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ABSTRACT: A new global search technique called "Probabilistic Global Search-
Lausanne" (PGSL), is presented in this paper. The technique is based on selective 
sampling of the search space according to a probability distribution function. The 
performance of the technique is compared with genetic algorithms using non-linear 
benchmark problems involving a large number of variables. For most of these 
problems, PGSL performs better than GAs.  PGSL shows promise for improving the 
performance of advanced software for the construction industry.   
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1. INTRODUCTION 
Evolutionary search techniques such as Genetic Algorithms (GA) have recently 
gained considerable attention.  They have been used for solving a wide range of 
problems including function optimisation and learning.  They are applied mostly to 
exponentially complex problems in which it is impossible to obtain exact solutions 
within reasonable amount of time.   
 
In this paper, a new global search technique, called "Probabilistic Global Search-
Lausanne" (PGSL), is presented.  The technique is based on selective sampling of the 
search space according to a probability distribution function that is varied 
dynamically during the search process.  Probabilities are increased in regions where 
good solutions are found and hence these regions are searched with greater intensity.  
Similar to many other methods derivatives are not used and therefore, problems due to 
numerical instability are avoided and the chance of getting trapped in local optima is 
reduced.  Results of benchmark tests indicate that this technique performs better than 
genetic algorithms on a wide range of problems. Finally, several potential applications 
for the AEC industry are discussed.   
 

2. SEARCH TECHNIQUES 
 
There are several classes of engineering problems that require searching in large 
solution spaces.  Typically, search methods involve generating solutions and testing 
them for constraint satisfaction and other optimality criteria.  Since the search space is 
huge in most engineering situations, it is impossible to perform an exhaustive search.  
Probabilistic approaches have been used where a near optimal solution is sufficient.  
In this section, some of these techniques and their applications are discussed.   
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2.1 Random start local search 
Local search techniques involve iteratively improving upon a solution point by 
searching in its neighbourhood for better solutions.  If better solutions are not found, 
the process terminates; the current point is taken as a locally optimal solution.  Since 
local search performs poorly when there are multiple local optima, a modification of 
this technique has been suggested in which local search is repeated several times 
using randomly selected starting points.  This process is computationally expensive; 
after each iteration, search starts from a point very far away from the optimum and no 
information obtained from previous iterations is reused.    
 
Random Bit Climbing (RBC) [Davis 1991] is a form of local search in which 
neighbouring points are randomly evaluated and the first move producing an 
improvement is accepted for the next stage.  This process continues till the point 
cannot be improved any further.   
 

2.2 Heuristic search 
This is another search technique in which problem dependent heuristics are used to 
guide the search path.  A well-known example of this is the Lin-Kernighan heuristic 
for solving the travelling salesman problem [Lin 1973]. It is found that this heuristic 
reduces the computation time by more than ten-fold compared to other generic search 
methods such as simulated annealing [Martin 1995].   
 

2.3 Simulated annealing 
Simulated annealing [Kirkpatrick et.al. 1983] is a generic method based on Markov 
Chains.  It improves upon local search algorithms by occasionally allowing 
movements to worse solution points and is thus capable of jumping out of local 
optima.  The method draws analogy from the annealing of metals where the 
temperature controls the arrangement of atoms in their lowest energy configuration 
during the crystallisation process.  In simulated annealing, moves are accepted or 
rejected with a certain probability depending on a function of the temperature such 
that at higher temperatures there is greater probability of accepting inferior moves. 
Temperature is gradually brought down so that the solution converges. One of the 
drawbacks of simulated annealing is that it works with point solutions rather than a 
class of "optimal" solutions.  Nevertheless, point solutions might be useful in many 
cases. 
 

2.4 Genetic algorithms 
Genetic algorithms draw analogy from the evolution of species in biology.  Species 
evolve by means of genetic operators such as crossover and mutation and they survive 
through the mechanism of the survival of the fittest.  In genetic algorithms, this 
process is simulated by encoding potential solutions (individuals) using a 
chromosome-like data structure.  Unlike local search and simulated annealing, genetic 
algorithms work with a population of potential solutions.  New individuals (children) 
are created in the population through reproduction using crossover and mutation 
operators.  These operators ensure that children inherit qualities of parents and they 
are passed on from one generation to the other.  Only a certain number of good 
quality individuals survive each generation and this ensures that the quality of the 
population improves with each generation.   



