
A PROTOTYPE DISTRIBUTED CIC SYSTEM BASED ON IAI STANDARDS
A Prototype Distributed CIC System

A.L. GORLICK and T.M. FROESE
University of British Columbia, Vancouver, BC, Canada

Abstract

A prototype Computer Integrated Construction system is being developed that models
building product and process information using International Alliance for
Interoperability standards. The goal of this research is to provide a window into the
future of how these standards can be applied in the construction industry. The
prototype consists of a project database that is structured according to a common
project schema or project data model. The schema is based on emerging International
Alliance for Interoperability standard models but it is implemented in a way that
allows the dynamic development of the schema (and even of its underlying
metamodel) without destroying the information in the database in order to support on-
going work in the development of information model standards. The system is
modular in nature so that it can be supplemented with plug-in tools to accomplish a
variety of project management tasks. It is served over the web through a combination
of Microsoft's Active-X Data Object technology and a lightweight version of ISO
STEP's Standard Data Access Interface. Data sets served to the client are wrapped in
the Extensible Markup Language to allow for the self-description of information.

Keywords: Computer Integrated Construction, IAI, IFC, Product Models, Process
Models

1 Introduction

The essence of planning is to combine all aspects into one feasible process,
which means that information has to be transmitted, transformed and combined. The
increased complexity of buildings and of the organization of the construction process
has made the transmission and sharing of information more difficult as there is a
growing amount of information to be consolidated, distributed, and exchanged

Durability of Building Materials and Components 8. (1999) Edited by M.A. Lacasse
and D.J. Vanier. Institute for Research in Construction, Ottawa ON, K1A 0R6,
Canada, pp. 2171-2179.
 National Research Council Canada 1999

C
on

st
ru

ct
io

n
In

fo
rm

at
ic

s
D

ig
ita

l L
ib

ra
ry

 h
ttp

://
itc

.s
ci

x.
ne

t/
pa

pe
r

w
78

-1
99

9-
21

71
.c

on
te

nt

(Jägbeck 1998). Unfortunately, most of the software tools used to generate this
information cannot interoperate. In practice, paper drawings or documents are
therefore the common medium for exchanging information. Consequently, the
manual input of data from one tool to another and the associated risk of error
dramatically hamper the duration, quality and cost of the construction process
(Debras et. al. 1998). The result is a need for more explicit and self-contained (i.e.
less context dependent) information (Jägbeck 1998). The construction management
group at the University of British Columbia is addressing this issue through the
development of new computer-based tools to support construction management and
to increase the overall efficiency of construction operations.

We subscribe to the vision that the architecture, engineering, and construction
(AEC) industry will evolve to one in which detailed, integrated, computer-based
models of the AEC projects act as the predominate medium for carrying out design
and management work and for communicating the results among project participants
(Froese et. al. 1997). To this end, the Construction Management Group has
developed the TOPS (Total Project Systems) model. TOPS is a conceptual model
that provides the basis for the development of Computer Integrated Construction
(CIC) systems. The TOPS model is founded on three principal research thrusts:
application development, shared project representations, and system architectures and
interfaces (Russell and Froese 1997). Much work has been done on application
development (see Rankin et. al. 1998; Froese et. al. 1997; and Rankin et. al. 1997 for
examples) and shared project representations (see Froese and Rankin 1998; Russell
and Froese 1997; Yu et. al.1997; Froese 1996; and Fischer and Froese 1996 for
examples). Current research is focussing on the design, development, and
prototyping of a system architecture and interface(s) for use in TOPS.

TIP (TOPS Implementation Prototype), the prototype CIC system under
development, models building product and process information using IAI
(International Alliance for Interoperability) standards. The on-going goal of this
research is to provide a window into the future of how IAI standards can be applied in
the construction industry. The prototype consists of a project database that is
structured according to a common project schema or project data model. The schema
is based on emerging IAI standard models, but it is implemented in a way that allows
the dynamic development of the schema (and even of its underlying metamodel)
without destroying information in the database in order to support on-going work in
developing project information model standards. The system is modular in nature so
that it can be supplemented with plug-in tools to accomplish a variety of project
management tasks. Current plans include the development of a short cycle
scheduling tool. TIP is a distributed system, served over the World Wide Web
through Microsoft’s Active-X Data Object (ADO) technology wrapped in a data
access layer that we are developing called the Lightweight Data Access Interface
(LDAI), which can be thought of as a simplified and flexible development version of
the ISO STEP Standard Data Access Interface, SDAI. Data sets served to the client
are encoded in XML (Extensible Markup Language) to allow for self-description of
information.

