
A DYNAMIC INFORMA TION SYSTEM FOR DESIGN APPLIED
TO THE CONSTRUCTION CONTEXT

Anders Ekholm and Sverker Fridqvist, Computer Aided Architectural Design, Lund University

ABSTRACT

In this paper we discuss the requirements for an information system for design and outline a
prototype that tests these principles in the context of building design. Information systems can
be characterised as static or dynamic concerning the definition of classes in the model schema,
and concerning classification of model objects. An information system for routine design can be
closed in both respects, while an information system for innovative design must be open in
these respects. The BAS•CAAD information system, presented in this paper, is a dynamic
information system for design, built on a generic ontological framework. The system supports
the definition of classes in different levels of universality, the classes may originate from
different standards or the individual designer, and allows a free combinations of attributes.

Keywords: Information systems, dynamic schema evolution, product modelling, design, CAD

1. INTRODUCTION: BACKGROUND AND PROBLEMATICS

The development of computer based information systems and information networks means a
revolution to information handling in the construction process. It enables a computer integrated
construction process, where information is generated, used and communicated between
different actors in planning, design, production, use and maintenance of the built environment.
Among the prerequisites of a computer integrated construction process is that:

• information must be structured into computer based models in order to enable computer
based analyses of the products and processes that are developed,

• the computer must be able to handle information of other objects than buildings, e.g. the user
organisation, the site, the construction process, and the facility management process,

• information must be standardised in order to be consistent throughout the processes,
• information must be computer based already in the initial processes,
• it must be possible to use the computer as a design tool.

The questions of the structure of building product models and the communication of building
product data between different actors and computer systems have been given much attention
within construction information research, see e.g. GARM (Gieling 1988), RATAS (Björk
1989), and COMBINE (Augenbroe 1995). The issues of standardised product representations
to enable interoperability among computer systems are on an international level handled by the
ISO STEP activity (ISO 1994), and the IAI, International Alliance for Interoperability (IAI
1997). These activities are parallel to the construction information standardisation work carried
out within ISO through TC59/SC13/WG2 (ISO 1997), and national construction classification
agencies. Lately also the principles for structuring computer based user organisation information
have been discussed see e.g. Eastman and Siabiris (1995), Ekholm and Fridqvist (1996),
Maher, Simoff and Mitchell (1997).

In spite of its apparent success, the main approach to product modelling has been criticised to
lead to static representations that are not suitable in a design situation, see e.g. Eastman and
Fereshetian (1994), Eastman, Assal and Jeng (1995), Galle (1995), Junge, Steinmann and
Beetz (1997), and Leeuwen and Wagter (1997). A generic keyword, in the references
mentioned here, is that an information system for design must support dynamic schemaC

on
st

ru
ct

io
n

In
fo

rm
at

ic
s

D
ig

ita
l L

ib
ra

ry
 h

ttp
://

itc
.s

ci
x.

ne
t/

pa
pe

r
w

78
-1

99
8-

21
.c

on
te

nt

evolution, DSE. One way of formulating the criticism is that the traditional approach to product
modelling is class centered, and that it must be abandoned for an object centered approach
(Garrett and Hakim 1994). The apparent similarity of an object centered approach to product
modelling and the facetted approach to classification has been pointed out by Ekholm and
Fridqvist (1997).

In this paper we report a research into how an information system for design, supporting DSE,
would be conceived and implemented. In section 2 we discuss the characteristics of design and
how mental representations are developed. In section 3 we present the principles of information
systems and how these are applied to problems of product modelling, and what the
consequences for a system for design would be. In section 4 the BAS•CAAD system for design
is presented. Finally in section 5 some conclusions and ideas for future research are presented.

2. DESIGN AND REPRESENTATIONS

Design

Design is a problem solving process, it is similar to solving both everyday life problems and
scientific ones. A problem is a conceptual representation of an object or its state, where a certain
understanding is wanting, namely the solution to the problem. (Bunge 1983:271). A problem
solution, also called hypothesis, describes the object or its state in a way that is satisfactory, and
eventually enables a test. The test may be theoretical, relating the solution to existing
knowledge, or empirical, involving an experiment or construction and test of an artefact.

Problem solving is a process of exploration, where hypotheses and tests are made alternately. In
the process, the properties of the hypothesised object are determined in an incremental manner.
The process of exploration in design is characterised by adding and removing attributes from the
conceptual representation of the designed artefact.

