
CONSTRUCTION INFORMATION ACCESS THROUTH A "MALLEABLE
FRAME"
Construction information access

Y. ZHU and R. ISSA
M.E. Rinker Sr., School of Building Construction, University of Florida, USA

Abstract

Information management is critical to the success of a construction project. Because
of the fragmentation of construction information and the volatility of construction
projects, information sharing and collaboration are important measures to achieve
successful project information management. However, many current research projects
focus only on shared project information. A gap between the shared project
information and the non-shared project information still exists. This paper shows
models and methodology to bridge the gap and make a document "malleable"
according to user's needs by using contemporary computer technologies such as XML
(eXtended Markup Language) and WDDX (Web Distributed Data eXchange). Some
details about specifications for implementation are also presented.

Keywords: Shared project information, non-shared project information, document
model, specification, hypermedia, XML, WDDX

1 Introduction

As the Internet based technology such as the WWW (World Wide Web), e-
mail, e-commerce, e-bid and e-builder, becomes ubiquitous, many practitioners in the
construction industry believe that "the Internet and its relatively simple working
environment is the catalyst that will change the construction industry from paper to
digital communication – particularly in the way of project collaboration and project
management (ENR 1998)." Nevertheless, there is still a long way to go to achieve
such a goal.

Durability of Building Materials and Components 8. (1999) Edited by M.A. Lacasse
and D.J. Vanier. Institute for Research in Construction, Ottawa ON, K1A 0R6,
Canada, pp. 2246-2258.
 National Research Council Canada 1999

C
on

st
ru

ct
io

n
In

fo
rm

at
ic

s
D

ig
ita

l L
ib

ra
ry

 h
ttp

://
itc

.s
ci

x.
ne

t/
pa

pe
r

w
78

-1
99

9-
22

46
.c

on
te

nt

1.1 Problem description
Construction industry is notorious for information fragmentation (O’Brien

1993). From the object-oriented point of view, information, or attributes, related to an
object is better to be placed together logically or be coherently and consistently
connected through some mechanisms in order to facilitate information management
(Martin and Odell 1998). However, since information related to the same object
might be generated at different project stages by different people using different
software tools in the construction industry, it is quite common that the information is
physically, technically and semantically isolated. For example, a "slab-on-grade"
object has information about its estimating, its scheduling, its budget, and its drawing.
Because of the information fragmentation, the mapping of the relationships among
those types of information requires manual translations. One solution to this problem
is using a shared database, while the estimating, the scheduling, the budget and the
drawings are different views to the same database (Fischer and Froese 1996). This
solution works well for the shared project information, such as project drawings and
manuals. However, for private information such as budget and cost accounts, even if
the private information is modeled by using the same semantic model as that of the
shared project information, there is still a need for bridging the private information
and the shared information. This means because of the business constraints, the
information fragmentation still exists even if the shared database approach is used.

Construction industry uses a lot of documents as communication media. One of
the direct reflections of the above problems is that the information in the documents
prepared at remote sites (by other project participants) may not be directly and
automatically reused to retrieve related information by the local project information
system. For example, a contractor may receive a Request for Change Order Proposal
(RCOP) referring to a work item, "slab-on-grade", while the local system may have
some associated information about that work item such as scheduling, budget, and
estimating. The contractor normally need to know these types of information to
prepare a return document, a Change Order Proposal (COP). However, when an
architect is preparing the RCOP, he/she does not know what kind of information the
contractor may need and where the information is. Therefore what the architect can
do is to prepare a conventional type of document that only expresses what the
document is and what kind of return information is expected. This approach is quite
reasonably although not user friendly or user oriented.

Because of the existence such a problem, it relies on the document viewer to
interpret the document and find the associated information. Very often what is in the
document may not be what the user wants. Unfortunately the conventional document
itself cannot do anything to help this situation. It will be a great step forward if there
is a system that can not only present the document but also serve as a gateway to
other related information. Such a system will definitely improve project participants’
job efficiency.

This project is to use contemporary computer technology to build a prototype of
such a system for the construction project participants, which is named
Kaleidoscope.