2 TIP Architecture

Figure 1 illustrates the architecture of the TIP system. Froese et. al. (1997)
characterize the underlying architecture of this class of system as: open, in that it is
not dependent on specific computing technologies (e.g., it is based on international
data standards, it is platform independent, etc.); modular, such that a variety of
specific applications developed by different sources can be brought to bear as
appropriate to create the overall system; and distributed, by recognizing the
requirements of a variety of users and data sources.

Application modules are connected to the system using standard interfaces.
Thus, they can be updated without the need for changes to other parts of the system.
Not only is project data shared, the application modules are also shared by different
participants at different locations. As the applications and project data are
transparent, users must simply send requests to the system through the user interface,
invoke appropriate modules, and input the appropriate data. (Froese et. al. 1997)

Fig. 1: TIP architecture

3 LDAI

Applications interact with the integrated system through data access interfaces
that are structured according to underlying schemas or data models (in this case, the
LDAI object model), which are in turn structured on underlying assumptions about
the structure of primitive concepts such as objects, classes, etc. (i.e., the metamodel).
The LDAI (lightweight data access interface) defines a functional interface between
an application and one or more collections of data. The LDAI is a data access, or
"middleware", component. It is similar to other data access interface standards such
as the ISO STEP Standard Data Access Interface, SDAI (see International
Organization for Standardization (ISO) 1995 for an explanation of the SDAI). We
are developing the LDAI, rather than directly adopting the SDAI or another system,
because our requirements for a middleware layer are quite different, stemming largely
from the fact that we wish to support rapid prototype development in an area where
"standards" are frequently changing, rather than support production software. The
LDAI, then, has the following defining characteristics:
• It is very simple to work with. It is implemented in Visual Basic and it provides

only the most essential and generic data access functionality (it can be thought of
as a stripped-down version of the SDAI).

• It can be used as a "front end" interface for a wide variety of data access "back
ends", such as EXPRESS, STEP Part 21, or XML files, or SDAI or Microsoft
ADO data access interfaces (and it can act as a translator between these different
formats).

• Only the smallest possible set of core metamodel data structures are statically
encoded in the LDAI; other aspects of the metamodel and all project data models
are dynamically loaded at run-time (i.e. late binding) and these models can be
altered at any time.

• The LDAI object model is presented in UML notation in Figure 2. We are using
UML (see UML Resource Center 1999) notation for developing the LDAI since it
is becoming a standard within the software industry for representing data models
and other portions of software designs and because we have found more support
for UML within development tools than for EXPRESS. We expect to provide the
LDAI with the capability of importing and exporting EXPRESS and possibly
UML information as well.

The TIP metamodel is drawn directly from this LDAI object model. An
important function of this model is its ability to evolve its schema. The main reason
for this in our case is that we are developing prototype integrated applications based
on standard project data models concurrent with the ongoing development of the
standard data models themselves, so the applications' underlying data structures are
frequently changing. This capability can also be important for end users to allow the
underlying conceptual model used by the project actors to be altered and to evolve
over time (by adding, deleting, or modifying an object type property), without
affecting the overall consistency of the project information base. (Rezgui, et. al.
1998) The LDAI object model implements schematic evolution by early binding
only the smallest possible metamodel structure. All other metamodel constructs are

C
la

ss
:O

b
je

ct

+A
ttr

()
 :

A
ttr

ib
ut

es
+A

ttr
E

xi
st

s(
)

: B
oo

le
an

-R
ef

re
sh

()
-S

av
e(

)
: M

od
el

-O
pe

n(
)

: M
od

el

+I
D

 :
O

bj
R

ef
+N

am
e

: S
tr

in
g

+C
la

ss
 :

C
la

ss
+A

ttr
ib

ut
es

 :
A

ttr
ib

ut
eV

al
ue

C
la

ss
:C

la
ss

+S
up

er
cl

as
s

: C
la

ss
+A

ttr
 :

A
ttr

D
ef

s

C
la

ss
:A

tt
ri

b
u

te
V

al
u

e

 A
dd

()
 C

ou
nt

()
 R

em
ov

e(
)

 A
ttr

D
ef

 :
O

bj
R

ef
 P

ar
en

t :
 O

bj
R

ef
 K

ey
 :

S
tr

in
g

C
la

ss
:S

er
ve

r

+N
ew

M
od

el
()

+O
pe

nM
od

el
()

+M
od

el
s

: O
bj

R
ef

+M
od

el
T

yp
es

 :
O

bj
R

ef

C
la

ss
:M

o
d

el
T

yp
e

 G
et

C
on

ne
ct

io
nS

tr
in

g(
)

: S
tr

in
g

-N
ew

M
od

el
()

-O
pe

nM
od

el
()

-D
es

cr
ip

tio
n

: S
tr

in
g

-C
on

ne
ct

io
nS

tr
in

g
: S

tr
in

g

C
la

ss
:O

b
jR

ef

 A
sS

tr
in

g(
)