A design problem may be characterised as open or closed concerning the determining factors of
the designed artefact, e.g. in building design such factors are environmental impact, user
requirements and available technology. To a closed problem, the determining factors and their
combinations are well known, while to an open problem neither the determining factors nor
their combinations are known, but must be explored or invented. Open problems are also called
”wicked” (Rittel 1984).

Design can be categorised as routine or innovative. Routine design is a closed problem solving
process, it consists of selecting a prototype solution and determining the values of its attributes.
Innovative design is necessary when no such prototype solution can be applied, and new kinds
of things or new uses for known things have to be created. Building design is an example of
both routine and innovative design, the latter especially during early stages. The approach to
building product modelling today, e.g. in CAD programs, does not support innovative design
and is best suited for the later stages of the design process.

Information systems are computer based systems that support the information handling process,
e.g. during problem solving. An information system for design must support the development
of design solutions. In order to put requirements on information systems for design, it is
necessary to have a clear understanding both of how mental representations are built, and how
information systems can be organised.

Object, concept, property and class

Essential to the description of mental representations are the constructs ‘object’, ‘concept’,
‘property’ and ‘class’.

In a general philosophical sense, an object is defined as an entity, concrete or abstract, towards
which our attention is directed (Webster’s 1995). The process of discriminating between
objects, concrete or abstract, results in the formation of kinds, e.g. the class of buildings or the
class of ideas (Bunge 1979:165). From a neuropsychological point of view, a kind is a mental
construct, a brain process, or rather, an equivalence class of brain processes (Bunge 1983:40).
From a philosophical point of view the kind is a concept, the basic thinking block (Bunge
1974:13).

The process of forming kinds is central to problem solving. It consists in distinguishing
similarities and differences of objects, or rather, of their properties. Therefore, the process of
forming kinds consists in conceptualising properties and attributing these to the objects (Bunge
1983:165). The concept of a property is called attribute (ibid:165). The concept of kind, or class
can be defined using the concepts of scope and property. The scope of a property is the set of
things possessing it (Bunge 1977:140). A class is a set of things that constitute the scope of a
property (ibid:140).

The object-property dichotomy is purely conceptual. Even though we can conceptualise a
property, it has no separate existence from the objects that have them. It may be argued that the
concept of property is questionable and could be regarded unnecessary; and that it would be
sufficient to state that there are different kinds of objects. However, it is epistemologically
useful to conceptually separate the object from its properties, e.g. during a process of
investigation we attribute properties to objects and try out our hypothesis by testing whether the
objects have the property or not.

Predicates

Properties of objects are the basis for distinguishing classes, therefore, class concepts are distin-
guished by their attributes, representing the objects’ properties. Class concepts are usually
called predicates (Bunge 1974:15).

A predicate is a function from individuals in a domain to statements in a range, or value space
(ibid:15). For example, at a given moment of time each piece in a game of chess has a specific
position on the board. Chessboard position is a property of each of the chess pieces. The
predicate ”chessboard position”, P, is a function that relates every individual in the domain,
consisting of chessboard, B, and pieces, C, to a statement in the range, V, of chessboard
position values. The possible statements constitute the value space, of the predicate function,
P:CxB→V. The range of chessboard position statements, V, equals the 64 possible positions.

The association from a construct to an object of any kind is called reference (Bunge 1974:34).
Similarly the association from a construct to the properties of an object is called representation
(Bunge 1974:89). For example, the predicate ”person” refers to persons. Some predicates only
refer, e.g. ”person”, while other predicates also represent, e.g. the predicate ”smiling” both
refers to persons, and represents a property of a person.

A predicate may be composed of other predicates. The domain of the composed predicate is the
intersection of the domains of the constituent predicates. For example the predicate ”yellow
song finch” is composed of the predicates ”yellow”, ”song” and ”finch”. Every member of the
resulting domain has yellow colour, ability to sing, and finch characteristics.

In order to separate between the predicate function and the constituent predicates, we have
found it practical to use the term predicate when we mean the predicate function, and the term
attribute when we refer to the constituents. For example ”yellow song finch” is the predicate
while ”yellow”, ”song” and ”finch” are the attributes in the predicate.

Mental representations of specific interest to the development of information systems are class
concepts. A generic class concept, or predicate, P, may be defined as a set of attributes A such
that P={Ai.. An}. The attributes constitute the definition of the predicate.