1.2 Overview of Kaleidoscope
The purpose of Kaleidoscope is to provide project participants a system that

allow them to automatically retrieve relevant information from local sources without
resorting to other systems and also allow them to tailor the display according their
own needs. Kaleidoscope is for Web-based applications and portable for different
database systems and platforms.
Currently, there are three types of Web-based applications in construction industry.
They are “fee-based project management service”, “build it yourself solutions”, and
“Web-enabling software” (ENR 1998). The “fee-based project management service”
such as Blue-Line/On-Line (1999) and Emerging Solutions (1999) provides a central
server for project Web sites, allowing project participants to log on at different
security levels to upload and download project information. Such systems are
implemented as Web databases, providing users with organized data entry and
retrieval mechanisms with different views. The “build it yourself solutions” such as
the Aspects ProjectServer and Site-Builder by Black & Veatch (1999) focuses on
similar technical approaches only without information outsourcing. The “Web-
enabling software” such as the Primavera Project Planner (1999) can generate Web
ready reports based on its own data sources. Nevertheless, those systems do not have
a mechanism to deal with the problem mentioned previously. Kaleidoscope, as a
complement to those systems, is designed to give project participants a more
integrated working environment that provides them with the capability of dealing
with information from different sources simultaneously.

1.3 Implementation technology
The implementation of Kaleidoscope relies on a mixed use of hypermedia

design, XML (eXtended Markup Language), WDDX (Web Distributed Data
eXchange), and Java.

Hypermedia design methods such as HDM (Hypermedia Design Method)(
Garzotto et al. 1993), OOHDM (Object Oriented Hypermedia Design Method)[10]
and RMM (Relationship Management Method)[11] are the major tools for designing
specifications for dynamic hypermedia generation.

XML is a new Web technology. As a subset of SGML (Standard Generalized
Markup Language), XML gives software engineers and developers a tool to automate
the processing of Web documents (Bosak; St.Laurent; Microsoft Corp.; Sall; DOMS;
XML; Walsh; Paoli and Workshop 1999). For Kaleidoscope, XML provides a
fundamental meta-language for structuring construction documents and provides a
tool for manipulating the documents as well.

WDDX is a new technology for integrating databases with different
computing environments such as Java and JavaScript (Forta and Allaire 1999). The
technology is based on XML by using XML syntax to form a system independent
data format. In Kaleidoscope, WDDX is great helpful because Kaleidoscope relies
on a neutral data format to transfer data between local databases and the
Kaleidoscope environment, which is Java in this case.

The implementation of Kaleidoscope is done by Java program language.

2 System design

2.1 System architecture
Figure 1 shows the system architecture of Kaleidoscope.

Fig.1: System architecture

The system starts with a construction document that is prepared in the XML
format. The construction document is then parsed by a XML parser. In this project,
the IBM parser is used. During the parsing process, some units may need to get local
information. This is done by sending out a universal key and other information to
local systems in the WDDX format. The results from local systems, if any, are stored
in WDDX format as well and sent back to the parser. The results after parse are
several trees, namely a tree structure representing the construction document and
some tree structures representing local information. The local information is always
related to some different document units. Therefore, logically there is only one tree.
The tree forms the conceptual schema. To access to and manipulate the tree,
myDocument, APIs (Application Programming Interfaces), is provided. Although we
can always use W3C DOM (World Wide Web Consortium Document Object Model)
APIs, myDocument provides a simplified set of APIs that are designed for
applications involving local information. The navigational schema defines access
structures. Kaleidoscope provides three kinds of access structures, which are the
document index, the local information type index and the local information mixed
index. The implementation of these access structures and the related presentations
rely on the services of myDocument. The presentation schema organizes
presentations according to tasks and provides interface features for user interactions.

2.2 Conceptual schema design
The application domain of Kaleidoscope is relatively simple yet dynamic. It is

simple because only a few entities may actually be involved. Those entities only
include a construction document and related local information. Therefore it is not like

Construction document (XML)

XML parser

Conceptual Schema

Navigational Schema

Presentation Schema

Local files
(WDDX)

myDocument (API)

many other hypermedia applications that may have tens or hundreds of entities.
However, it is more dynamic because for different types of construction documents,
the information types in the document as well as related local information types may
change. This means the hyperbase of Kaleidoscope is ever changing according to
different construction documents. For most of other hypermedia projects, they always
have very clear and stable hyperbase in terms of entities and their attribute types. To
solve the problem, Kaleidoscope uses a more generic conceptual schema.

Fig. 2: A "conceptual schema" for Kaleidoscope

Following the principles and the concepts of HDM, Kaleidoscope structures
construction documents into three levels, namely entities, components and units. The
documents themselves represent entities. Each document contains three types of
components, general information, project information and document contents.
General information includes units such as document titles, document dates,
document id, document senders, document receivers, document checklists and
signatures. Project information includes project names, project ids and project
participants. Document contents include names of work items, descriptions and
attachments. Units of the components are equally referred to as "docUnits".