 
Over the years, several improvements have been suggested to the original algorithm 
introduced by John Holland [Holland 1975] and the result is a family of algorithms 
based on evolutionary principles. Several variations of GA are discussed in the 
following subsections.      
 

2.4.1 The simple genetic algorithm 
The original algorithm introduced by John Holland is sometimes known as the simple 
genetic algorithm (SGA).  Its steps are given below: 
 
1. Generate initial population 
2. Evaluate the population using a fitness function 
3. Create an intermediate population (mating pool) containing individuals that take part in 

reproduction to generate the next population 
4. Apply reproduction operators crossover and mutation to create the next population 
5. Repeat steps 2-4 until the termination condition is met 
   
The selection of individuals to be placed in the mating pool is performed according to 
a probability function that depends on the fitness. According to this scheme, 
individuals having higher fitness might be replicated multiple times to be placed in 
the mating pool.  Crossover is applied to randomly selected pairs of strings 
representing individuals according to a probability pc.  After crossover, a mutation 
operator is applied with a low probability pm.  The newly created individuals replace 
parents. 
 

2.4.2 Steady state genetic algorithm 
This is a variation of the simple genetic algorithm.  The main differences are the 
following: 
 
• There is no intermediate population.  Two parents are selected for reproduction and the offspring is 

immediately placed into the population 
• Offspring do not replace parents, but the least fit member of the population 
• There is no fitness proportionate reproduction 
 
For several classes of problems the steady state genetic algorithm (Syswerda 1991) 
performs much better than the simple genetic algorithm. 
 

2.4.3 CHC 
The CHC algorithm developed by Larry Eshelman [Eshelman 1991] is another 
variation of the genetic algorithm.  CHC stands for Cross generational elitist selection, 
heterogeneous recombination (by incest prevention) and Cataclysmic mutation.  
Important features of the algorithm are given below: 
 
• After recombination, N best individuals are selected from the parent and offspring to create the 

next generation.  Duplicates are removed from the population. 
• Individuals are randomly selected for reproduction, however, certain restrictions are imposed on 

which strings are allowed to mate.   Strings within a certain hamming distance are not allowed to 
mate. 

• A form of uniform crossover called HUX is used in which exactly half of the differing bits are 
swapped.   

• When population converges and starts producing more or less same strings, cataclysmic mutation 
is activated.  All strings except the best are heavily mutated. 



Recent evaluations indicate that CHC is generally more efficient than SGA and steady 
state genetic algorithm.   
 

3. PROBABILISTIC GLOBAL SEARCH LAUSANNE 
The Probabilistic Global Search Lausanne (PGSL) algorithm was developed based on 
the observation that optimally directed solutions can be obtained efficiently through 
carefully sampling the search space without using special operators.  The basic 
assumption is that better points are more likely to be found in the neighbourhood of 
good points.  Hence, search is intensified in regions containing good solutions.    
 
The search space is sampled by means of a probability distribution function (PDF) 
defined over the entire search space.  Each axis is divided into a fixed number of 
intervals and a uniform probability distribution is assumed in the beginning.  As 
search progresses, intervals and probabilities are dynamically updated so that points 
are generated with higher probability in regions containing good solutions. The search 
space is gradually narrowed down so that convergence is achieved. 
 
The algorithm includes four nested cycles: 
• Sampling 
• Probability updating 
• Focusing 
• Subdomain 
 
In the sampling cycle  (innermost cycle) a certain number of points, ns, are generated 
randomly according to the current PDF.  Each point is evaluated by the user defined 
objective function and the best point is selected.  In the next cycle, probabilities of 
regions containing good solutions are increased and probabilities decreased in regions 
containing less attractive solutions. In the third cycle, search is focused on the interval 
containing the best solution after a number of probability updating cycles, by further 
subdivision of the interval. In the subdomain cycle, the search space is progressively 
narrowed by selecting a subdomain of smaller size centred on the best point after each 
focusing cycle.   
 
Each cycle serves a different purpose in the search for a global optimum.  The 
sampling cycle permits a more uniform and exhaustive search over the entire search 
space than other cycles.  Probability updating and focusing cycles refine search in the 
neighbourhood of good solutions.  Convergence is achieved by means of the 
subdomain cycle.   
 

3.1 Terminology 
The following definitions are used in the explanation of the algorithm: 
Search space: The set of all potential solutions. It is an n-dimensional space with an 

axis corresponding to each variable.  The user defines the minimum and 
maximum values along each axis. A subset of the search space is called a 
subdomain. 