Individual and class concepts

It is useful to distinguish between individual concepts, and class concepts (Bunge 1974:15).
Individual concepts refer to identified individual objects, e.g. ”St Paul’s cathedral” refers to the
individual St Paul’s cathedral. Class concepts also refer to individual objects, but to unspecified
individuals in a collection of similar kind, e.g. the class concept ”cathedral” refers to all
cathedrals. The class concept is also called a universal concept since the property that is referred
to by the concept is universal to the referenced objects. The individual concept can be
understood as a class with only one member, such a class is called a singleton class.

Whether a class, with reference to a certain collection of objects, is a singleton class or a
universal class, depends on the conceptual context. A conceptual context consists of a domain
of objects, predicates characterising the objects in the domain, and statements relating objects
and predicates (Bunge 1974:57). For example if we want to identify a certain individual member
of a domain of persons, the individual construct may be either a predicate, e.g. ”smiling”, or a
statement, e.g. ‘the smiling person’. The predicate ”smiling” may be universal concept in a
context where every person in the domain is smiling, and an individual concept if there is only
one smiling person.

3. INFORMATION SYSTEMS FOR DESIGN

Information systems

An information system is a computer based system which makes it possible to store and retrieve
information of relevance to the information needs of a user (Boman et al 1993:7). It consists of
a conceptual schema, an information base and an information processor (ISO 1985:15). The
conceptual schema is a framework of classes that refer to the domain of discourse. The
information base consists of predicate statements describing the state of the class members. The
information processor enables the user to query and update the conceptual schema and the
information base. A conceptual model of a member of the domain of discourse, consists of the
conceptual schema and the information base (Boman et al 1993:60).

Conceptually, the data in the information base (the instances in an object-oriented system) are
subclasses of classes in the conceptual schema, and are singleton classes in the modelling
context. In a traditional implementation the classes of the conceptual schema refer directly to the
objects in the domain of discourse. A specific model of an object is achieved through selecting
an appropriate class in the schema and determining the values of the attributes that describe the
object.

Dynamic and static information systems

In the BAS•CAAD project, we have found that information systems can be characterised as dy-
namic or static concerning the possibility for the user to 1) define new class concepts in the con-
ceptual schema, and 2) classify model instances. These two characteristics are mutually
independent, see Figure 1.

classification of model objects
dynamicstatic

definition of conceptual classes
dynamic

static A B

C D

Figure 1: Dynamic and static information systems

The four kinds in Figure 1 are:

A Static systems: the user is restricted to a predefined set of modelling classes, and model
objects have to retain their classification once instantiated into the model.

B Dynamic classification: the user is restricted to a predefined set of modelling classes, but
can reclassify model objects between these classes during modelling.

C Dynamic schemas: the user can create new classes, but cannot reclassify model objects
during modelling.

D Fully dynamic systems: the user is free to create new classes and to reclassify model
objects between all classes, predefined and new, during modelling.

The literature on information systems (see the previous section) describe systems that belong to
category A, but the terminology and theory can be used for all kinds of system in Figure 1.

A static or closed classification is often suitable for a routine design process, which presupposes
a high degree of detailed knowledge about the domain of discourse; however it is not suitable
for a more search-like innovative design process. The problems with the static systems of
category A in design has been addressed by several authors, as referred to in part 1 of this
paper.

An example of a static design system is the system for handling information about multi-variant
heat-exchangers to be used by sales persons, which appears in a paper by Hedin et al (1998).
However, the core of that paper describes a generator of such systems. While both the generator
and the generated system are of category A, the combination is of category C.

An approach to dynamic modelling

Through developing a meta-schema that defines and relates classes that only indirectly and in a
generic way refer to the domain of discourse, it is possible to create a dynamic modelling
system. Instances of these meta-classes are used for the development of a model schema that
describes and directly refer to the members of the domain of discourse.

The domain of implemented classes is orthogonal to (independent of) the domain of runtime
data or instances (Figure 2). The user of an information system has access only to the latter; the
former is available to the system developer only. In the static approach, the model schema
resides in the domain of implemented classes, and thus is not open for user manipulation. In the
BAS•CAAD system, we have made possible both dynamic classification of design objects and
dynamic definition of classes by ‘sliding down’ the model schema from the domain of
implemented classes to entirely reside in the domain of instances.