Similarly, information retrieved from local databases is structured in the same
way. On the top, local nodes stand for entities, below which local information types,
such as scheduling and estimating stand for components and their attributes are the
units. The units here are referred to as "localUnits" to be distinct from the "docUnits".

construction document

[general information] [project information] [document contents]

{docUnit} {docUnit} {docUnit}

[local information]

{information type}

{localUnit}

R:has R: belongTo

localUnit

{(name:string
value:string)}

information type

name:string

docUnitname:string

{(attName: string,
value: string)}

[text: string|image]

In order to cover different construction documents and different local
information, the conceptual schema is designed as shown in Figure 2 and Figure 3
respectively.

The notations used in Figure 2 and later are only to serve the purpose of this
project. Explanations of the notations are as following:

• The boxes in dash lines contains structure information only, and do not have any
document information. The boxes in solid lines represent both the structure and
the contents of a document.

• "[]" means that the elements inside it may appear zero or once only; “{ }” means
that the elements inside it may be generated zero or more times. "()" means that
the elements inside it appear in pair; Elements that have no braces or brackets
around them, such as the "name:string" of "information type", must appear
exactly once.

• "R" stands for special relationship, represented by dash arrowhead lines.
Therefore here we have two special relationships. A "docUnit" may "has" a
"localUnit" and thus the "localUnit" "belongTo" the "docUnit". Other
relationships, such as the structural relationship, the perspective relationship and
the application relationship are equally represented by solid arrowhead lines.

• “Text” and “image” stand for the type of the elements. " | " means "or". And ":" is
for type explanation.

Local information is stored in a neutral data format shown as Figure 3.

Fig. 3: Data format for local information

Figure 3 shows that one local node, which corresponds to “local information” in
Figure 2, may have zero or more types of local information. Each type of local
information may have zero or more pairs of name and value, which correspond to the
name and value pairs of the “localUnit” in Figure 2.

In this way, local information that is related to one “docuUnit” may be grouped
together under one node. For example, the “slab-on-grade” mentioned earlier may
have local information of scheduling and budget. Under the same node, “localNode”,
scheduling and budget are two local information types. Within each type, such as
scheduling, name and value pairs, such as “early start = 1/12/98”, are included.

<localNode>
<id>id</id>
<uid>uid</uid>
{<localInformatioType {name=”value”}>}
</localNode>

2.3 Navigational schema design
The navigational design defines three access structures for users to manipulate

the information defined in the conceptual schema. These structures are a document
index, a local information type index and a local information mixed index. These
indexes are defined in Figure 4.

In the navigational schema shown in Figure 4, there are several new notations
used. They are:

• “<!-- … -- >” stands for comments.
• “docUnit.Name” means the name of this "docUnit". "." is used for representing

this relationship.
• “confirm” stands for a confirm bit that captures user’s interactions. The "confirm"

is not a part of document information, therefore it is not shown in the conceptual
schema. However, logically each "docUnit' and each "localUnit" have a confirm
bit.

Fig. 4: Navigational schema of Kaleidoscope

The local information type index and the local information mixed index are
always associated with a certain document unit. They cannot exist alone.

The index structures control the traverse across the hyperbase developed in the
conceptual schema. They also provide access points. The actual display is determined
according to user’s interactions and the “confirm” bits will indicate to the system
what to display.

Corresponding to each of the above indexes, there are three types of display
templates. The specifications of these templates are shown in Figure 5.

In the template for document display, the only action is to display the “text” of a
“docUnit” if the “confirm” of the “docUnit” is true. The condition is wrapped inside a

<!-- general information -- >
{(docUnit.Name: string, confirm: boolean)}
<!-- project information -- >
{(docUnit.Name: string, confirm: boolean)}
<!-- document contents -- >
{(docUnit.Name: string|image, confirm: boolean)}

Document index:

<!-- document contents -- >
{docUnit.Name: string}
<!-- local information -- >
{Information type: string
 {(localUnit.name:string,
 confirm: boolean)}
}

Local information type index:

<!-- document contents -- >
{docUnit.name: string}
<!-- local information -- >
{Information type: string
 {(localUnit.name: string,
 confirm:boolean)}
}

Mixed local information index:

“{}”, which means that there may be more than one “docUnit” selected. Thus the
“display()” is wrapped inside a “{}” as well to be congruous with the condition.