Solution point: A point in the search space consisting of a set of values for each 
variable.   

Axis width: The difference between the minimum and the maximum along an axis of 
the search space or a subdomain. 
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IPUC > NPUC 

Increment IPUC
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IFC > NFC 

Increment IFC 

Subdomain redefinition: For each variable, change the minimum and 
maximum in order to search a smaller subdomain centred about CBEST 

Interval subdivision: For each variable, subdivide the interval containing 
the value of the variable in CBEST, update probabilities 

Probability updating: For each variable, increase the probability of
the interval containing the value of the variable in BS 

Sampling cycle: get the best point in this cycle BS and the 
corresponding cost, BSCOST; Update CBEST 

Start probability updating cycle: initialise counter IPUC to 0 

Start focusing cycle: initialise counter IFC to 0

Start subdomain cycle: initialise counter ISDC to 0 

Initialise: Set current best point CBEST to NULL 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Flow chart for the PGSL algorithm 



Cost function: A user-supplied function to evaluate a solution point.  The value of the 
cost function for a given point is called the cost of the solution point.   

Probability density function, PDF: The PDF of a variable is defined in the form of a 
histogram.  The axis represented by the variable is discretised into a fixed 
number of intervals, NINTERVALS. Uniform probability distribution is 
assumed within each interval.  The cumulative distribution function (CDF) is 
obtained by integrating the PDF. 

 
Important parameters involved in the algorithm are listed below: 
Number of samples, NS: The number of samples evaluated in the sampling cycle. 
Iterations in the probability updating cycle, NPUC:  The number of times the 

sampling cycle is repeated in a probability updating cycle. 
Iterations in the focusing cycle, NFC: The number of times the probability updating 

cycle is repeated in a focusing cycle. 
Iterations in the subdomain cycle, NSDC: The number of times the focusing cycle is 

repeated in a subdomain cycle. 
Subdomain scale factors, SDSF1, SDSF2 : The default factors for scaling down the 

axis width in the subdomain cycle. SDF1 is used when there is an 
improvement and SDF2 if there is no improvement. 

 

3.2 Algorithm details  
The algorithm is illustrated in the form of a flowchart in Figure 1 and is explained in 
more detail below: 

3.2.1 Initialisation 
The search space is defined by reading the minimum and maximum values for each 
variable given by the user.  The PDF of each variable is created by assuming a 
uniform distribution over the entire domain.  All PDFs have intervals  of constant 
width in the beginning. 
 

3.2.2 Sampling cycle 

NS points are generated randomly by generating a value for each variable according 
to its PDF.  This is similar to sampling in the Montecarlo technique.  Each point is 
evaluated and the point having the minimum cost, BS (Best Sample) is selected.   
 

3.2.2 Probability updating cycle 
The sampling cycle is invoked NPUC times.  After each iteration, the PDF of each 
variable is modified using the probability-updating algorithm.  This ensures that the 
sampling frequencies in regions containing good points are increased.  The evolution 
of the PDF for a variable after several sampling cycles is illustrated in Figure 2. 
 
 
 
 
 
 
 
 
Figure 2: Evolution of the PDF of a variable after several probability updating cycles 



 
 

3.2.3 Probability-updating algorithm 
The PDF of a variable is updated through these steps: 
• Locate the interval containing the value of the variable in BS.   
• Multiply the probability of the interval by a factor (greater than 1), PUF. 
• Normalise the PDF 
 

3.2.3 Focusing cycle 
The probability updating cycle is repeated NFC times.  After each iteration, the search 
is increasingly focused on the interval containing the current best point, CBEST.  This 

The evolution of the PDF after several probability-updating cycles is illustrated in 
Figure 3.   

is done by subdividing the interval containing the value of each variable in CBEST.  

 
 
 
 
 
 
 
 
 

Figure 3: Evolution of the PDF of a variable after several focusing cycles  
 

3.2.4 Interval subdivision 

The following steps are used for subdividing intervals in the focusing cycle: 
• Locate the interval (called BESTINTERVAL) containing the value of the variable in CBEST.   
• Divide the interval into NDIV uniform subintervals.   
• Assign 50% probability to BESTINTERVAL, (so that half of the points generated will be in this 

interval).  Divide this probability uniformly to its subintervals.   
• Calculate the number of intervals into which the remainder of the domain should be divided so that 

the total number of intervals remain constant. 
• Distribute the remaining probability to the region outside the BESTINTERVAL so that the PDF 

decays exponentially away from the BESTREGION.    