: S
tr

in
g

 O
bj

ec
t(

)
: O

bj
R

ef
 In

iti
al

iz
eF

ro
m

S
tr

in
g(

)

 M
od

el
N

am
e

: S
tr

in
g

 M
od

el
R

ef
 :

O
bj

R
ef

 P
ID

 :
S

tr
in

g
 O

bj
ec

t :
 O

bj
R

ef

C
la

ss
:M

o
d

el

-C
lo

se
()

-S
av

eM
od

el
()

-S
av

eA
s(

)
: C

on
ne

ct
io

nS
tr

in
g

-N
ew

O
bj

ec
t(

)

+O
bj

ec
ts

 :
O

bj
R

ef
+F

or
m

at
 :

S
tr

in
g

+I
nc

lu
de

 :
O

bj
R

ef
(M

od
el

)

C
la

ss
:A

tt
rD

ef
s

+T
yp

e
: S

tr
in

g
+C

la
ss

D
ef

 :
C

la
ss

+D
es

cr
ip

tio
n

: S
tr

in
g

+M
in

C
ar

di
na

lit
y

: I
nt

eg
er

+M
ax

C
ar

di
na

lit
y

: I
nt

eg
er

+I
nv

er
se

 :
S

tr
in

g
or

 O
bj

R
ef

«Subtype»
Superclass

. 2
:

L
D

A
I

ob
je

ct
 m

od
el

built up dynamically as necessary at runtime, and changes can be made to the schema
even after it has instance data associated with it. Although the LDAI will be able to
maintain data consistency for most types of simple changes to existing schemas, it
leaves the ultimate responsibility for maintaining data integrity during schematic
evolution to the application developer and users.

It is important to note that LDAI is not intended to provide a new standard for
functional interfaces between data and applications, nor is it a replacement for the
SDAI. The LDAI is a development interface rather than a production interface. It is
advanced as a simple and flexible tool to facilitate the quick development of
prototype systems. In a full implementation of TIP, the LDAI would be replaced
with an SDAI or other data access interface.

4 ADO

The following is excerpted from Microsoft’s white paper on Universal Data
Access (UDA) (Microsoft 1998). ADO is a part of Microsoft’s UDA initiative. The
premise of UDA is to allow applications to efficiently access data where it resides
without replication, transformation, or conversion. Open interfaces allow
connectivity among all data sources. Independent services provide for distributed
queries, caching, update, data marshalling, distributed transactions, and context
indexing among sources.

ADO is a set of high-level automation interfaces over OLE DB (OLE DB is the
Microsoft system-level programming interface to diverse data sources). It enables
applications to access and manipulate data in a database server through an OLE DB
provider. ADO is provider neutral. That is, although it allows access to the full
range of OLE DB data, it does not implement its features specific to any one provider
or data source. Underlying ADO are four service components that implement its
functionality. These services are outlined in Table 1.

Table 1: ADO services

Service Description
Cursor Data fetching, data manipulation, local updates,

local cursors
Synchronization Propagates updates to the data source, refreshes

the cursor from the data source, and coordinates
conflicting updates

Shape Provides a hierarchical view of data to offer a
flexible view of the data set

Remote Data Service Permits interaction with OLE DB data sources
over the Internet

ADO will be wrapped in LDAI. The result is that the functionality of ADO,
and the ADO service components, will be transparent to the user.

5 Implementation

The software architecture of TIP was presented in Figure 2. The data repository
system will be implemented as a relational database in Microsoft’s Access 97.
Schemas stored in the database will be IAI models with possible extensions for
application-specific functionality. An OLE DB server will be used to serve the
database, making it accessible to the Internet. The TIP system will implement the
LDAI with four backends: LDAI text files; LDAI Express; LDAI ADO; and, LDAI
SDAI. The LDAI File and LDAI Express backends read and write local files. LDAI
text file reads and writes LDAI notation in ASCII format. The LDAI Express
backend imports or exports Express and SPF (STEP Physical File format) type files.
The LDAI ADO backend is the interface that allows the LDAI to use ADO to
communicate with data sources. Finally, the LDAI SDAI backend is an interface
allowing information to migrate between the LDAI and the SDAI. Of these four
backends, current plans are to only implement the first three. The LDAI SDAI
backend will be implemented later.

At the application level, three classifications of modules are shown. The data
browser is a general purpose user interface to project data that is an integral
component of TIP. This data browser can serve as a separate tool or application,
similar to that of the Explorer tool in Windows. Its purpose is to allow users to enter,
view, and manipulate project data as well as view and modify the underlying models
and schemas. The data browser interface can also be incorporated into other, more
specialized applications (as shown by the combined Application Module/Data
Browser Module element). Finally, the generic application represents any standalone
module that plugs into the LDAI to access project information. A variety of
applications can be developed—estimating, scheduling, quality control, or document
management systems for example—so long as the required underlying schemas have
been installed to support the application module.