The traditional static or hardcoded approach is not in every respect inferior to the dynamic
approach; one of its advantages is that it is easier to ensure consistency in a fixed class structure.
Dynamic systems, such as the BAS•CAAD system, have to implement mechanisms for dynamic
consistency checking. Also, since in the static approach a definite set of classes is implemented,
only operations for managing these classes are needed . In contrast, a dynamic system must

Static approach

The BAS•CAAD approach

im
pl

em
en

te
d

cl
as

se
s

run
tim

e d
ata

 (in
sta

nc
es

)

Figure 2: The model schema is ‘slided down’ into the domain of instances. Arrows symbolise
superclass-subclass relationships; arcs symbolise instantiation

provide operations on a generic level, which is a much more complex task. The static approach
is especially fit in situations where the modelling context is very specific and beforehand well
known, such as creating information systems for routine design.

4. THE BAS•CAAD INFORMATION SYSTEM FOR DESIGN

Basic considerations

The BAS•CAAD information system is based on the requirement that it must be able to
represent the concrete world with all its characteristics. It is adherent to the principles of human
cognition. Therefore it is structured so that it is possible to handle information about things
separate from their properties and relations.

The basic class concepts of BAS•CAAD are most generic. The reason for this is that every
design task involves generic design operations, like generalising and specialising, aggregating
and decomposing, and adding and removing attributes (Fridqvist and Ekholm 1996). The
problems concerning these issues must be solved at the most generic level in order that they
shall be applicable to many different practical situations.

Ontological background

Conceptual structure of the BAS•CAAD-system

The BAS•CAAD information system has implemented a conceptual framework, that is based on
a generic property theory including the systems concept. The basic concepts of this framework
are ThingClass, Attribute and Relation. ThingClasses refer to concrete systems, Attributes
represent intrinsic properties of concrete systems, and Relations represent relations between, or
mutual properties of, systems. This section defines the basic concepts of system and property
that are implemented as part of the BAS•CAAD conceptual schema.

Property

Objects are characterised by their properties; for example a thing is a concrete object with
substantial or real properties, while a mental construct is an abstract object with formal

properties (Bunge 1977). Substantial properties can be divided into factual and phenomenal
(also called experiential). Factual properties exist independently of an interpreting mind, while
phenomenal properties depend on an interpretation. Phenomenal properties can be more or less
objective or subjective, that is they can be more respectively less correlated to factual properties.

Whether or not we can have a knowledge of the concrete world as it is, independent of our
interpretation of it, is a classic philosophical question. The authors’ perspective is that it is
possible to achieve an objective understanding. Further, it is necessary for an information
system for design of artefacts that are to be experienced by man, that it can account for
phenomenal properties.

Factual properties are either intrinsic or mutual. An intrinsic property is inherent of an individual
thing e.g. mass, colour, and utility, as well as spatiotemporal intrinsic properties, e.g. shape,
length, and duration. Such a property can be represented by a unary attribute, which involves
only one member of the domain. A mutual, or relational, property depends on a relation
between things, e.g. connected to, driving, sitting-on, and pointing-at, as well as
spatiotemporal properties like longer-than, to-the-left-of, during, and before. A mutual property
is represented by a multinary attribute. Generally the distinction between intrinsic and mutual
properties depends on the demarcation between the system and its environment; a mutual
property may be construed as an intrinsic property of a larger system.

In the BAS•CAAD system, intrinsic properties are represented by the Attribute class, and
mutual properties are represented by the Relation class.

System

To apply the idea of system is to understand an object as a whole composed of interrelated
parts. A concrete system is a complex thing with bonding relations among its parts (Bunge
1979). Bonding relations, e.g. functions, affect the states of the related things. A
comprehensive description of a system’s properties includes its composition, environment,
structure, laws and history. The composition is the set of the parts of the system; the
environment is the set of things that interact with the system, without being part of it; and the
structure is the set of internal and external relations. A system’s laws are relations among its
properties; the system’s state is its properties at a given moment of time; and the system’s
history is comprised of all the former states of the system.

An aggregate is a collection of things where only non-bonding relations are considered. Non-
bonding relations do not affect the states of the related things; examples of non-bonding
relations are spatial relations like position or shape. Phenomenal properties are mutual non-
bonding relations between a thing and an interpreting mind (Bunge 1977). Abstract systems are
composed of mental constructs, but may represent concrete systems.