After subdivision, intervals no longer have the same width and probabilities are 
heavily concentrated near the current best.   

3.2.5 Subdomain cycle 

In the subdomain cycle, the focusing cycle is repeated NSDC times and at the end of 
each iteration,  the current search space is modified. In the beginning, the entire space 

selected for search. The size of the subdomain decreases gradually and the solution 
converges to a point. A subdomain is selected by changing the minimum and 
maximum of each variable.   

(the global search space) is searched, but in subsequent iterations a subdomain is 

While choosing the next subdomain, certain precautionary measures are taken to 
avoid premature convergence. Firstly, a higher scale factor is used after an iteration 



that does not produce a better cost.  This avoids rapid reduction of the axis width after 
several unsuccessful iterations.  Secondly, the statistical variations of the values of the 
variable in previous iterations are considered in determining the new minimum and 
maximum. If the value of the variable fluctuates by a large amount the convergence is 
slowed down. 

The method to compute the new values of minimum and maximum for each variable 
is explained in pseudo-code below: 
• Let XP = the value of the variable in CBEST 
• Let DX = (Current Axis Width)/2  
• Let GX1 = Minimum of the axis in the global search space 
• Let GX2 = Maximum of the axis in the global search space 
• Let STDEV be the standard deviation of the value of the variable in previous 5 iterations 
• If there has been an improvement in cost in the current iteration, scale factor,  SCF = SDF1, else 

SCF = SDF2.   
• The new half width, NDX  = DX * SCF. 
• If NDX < STDEV NDX = STDEV 
• The new minimum of the axis, X1 = XP-NDX.   
• The new maximum of the axis X2 = XP+NDX.   
• If X1 < GX1 then X1 = GX1 
• If X2 > GX2 then X2 = GX2 

 

3.3 Choosing values for parameters  

Values of parameters that have been empirically found  to be insensitive to the 
problem-type are given below: 
• Number of intervals in the PDF, NINTERVALS = 20 
• The number of subintervals, NDIV = 6 
• Subdomain scale factor SDSF2 = 0.96 

Problem dependent parameters include: 
• Number of samples, NS 
• Iterations in the probability updating cycle, NPUC. 
• Iterations in the focusing cycle, NFC 
• Iterations in the subdomain cycle, NSDC 
• Subdomain scale factor, SDSF1 

 

It is found that for reasonably smooth problems, the values of NS and NPUC can be 
taken as 2 and 1 respectively.  Increasing these values appear to produce no better 
results.  However, for highly irregular domains higher values should be used.  It can 
be shown that best results are obtained when these values are proportional to the 
number of reasonably regular sub-regions within the space.  However, even for highly 
non-linear problems, the default values of 2 and 1 seem to work quite well and they 
were used in all the benchmark problems listed in the next section.   

The value of NFC could be between 10N and 20N, where, N is the number of 
variables in the problem.  A higher value results in more intensive search in the 
neighbourhood of the current best point.   

The value of SDSF1 should be between 0.5 and 0.99.  A lower value results in rapid 
reduction in the sizes of subdomains and may cause premature convergence.  A higher 
value slows down convergence and it may take much longer to find the optimum, 



however, much better quality solutions are obtained.  The following empirical 
formula is found to produce good results: 

SDSF1 = N(-1/N) 

The value of NSDC controls the precision of results and is dependent on the scale 
factors. A lower value results in the axis width of the subdomain very large after all 
iterations.  The length of search (the number of evaluations) can be modified by 
adjusting the values of SDSF1 and NSDC.   

 

4. BENCHMARK TESTS 

The performance of PGSL is evaluated by testing it on several benchmark problems.   
Recent publications [Borkowski 1999, Topping 1999] indicate that genetic algorithms 
are being more widely used for solving general optimisation problems compared to 
other generic methods.  Hence, the performance of PGSL is compared with three 
versions of GAs.  