The templates for the local information type display and the local information
mixed display are similar. Both of them have a “isTrue(docUnit.R:has)” condition.
This condition is to check if a “docUnit” has a local node. If a “localUnit.confirm” is
“true”, the “name” and “value” of this “localUnit” are displayed. In order to make the
display clear, the “information type” of this “localUnit” and the “name” and the
“text”, if any, of the “docuUnit” that the “localUnit” indirectly belongs to are
displayed as well.

The differences between the two local information index templates are that the
mixed local information display allows simultaneously display of different
information types, thus it needs to check zero or more “confirm” bits. The other
template however only needs to check zero or once. Consequently, the display of the
mixed local information is wrapped inside a “{}”, while the display of the other
template does not.

Fig. 5: Specifications for various display templates

2.4 Presentation schema design
The presentation schema design includes presentation design, user interface

design and process design. The purpose of the presentation schema is to organize
presentations for different states of different tasks.

2.4.1 Presentation design
The three display templates discussed in the previously section are abstract

designs, they do not say how the information is presented to a user. Presentation
design includes specifications for such purposes. Again, the document layouts are
subject to document types. Thus, here we only consider some generic feature, while
leaving the actual document layouts to different applications.

Condition: {docUnit.confirm = =true}
Action: {display(docUnit.text)}

Construction Document Display:

Condition: isTrue(docUnit.R:has) = =true
 [localUnit.confirm = =true]

<!-- document unit -- >
Action: display(docUnit.name,

docUnit.text)
<! -- related local information -- >
Action: display(information type)

display(localUnit.name,
localUnit.value)

Local Information Type Index Display:

Condition:
isTrue(docUnit.R:has) = = true
{localUnit.confirm = = true}

<!-- document unit -- >
Action:
display(docUnit.name, docUnit.text)
<! -- related local information -- >
Action:
{display(information type)
 {display(localUnit.name

localUnit.value)}
}

Mixed Local Information Index Display:

The rules for presentation are based on matching. For instance, the document
index shown in Figure 4 determines what is to display by set the “confirm” to “true”
and the display templates shown in Figure 5 tells what to do under certain conditions.
Now the presentation template shown as Figure 6 determines how the information is
perceived by users. The presentation templates inherit conditions and display
functions from the display templates in Figure 5. They have additional conditions
however showing the rule for generating presentations. The rule is matching. This is
done by the condition, “This.name = = docUnit.name” or “This.name = =
localUnit.name”. Here, “This” refers to the unit selected by the user in the index
template. Once “This” unit is selected, the name of “This” unit is send back for
searching a unit with the same name in the document tree and the local information
three. If the name is found, and the corresponding content, “text” or “name”, exits,
the corresponding display is carried out and presentation is configured by “set ()” .

The presentation templates are generic templates for various kinds of units.

Fig. 6: Unit presentation specification

2.4.2 User interface design
Although the focus of this project is not on interface features, the interface

design is an unavoidable part. Thus here we only work on the bottom line to show
that the designed mechanism works. Following we will discuss main user interface
features of Kaleidoscope.

Major screen layouts include a toolbar for different menus and a main
presentation window. The menus include “Document” to set views for documents,
“Local Information” to set views on one type of local information, “Mixed Local
Information” to set views on multi-types of local information and “Process” to switch
states. Obvious, “Document” is the implementation of the document index, and
“Local Information” is the implementation for the local information type index and
“Mixed Local Information is the implementation for the local information mixed
index. Buttons will be used as triggers for those menus. The contents of these menus
are generated dynamically according to different documents.

Once a document is opened, the document index is always active to users to set
default views or tailor a display. Since the local information type index and the local
information mixed index are always related to a certain unit in the document, these
indexes are not active until the user selects a proper unit. To help users identify what
units have local information, the system will attach a checkbox to the right unit and

Condition:
inherit conditions from the display template;
This.name= =docUnit.name;
isExist(docUnit.text)= =true;

Action: inherit display from the display template
set(font, fontColor, alignment,..)

Document Unit Presentation:

Condition:
inherit conditions from the display template;
This.name= =localUnit.name;
isExist(localUnit.name)= =true;

Action: inherit display from the display template
set(font, fontColor, alignment,..)

Local Unit Presentation:

also make that unit appear different from others. Therefore, if there are many units
that have local information, Kaleidoscope can provide local access to one unit a time.