In the BAS•CAAD system, things, e.g. car, pencil, tree, and building, are represented by the
ThingClass class.

Aspectual views

To adopt a view, or aspect, of a thing is to observe a specific set of properties. Of specific
interest to design are the functional, and compositional views. A functional view focuses on a
thing’s bonding relations to the environment and on parts that contribute to the thing’s function.
A compositional view of a thing identifies the compositional parts from which the thing is
assembled. A spatial view focuses on spatial properties. Examples of other aspects on a thing
are colour and texture.

A functional view gives no clear indication of the compositional parts of the system, since the
same compositional part can have many different properties and can be part of many different
functional systems. Spatial relations may be considered in both compositional and functional
views, but they may also be regarded per se, as a separate view on the system.

Implementation of the BAS•CAAD system

Introduction

The BAS•CAAD system has a meta-schema or basic conceptual framework, based on a generic
property theory including the systems concept. The meta-schema classes are presently
implemented as object-oriented classes in Smalltalk (Figure 3). The BAS•CAAD system has a
set of class concepts: ThingClass, Relation, and Attribute.

The abstract class BAS_CAAD_object implements basic maintenance methods, and defines
general instance variables such as ‘name’, and the classification schema, or library, that the
instance belongs to. The ValueSpace object implements the concept value space. Members of
the class ValueSpace are sets of statements or data describing the possible states of the members
of ThingClass.

(ABS)

BAS_CAAD_object

ThingClassRelation

value space

Attribute

STRING
name

other_attributes S[0:?]

resultThing

toRelation

fromRelation

(DER) environment S[0:?]

(INV) defines

generic

(INV) specificS[0:?]

generic

(INV) specific S[0:?]

genericS[0:?]

(INV) specificS[0:?]

(INV) internal_structure S[0:?]

enabling_thing

(DER) external_structure S[0:?]

(DER) composition S[0:?]

1

Figure 3: The BAS•CAAD implementation

Thing class and Relation

The ThingClass implements the concept of system, but through its construction it can also refer
to atomic things and aggregates. ThingClass is defined as a 6-tuple of sets of attributes,
T = (TG, TC, RI, TE, RE, AU), where
• TG is the set of generic or superclass attributes.
• TC is the set of composition attributes.
• RI is the set of internal relations.
• TE is the set of environment attributes.
• RE is the set of external relations.
• AU is the set of unary attributes which represent intrinsic properties of systems.

Any, but not all, of the four sets TG, TC, TE, AU, may be empty; i.e. an atomic thing has an
empty TC. The four sets correspond to the attributes generic, internal_structure,
external_structure, and other_attributes of the entity ThingClass in Figure 3.

An internal relation is a quadruple of attributes: RI = (q, TA, TB, T) such that RI ∈ RI; and TA ∈
TC; and TB ∈ TC; q is the quality or kind of relation, i.e. the mutual property of the related things

An external relation is a quadruple of attributes: RE = (q, T, TE, TR) such that RI ∈ RI; TE ∈ TE;
the composition of TR includes T and. TE.

The attributes TA, TB, T of internal relation correspond to fromRelation, toRelation, and
resultThing, respectively, of the entity Relation in Figure 3. The similar correspondence holds
for T, TE, TR of external relation.

Additionally, the definitions of Relation above may need a mediating thing attribute TM to aid
top-down modelling, where the particularities of the model are pushed forward for decision at a
later time. A relation which, at a superficial level, seems to only involve two things, may at a
closer examination be mediated by a third thing. An example is the ‘connected-to’ relation
between a tabletop and a table leg. This relation is often mediated by a third thing, e.g. a patch
of glue or a screw.

Attribute

The object-oriented class Attribute implements the attribute concept. The instances of Attribute
represent intrinsic properties of things in the domain of discourse. The members of the Attribute
class are unary attributes, they involve only one member of the domain of discourse. These
unary attributes have a value space that consists of statements or data describing the possible
states of the members of ThingClass with regard to the attribute. The concept of value space is
implemented by the object-oriented class ValueSpace. Members of ValueSpace are sets of
statements or data describing the possible states of the members of ThingClass.

The statements, or data, in ValueSpace may be in any form, available to computers, that can
serve the purpose of describing a property of a thing. Currently, BAS•CAAD implements
textual descriptions and magnitudes, the latter being pairs of a numerical value and a
measurement unit. For the future, we envision other kinds of data such as 2D graphs, 3D
solids, digitised pictures, videos and sound etc.