At present, a short cycle scheduling application is being prototyped. The
application is designed for use by construction managers to create on-site look-ahead
schedules and to schedule work-in-place activities and materials delivery. A
scheduling application was selected for development purposes as scheduling draws
upon a broad range of project information (i.e., product, process, and resource
information). For example, activities, sequencing, cost, the assignments of resources
to processes, etc. As a result, we expect this application to provide a good test of
emerging IAI models of construction process-related information. Future papers will
report on the implementation of the scheduling application and the performance of
the IAI models.

The language binding for TIP is Visual Basic. The data browser and
application modules are being developed in a standard web browser environment
(Microsoft’s Internet Explorer) in order to take advantage of the functionality of
ADO. A separate data repository is being created to store XML code. ADO will be
used to wrap project data in XML to create a data set that is self-describing.

6 Conclusion

This paper has described the continuing development of TOPS by the
Construction Management Group at the University of British Columbia. Current
research focuses on migrating the TOPS conceptual models to a prototype
implementation, TIP. The TIP model addresses the three research thrusts of TOPS:
application development, shared project representations, and system architectures and
interfaces. The LDAI was introduced as a prototyping mechanism that allows the
dynamic modification of the underlying schemas and metamodels without affecting
instantiated project data. Prototyping of the system, and a short cycle scheduling
application module, is underway and testing is expected to begin in the near future.
Results from the complete prototype implementation and field trials will be reported
in future papers.

7 References

Debras, P., Monceyron, J., Bauer, F., Ballestra, P., and Rocca, F. (1998) From
Product Data Technologies to Applications: illustrative cases in the AEC
domain. Proceedings of the CIB Working Commission W78, pp.163-170.

Fischer, M., and Froese, T. (1996) Examples and Characteristics of Shared Project
Models. ASCE Journal of Computing in Civil Engineering, Special section on
Data, Product, and Process Modeling, Vol. 10, No. 3, pp. 174-182.

Froese, T. (1996) Models of Construction Process Information. ASCE Journal of
Computing in Civil Engineering, Special section on Data, Product, and Process
Modeling, Vol. 10, No. 3, pp. 183-193.

Froese, T., Grobler, F., Yu, K. (1998) Development of Data Standards for
Construction – An IAI Perspective. Proceedings of the CIB Working
Commission W78, pp.395-406.

Froese, T., and Rankin, J. (1998) Representation of Construction Methods in Total
Project Systems. submitted to the 1998 ASCE Congress on Computing in Civil
Engineering, 1998 February 2

Froese, T., Rankin, J., and Yu, K. (1997) Project Management Application Models
and Computer-Assisted Construction Planning in Total Project Systems. The
International Journal of Construction Information Technology, Vol. 5, No. 1,
pp. 39-62.

International Organization for Standardization (ISO) (1995) Industrial Automation
Systems and Integration – Product Data Representation and Exchange Part 22.
Standard Data Access Interface. ISO 10303-22.

Jägbeck, A. (1998) IT Support for Construction Planning. Ph.D. Thesis, Royal
Institute of Technology, Stockholm, Sweden.

Microsoft (1998) OLE DB/ADO: Making Universal Data Access a Reality. [online]
http://www.microsoft.com/data/reference/wp2/sigmod98_0sxl.htm, [accessed
1998 November 26]

Rankin, J., Froese, T., and Waugh, L. (1998) The Functionality of Computer-Assisted
Construction Planning. submitted for the CSCE Annual Conference, 1998
February 27.

Rankin, J., Froese, T., and Waugh, L. (1997) Computer Assisted Construction
Planning (CACP) in the Context of Total Project Systems (TOPS).
Proceedings of the 1997 Conference of the Canadian Society for Civil
Engineers, Sherbrooke, Quebec, May 27-30, 1997. Vol. 2, pp. 2-41 to 2-50.

Rezgui, Y., Cooper, G., and Brandon, P. (1998) Information Management in a
Collaborative Multiactor Environment: The COMMIT Approach. ASCE
Journal of Computing in Civil Engineering, Vol. 12, No. 3, pp. 136-144.

Russell, A., and Froese, T. (1997) Challenges and a Vision for Computer-Integrated
Management Systems for Medium-Sized Contractors. Canadian Journal of
Civil Engineering, Vol. 24, No. 2, pp.180-190.

UML Resource Center (1999) [online] http://www.rational.com/uml, [accessed 1999
February 10]

Yu, K., Froese, T., and Vinet, B. (1997) Facilities Management Core Models.
Proceedings of the 1997 Conference of the Canadian Society for Civil
Engineers, Sherbrooke, Quebec, May 27-30, 1997. Vol. 2, pp. 2-195 to 2-204