A construction document may include some attachments. They are shown in
separate windows. Once a document is opened, the attachments are shown
automatically by default unless the user reset it in the “Document” menu.

3 Conclusion

This paper presents models, specifications and methodology for developing a
hypermedia system that will make a project document prepared by others malleable
to the document viewer. This gives project participants some capability manipulate
the document in the way they want. This also break the limit of conventional
documents that the views of those documents are set and fixed by the party who
prepares the document. The document in Kaleidoscope is thus more user friendly.

However, Kaleidoscope is based on two major assumptions that require further
studies.

3.1 Assumption one
This project is to use XML to represent structured construction documents.

Currently construction documents are not structured in a way that fits the
requirements of XML. Most importantly, the vocabulary set of construction
documents needs to be assumed. For instance, this project may use following XML
tags denoting some nodes in a construction document, shown as Figure 7.

Fig. 7: An example of a construction document in XML format

In the above example, the node name, "documentType" and the attribute name,
"docName", are part of construction document vocabulary. This vocabulary has to be
an industrial standard, or de facto standard. Currently, such vocabulary does not exist
yet, let alone to say an industrial standard.

3.2 Assumption two
One of the major features of Kaleidoscope is its ability to combine a document

with some related local information. This project however can only show a theoretic
solution, because one key technical problem has not been solved in building
construction. This technical problem is of a universal index (uid) system. Once a
node is designed to search for local information, the node passes its uid to the local
system so that the local system can do search and retrieve based on this uid. In the
building construction, such an index does not exist currently. What we have now is a
very rough uid, such as the CSI (Construction Specification Institute) indexes. Such
indexes cannot meet the requirement of this project. Therefore in this project it has to

<documentType docName="changeRequest" id="CH-123">
Request for Change Order Proposal
</documentType>

be assumed that the work items in a construction document and their associated
information in the local system can be uniquely identified.

4 References

Information Technology, the Internet and You (1998) ENR (Engineering News
Record), June 1, pp c3-c33.

O'Brien, M. (1993) Electronic Data Interchange and the Structure of the UK
Construction Industry, Construction Management & Economics, v11, n6, Nov.,
pp443-453.

Martin, J and Odell, J. (1998) Object-oriented methods : a foundation Upper Saddle
River, NJ : Prentice Hall.

Fischer, M. and Froese, T. (1996) Examples and Characteristics of Shared Project
Models. Journal of Computing in Civil Engineering Vol 10 No. 3, pp174-182.

Blue-line / on line Web, http://www.bluelineonline.com/
Emerging Solution, http://www.emergingsolutions.com/
Black & Veatch Web, http://www.bv.com/
Primavera System Inc., http://www.primavera.com/
Garzotto, F., Paolini, P. and Schwabe, D. (1993) HDM---A Model-Based Approach

to Hypertext Application Design, ACM Transactions of Information Systems,
Vol. 11, No. 1, pp1-26.

Isakowitz, T., Stohr, E.A. and Balasubramanian, P.,(1995) RMM: A Methodology for
Structured Hypermedia Design, Communication of the ACM, Vol. 38, No. 8,
pp34-44.

Schwabe, D., Rossi, G. and Barbosa, S.D.J. (1996) Systematic Hypermedia
Application Design with OOHDM, Proceedings of the Seventh ACM
Conference on Hypertext, pp116-128.

Bosak, J., XML, Java, and the Future of the Web, http://sunsite.unc.edu/pub/sun-
info/standards/xml/why/xmlapps.htm.

St.Laurent, S., XML Essays. http://members.aol.com/simonstl/xml/
Microsoft Corporation, XML White Paper,

http://www.geocitites.com/WallStreet/Floor/5815/xmlwhitepaper.htm
Sall, K., XML: Structuring Data for the Web: An Introduction.

http://wdvl.internet.com/Authoring/Language/XML/Intro/
Document Object Model Specification, http://www.w3c.org/TR/REC-DOM-Level-

1/expanded-toc.html
XML Specification, http://www.w3.org/TR/PR-xml-971208
Walsh, N., A Technical Introduction to XML. http://www.arbortext.com/nwalsh.html
Paoli, J., et al, Building XML Parsers for Microsoft’s IE4. http://www.oasis-

open.org/cover/paoliXMLOreilly.html
Workshop on XML. http://www.microsoft.com/xml/contents.htm
Forta, B., Using WDDX to Create Distributed Applications, http://www.allaire.com
Allaire, J., The Emerging Distributed Web, http://www.allaire.com