Universal and singleton classes in BAS•CAAD

Within a specific modelling context, a universal class has several members in the universe of
discourse, whereas a singleton class has only one identified member, see part x.x. To create a
singleton class in the BAS•CAAD system amounts to instantiating a ThingClass, creating a refe-
rence to a universal class, and finally adding attributes that uniquely identify the single member
of the singleton class.

An alternative formal definition of ThingClass is the union of the sets of attributes mentioned
above: T = TG ∪ TC ∪ RI ∪ TE ∪ RE ∪ AU.

A universal class TU is defined as:
TU = {A U1.. AUn}; where AU1.. AUn are the attributes of TU.

A singleton class TS , subclass of TU, is defined as:
TS = {AU, AS1.. ASm}; where AU are the attributes of TU, and AS1.. ASm are specific to TS.

Let’s assume that we have a library of useful building components, e.g. walls, and want to
include a specific wall from the library into the model. The library wall is a universal class, and
has the following definition:

TWALL-U = {A U1, AU2, AU3, AU4}, where AU1 is ‘general wall shape’, AU2 is ‘visually
enclosing’, AU3 is ‘audibly enclosing’ and AU4 is ‘enclosing to human motion’.

To include the wall into our model we create a singleton class for the desired wall, with the
singleton class being a subclass of the universal wall. The singleton class might have this
definition:

TWALL-S = {A WALL-U , AS1, AS2}, where AWALL-U is a reference to TWALL-U , thereby
attributing all properties of a general wall to the inserted wall. The attribute AS1, ‘wall-
shape with defined size’, is a specialisation of the attribute set of TWALL-U . The attribute
AS2, ‘position in building’, is an extension of the attribute set of TWALL-U.

The attribute that determines that a class is a singleton class depends on the context. In the
example above, a reasonable definition would be that no two objects can occupy the same space;
thus the two attributes As1 and As2 would together constitute the singleton class in this case.
Another solution is to use individual littera as singleton attributes.

Aspect classes

Universal classes can represent different aspectual views on the members of the domain. The
design model may consist of several universal classes describing the same member of the
universe of discourse.

Let’s define two aspectual classes, TA and TB, as:
TA = {A A1, AA2, AA3}, where AAi are the attributes of TA.
TB = {AB1, AB2, AB3}, where ABi are the attributes of TB.

The designed class TD, subclass of TB and TB, is defined as:
TD = {A A1, AA2, AA3, AB1, AB2, AB3}, where AAi and ABi are the attributes inherited from
TA and TB.

Aspectual views can be created by selecting only the attributes inherited from super classes
through view functions. The view on T in aspect A is a function V such that V(T)=A. In the
example above, the aspect A on Ta a is a view Va such that:

Va(Td) = {A A1, AA2, AA3}, where the set is the value of the view function of aspect A.
The attributes AA1, AA2, AA3 are the aspect A of TD.

Libraries

The BAS•CAAD schema is designed with the aim that class libraries in different levels of
universality should be provided by different bodies, such as ISO and national standardisation
agencies, and even individual organisations describing their resources, activities and results.

A library, in the context of the BAS•CAAD information system, is a computer file composed of
instances of ThingClass, Relation and Attribute. Classes in more specific libraries specialise
general classes of universal libraries. The example in Figure 4 shows how thing classes and
relations are specialised through three levels. The example is not complete since it is only
intended as an illustration. However, it shows how the classes in the hierarchy ‘activity’ – ‘TV-
watching’– ‘Mike watching TV’ are specialised with respect to composition. The composition
of a thing class is inherited into its subclasses, but in the figure, only that which is specific to a
class is shown. Thus, the composition of the activity ‘TV-watching’ is ‘person’ (inherited from
activity) and ‘TV-set’ (specific). Similarly, the composition of the activity ‘Mike watching TV’
is ‘Mike’ (specific) and ‘TV-set’ (inherited from ‘TV-watching’). The specific mechanisms for
how to implement libraries as computer files is an area of future work in the BAS•CAAD
project; currently only one schema is possible, which has to reside in memory.

universal schema

(library defined)

universal schema

(user defined)

specific schema

(user defined)

thing class:

space

thing class:

activity

composition

thing class:

equipment

thing class:

person

relation:

uses-space

composition

thing class:

TV-set

composition

thing class:

Mike

relates_torelates_from

thing class:

living room

thing class:

watching TV

relation:

watching TV

in living room

relates_torelates_from

thing class:

Mike's living room

thing class:

Mike watching TV

relation:

Mike watching TV

in his living room

relates_torelates_from

Figure 4: An EXPRESS diagram of three levels of class libraries

Application of BAS•CAAD to a typical building design problem

Implementation of a schema for spatial layout planning.

