successive options can be monitored such that wholesale reorganisations
can take place which places linked options in close physical proximity on the screen. In
such systems as this when the reorganisation takes place it must be signalled to the user
who would otherwise be confused by the new, and unannounced, menus.

Software and Business Process Re-engineering
Business process re-engineering is either a fundamental set of techniques for the
complete reconstruction of an organisation or merely a reworking of old concepts
dressed up in new terminology. The difference is merely one of perception. Certainly,
business process re-engineering is strategic in nature and can therefore be seen in the
light of existing corporate strategy concepts. Moreover, the injunction to `obliterate'
rather than `automate' (Hammer, 1990) suggests it is a direct lineal descendant of the
ideas to change `effectiveness' rather than `efficiency'. In that particular dichotomy
managers were encouraged to change what they did rather than merely improve that

 333

which they already did. It is not the intention here to enter into this particular debate but
merely flag the rather contentious position of BPR in theory and practice.
Also before proceeding no distinction is made in this paper between business re-
engineering and process re-engineering; the former is all embracing and has a wide
perspective whereas the latter is more narrowly focussed. Since the relationship between
adaptive software and both of these manifestations of re- engineering is merely one of
degree they will both be treated in the same way: hence the use of the phrase business
process re-engineering. The only caveat to this is the example given below, an adaptive
estimating system, does not display the cross-functionality which is often demanded in
business re-engineering.
Whatever may be said of BPR it certainly involves a process of change. Since such
changes are viewed from an organisational point of view they must necessarily, in
general, involve changes to the entire environment and, in particular, to the embedded
software systems. Herein lies the dichotomy of such software systems. It is usual for such
systems to have been designed to satisfy the existing business processes. The software
will have been fine tuned and developed so that it fitted an existing way of doing things.
Such systems have therefore been implemented with a view to automating the existing
processes. Equally, such systems will have been crafted in such a way that they are
intolerant of change. Flexibility is rarely in the mind of software developers who are
pressed to deliver systems which are designed to satisfy specific business needs. In an
environment where change is taking place such systems can therefore act as a break on
the change process itself. Rather than being an enabling technology, tradi tional software
represents a significant drag on any forward movement. This problem is well understood
by the proponents of business process re-engineering and it is not untypical to find
authors stating that the software systems must be abandoned and new ones implemented.
In the hard world of commerce this is not an attractive proposal. Senior management is
only too aware of the costs involved in designing and implementing new software, and
the thought of decommisioning large scale software systems is painful. It is at this point
that the idealism of business process re-engineering comes up against the cold
pragmatism of legacy systems.
Current software systems are largely designed to be unadaptive, which suggests that their
role in business process re-engineering is largely obstructive. They represent an in-built
barrier to change. But given the introductory comments with regard to change being a
factor in all human endeavours the benefits of adaptive software need little explanation.
And in particular the use of such software is positively beneficial when process re-
engineering takes place. Thus the real benefits which accrue from adaptive software are
not realised at the moment of commisioning but rather in the future.
Despite the disparaging opening comments on economists one economic observation
needs to be made with respect to adaptive software in a commercial setting. The creation
of adaptive software requires effort above and beyond that required of non-adaptive
software. This extra effort involves cost. Moreover, it is an extra cost which cannot be
recouped as soon as the software goes live. In effect adaptive software involves increased
expenditure at the start of the software lifecycle but this is balanced by benefits at the end
of the lifecycle. To put it mildly, this temporal mismatch of expenditure and benefit
meets with little enthusiasm from the organisations involved.

 334

An Adaptive Estimating System
All the above has been somewhat theoretical and general in tone. This section describes
the construction of an adaptive system to support the estimating function and serves to
provide a practical example (see O'Brien and Pantouvakis, 1993). It has to be admitted
that the initial impetus behind the construction of this system was not to build a system
which could be altered over a period of time. The aim rather was to create a system that
could be adapted to meet the needs of a variety of estimators. Equally, the thought
behind the system was to create a tool that could itself be used to build estimating
systems. Such a tool proved impossible to build without direct reference to the functions
of estimating itself; this in turn resulted in the tools and the system being completely
integrated. In some respects the resultant system was greater than the sum of its parts, and
the abilities of the system went beyond the expectations of the designers.
The system was built using dBase III+. Two reasons motivated this choice. First, the
embedded language of this database management system is interpreted. This means that
code can be altered while the system is actually running and the flow of control changed
on the basis of previous actions. Secondly, dBase III+ is clearly a database management
system which is designed to support the creation, modification and access of large scale
data structures. These data structures in turn contain data values which can change over
time. This suggested that the data structures to be stored in the database should be the
very estimating system itself. Thus much of the behaviour of the system was defined by
the code that was embedded in the database. The tools that were built to access the
system were thus concerned with editing code held in database structures. This
conjunction of requirements and capabilities proved a natural environment in which to
build the system. It was hoped that the tools would be built to allow changes to be
specified using high level constructs. The hope was that the estimators would specify
what was required and the system would deal with how those requirements would be
implemented. To this end the system was described as being `declarative'. In retrospect
this proved to be a vain hope.
The agent of change in the system was designed to be the estimator. While the system is
running the estimator has access to a special set of options which collectively can be used
to alter estimating functions, menu structures, and reports. During evaluation of the
system with estimators it was found that the advanced nature of the tools was beyond
even the most computer literate estimator. To stress: this was not a failure on the part of
the estimators, but one on the part of the designers. This failure was closely linked with
the failure to produce a truly declarative system; the system required too much
programming skill on the part of the estimator.
Since the agent of change was the estimator the need for triggers was neatly sidestepped.
It was up to the estimator to decide when changes were required. Nevertheless the
inclusion of monitoring metrics and triggers would not prove a major problem. If such
monitoring were included the system would take on a far greater role in decision making.
Thus, for example, if the system observed that a particular estimator displayed consistent
decisions being made in allocating activities to bill items it could allocate those activities
automatically. Wherever estimators took decisions the system could use metrics to
monitor their choices.

 335

The system supported a range of estimating techniques: unit rate, operational estimating,
crude project estimating and so forth. Within each technique the calculations required
were held in the database as functions enabling them to be changed.
The resulting system, while not designed to support business process re-engineering,
turned out to be ideal in environments where changes, both large and small, take place
regularly. Where the designers had envisaged an adaptive estimating system to suit the
different needs of a variety of estimators, the final result proved equally adept at meeting
the changing needs of one estimator as time progressed.
The introduction of a new concept at the end of a paper such as this is not usually a good
idea but the lead into it is perfectly natural. One of the new management fads refers to the
`learning organisation' which is in a state of continuous flux as it acquires knowledge
concerning its own internal functioning and also knowledge on its environment. The
monitoring capabilities of adaptive systems matches exactly this ability to learn as time
progresses. The rather restricted aims of the initial adaptive estimating failed to take into
account the wide range of application, with the result that despite the systems
shortcomings it proved to be a developmental success beyond the hopes of the designers.

 References
Hammer, M. (1990). Re-engineering work: don't automate, obliterate, Harvard Business
Review, July-August, pp104-112.
O'Brien, M.J. and Pantouvakis, J.P. (1993). A new approach to the development of
computer-aided estimating systems for the construction industry, Construction
Management and Economics, 11, pp30-44.