The thing classes in the diagram below are activity, space, element, work result, and designed
element. They are defined in ISO CD 12006-2 (ISO 1997). The diagram illustrates two main co-
ordination situations in building design, the first concerns the relation activity-building, and the
second concerns the relation building element-work result. Both must be supported by a tool for
building design.

The EXPRESS diagram below shows how spatial layout planning relates activities via spaces to
building elements (Figure 5). It also shows the integration of functional and compositional
aspects in the design of building parts, through combination of the classes element and work
result into the class designed element.

thing class:

space

thing class:

activity

relation:

uses-space

relates_to

composition S[0 : ?]

internal_structure S [0 : ?]

relates_from

relation:

adjacent_to

relates_to

relates_from
thing class:

element

thing class:

work result

thing class:

designed

element

Figure 5: EXPRESS diagram for spatial layout planning and integration of aspects in design.

Classification of model objects
In the BAS•CAAD system, model objects are represented by singleton classes. Since it is
possible for the user to define and redefine the classes’ attribute sets, the user is allowed to
attribute properties to the model object and to reclassify them as appropriate.

Reclassification of model objects

Reclassification of model objects is performed through redefining attribute sets. Let’s assume
two universal classes TX and TY defined as:

TX = {A X, AU}, and: TY = {A Y, AU}.

A model object is the sole member of the singleton class TS, which is defined as:
TS = { AX, AU, AO}, where AO is an attribute indicating the model object.

Since the attribute set of TX is a subset of that of TS, we conclude that TX is a superclass to TS;
or, in other words, that the model object is classified as TX.

By exchanging the attribute AX with AY in the definition of TS, we will get:
TS = { AY, AU, AO}, by which we will have reclassified the model object to TY.

CONCLUSIONS

We have presented a set of basic concepts for product modelling and design. Using these
concepts, we have shown a way to create an information system that enables its user to create
multi-aspectual models, to utilise predefined modelling object classes, to define new classes
when needed, and to reclassify model objects; all being necessary requirements on a information
system for design.

Directions for the future

The future of the BAS•CAAD project involves further theoretical studies as well as practical
applications, and more work on the prototype modelling system. We will develop further the
theory of design on which the BAS•CAAD system resides. We will also define a schema for
user activities and user organisations in the terms of the concepts ThingClass, Relation and
Attribute. Further, we will complete the definition of a graphical notation suitable for
representing the concepts ThingClass, Relation and Attribute. We may also need a formal
language for lexical definition of schemas.

The current implementation of the prototype modelling system needs to be completed and tested.
To enable managing complex schemas, we need a graphical interface to the class database,
using the graphical notation mentioned above. Additionally, we may need a compiler for
transforming definitions expressed in a formal language into data structures. For testing the
modelling system in realistic design conditions we need to implement value spaces for 2D and
3D geometrical data.

REFERENCES

Augenbroe G. (1995). Combine 2. Final report. Delft: Delft University of Technology.
Björk B.-C. (1989). Basic structure of proposed building product model. Computer aided

design Vol. 21, No 2, pp. 71-78, 1989.
Boman et al (1993). Models, concepts, and information. Stockholm: Department of Computer

and Systems Science, Royal Institute of Technology, October 1993.
Bunge M. (1974). Semantics I: Sense and reference, Vol. 1 of Treatise on Basic Philosophy.

Dordrecht and Boston: Reidel.
Bunge M. (1977). Ontology I: The Furniture of the World, Vol. 3 of Treatise on Basic

Philosophy. Dordrecht and Boston: Reidel.
Bunge M. (1979). Ontology II: A World of Systems, Vol. 4 of Treatise on Basic Philosophy

Dordrecht-Boston: Reidel.
Bunge M. (1983). Epistemology and methodology I: Exploring the world. Vol. 5 of Treatise on

Basic Philosophy. Dordrecht: D. Reidel Publishing Company.
Eastman C. M. and Fereshetian N. (1994). Information models for use in product design: a

comparison. Computer-Aided Design Vol. 26, No 7, pp 551-572, July 1994.
Eastman C. M. and Siabiris A. (1995). A generic building product model incorporating building

type information. Automation in Construction, vol. 3, no. 4, pp. 283-304.
Eastman C. M., Assal H., and Jeng T. (1995). Structure of a database supporting model

evolution. In Modelling of buildings through their life-cycle. Proceedings of CIB workshop
on computers and information in construction (eds. Fisher M., Law K., and Luiten B.)
Stanford University, Stanford, Ca, USA, August 21-23.

Ekholm A. and Fridqvist S. (1996). Modelling of user organisations, buildings and spaces for
the design process. In Construction on the Information Highway. (Ed. Ziga Turk).
Proceedings from the CIB W78 Workshop, 10-12 June 1996, Bled, Slovenia.

Ekholm A. and Fridqvist S. (1997). Design and modelling in a computer integrated construction
process - The BAS•CAAD project. In CAAD futures 1997, proceedings of the 7th
International Conference on Computer Aided Architectural Design Futures (Ed. Richard
Junge) Dordrecht: Kluwer Academic Publishers.

Fridqvist S. and Ekholm A. (1996). Basic object structure for computer aided modelling in
building design. In Construction on the Information Highway. (Ed. Ziga Turk). Proceedings
from the CIB W78 workshop 10-12 June 1996 in Bled, Slovenia.

Gielingh W. (1988). General AEC reference model. External representation of product
definition data. Doc. no 3.2.2.1, TNO-report BI-88-150, Delft, The Netherlands.

Galle P. (1995). Towards integrated, ”intelligent”, and compliant computer modeling of
buildings. Automation in Construction. Vol. 4, No 3, pp. 189-211, 1995.

Garrett Jr J. H. and Hakim M. M. (1994). Class-centered vs. Object-centered Approaches for
Modelling Engineering Design Information. Proceedings of the IKM-Internationales
Kolloquium über Anwendungen der Informatik und der Mathematik in Architektur und
Bauwesen, pp. 267-272, Weimar, Germany, March 16-18, 1994.

Hedin G., Ohlsson L. and McKenna J. (1998). Product Configuration using Object Oriented
Grammars. Submitted to 8th Symposium on System Configuration Management (SCM-8),
Brussels, July 20-21, 1998.

IAI (1997) Industry Foundation Classes. Release 1.5. Industry Alliance for Interoperability.
ISO (1985). Concepts and terminology for the conceptual schema and the information base.

ISO/DTR 9007 (TC97), also SIS teknisk rapport 311. Stockholm: SIS.

ISO (1994). Industrial automation systems and integration - Product data representation and
exchange - Part 1. ISO 10303-1:1994(E). Geneva: International Organization for
Standardization.

ISO (1997). ISO/CD 12006-2 Building construction-Organisation of information about
construction works-Part 2: Framework for classification of information. Draft ISO Standard
20th May 1997. Newcastle upon Tyne: NBS Services

Junge R. (1995). Aspects of new CAAD environments. In Modelling of buildings through their
life-cycle proceedings of CIB workshop on computers and information in construction (Eds.
Fisher M., Law K., and Luiten B.) Stanford University, Stanford, Ca, USA, August 21-23.

Junge R., Steinmann R. and Beetz K. (1997) A dynamic product model. In CAAD futures
1997, proceedings of the 7th International Conference on Computer Aided Architectural
Design Futures (Ed. Richard Junge) Dordrecht: Kluwer Academic Publishers.

Leeuwen J. P., and Wagter H. (1997). Architectural design by features. In CAAD futures
1997, proceedings of the 7th International Conference on Computer Aided Architectural
Design Futures (Ed. Richard Junge) Dordrecht: Kluwer Academic Publishers.

Maher M. L., Simoff S. J. and Mitchell J. (1997). Formalising building requirements using an
Activity/Space Model. Automation in Construction, vol. 6, pp. 77-95.

Rittel H. (1984). In Cross N.: Developments in Design Methodology. London: John Wiley and
Sons.

Schenck D. A., and Wilson P. R. (1994). Information modelling: The EXPRESS Way.
Oxford: Oxford University Press.

Webster (1995). Webster’s New Collegiate Dictionary. Springfield Massachusetts: G.&C.
Merriam Company.