De Jong [De Jong 1975] first proposed common test functions (F1-F5) with multiple 
optima to be used for evaluating genetic algorithms.  However, it has been shown that 
some of them can be treated satisfactorily by local search [Davis 1991]. More difficult 
test functions have been proposed recently [Whitley 1995], which are highly 
nonlinear and which can be scaled to a large number of variables. Some of these 
functions are used for testing the performance of the PGSL algorithm.  A short 
description of the test functions are given below: 

 
F8 (Griewank's function):   
It is a scalable, nonlinear, and non-separable function given by 
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Expanded functions: 
Expanded functions [Whitley 1995] are constructed by starting with a primitive 
nonlinear function in two variables, F(x,y), and scaling to multiple variables using the 
formula, 
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The expanded functions are no longer separable and introduce nonlinear interactions 
across multiple variables.  An example is the function EF10 created using the 
primitive function F10 given by the following equation: 

[ ]1))(50(sin)(),(10 1.022225.022 +++= yxyxyxF  
 
Composite functions: 
A composite function can be constructed from a primitive function F(x1, x2) and a 
transformation function T(x,y) using the formula 
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The composite function EF8avg is created from the Griewank's function,  F8 using the 
transformation function T(x,y) = (x+y)/2 
 
The composite test function EF8F2 is created from the Griewank's function,  F8 using 
the De Jong function F2 as the transformation function.  F2 is defined as  

)1()(100),(2 222 yyxyxF −+−=  
The composite functions are known to be much harder than the primitive functions 
and are resistant to hill climbing. 
 

4.1 Results of benchmark tests  
The performance of PGSL is compared with results reported for three programs based 
on genetic algorithms, namely, ESGAT, CHC and Genitor [Whitley 1995].  ESGAT 
is an implementation of simple genetic algorithm and Genitor an implementation of 
steady state genetic algorithm.  Four test functions are used for comparison, F8, EF10, 
EF8AVG and EF8F2. All these test functions have a known optimum (minimum) of 
zero.  It is known that [Whitley 1995] local search techniques perform poorly in 
solving these problems. 
 
Results are summarised in tables 1-4.  Thirty trial runs were performed for each 
problem using different seed values for random numbers.  In each trial, a maximum of 
500,000 evaluations of the objective function is allowed.  Performance is compared 
using three criteria.   
1. The success rate (the number of trials in which the global optimum was found) 
2. The mean solution obtained in all the trials.  The closer the mean solution is to 

zero (the global optimum) the better is the performance of the algorithm.   
3. The mean number of evaluations of the objective function required to obtain the 

global optimum (only for trials in which the optimum was found) 
 

4.1.1 Simple F8 test function 
Results for simple F8 test function are given in Table 1.  Thirty trial runs were 
performed on problems with 10, 20, 50 and 100 variables.  PGSL has a success rate of 
100% for 50 and 100 variables, no version of GA is able to match this.  (Surprisingly, 
the success rate is slightly lower for fewer variables).  However, the mean number of 
evaluations to obtain the optimum is higher than CHC and Genitor for this problem. 
 
 
Num. Variables 10 20 50 100 

ESGAT 6 5 0 0 
CHC 30 30 29 20 
Genitor 25 17 21 21 

Succ 

PGSL 28 29 30 30 
ESGAT 0.0515 0.0622 0.0990 0.262 
CHC 0.0 0.0 0.00104 0.0145 
Genitor 0.00496 0.0240 0.0170 0.0195 

Mean  
solution 

PGSL 0.0007 0.0002 0.0 0.0 



ESGAT 354422 405068   
CHC 51015 50509 182943 242633 
Genitor 92239 104975 219919 428321 

Mean  
Num. 
Evals. 

PGSL 283532 123641 243610 455961 
Table 1: Results for Simple F8 test function  
 

4.1.2 EF10 test function  
Results for the extended function EF10 are summarised in Table 2. It can be seen that 
PGSL has a very high success rate (27 out of 30) even for 50 variables.  For all 
criteria, PGSL performs better than all versions of GAs.   
 
Nb Var 10 20 50 

ESGAT 25 2 0 
CHC 30 30 3 
Genitor 30 4 0 

Succ 

PGSL 30 30 27 
ESGAT 0.572 1.617 770.576 
CHC 0.0 0.0 7.463 
Genitor 0.0 3.349 294.519 

Mean  
solution 

PGSL 0.0 0.0 0.509639 
ESGAT 282299 465875  
CHC 51946 139242 488966 
Genitor 136950 339727   

Mean  
Num 
Evals. 

PGSL 61970 119058 348095 
Table 2:  Results for the extended function EF10 
 

4.1.3 EF8AVG  test function  
Results for the composite function EF8AVG are summarised in Table 3.  For 20 and 50 
variables, none of the algorithms is able to find the exact global optimum.  For 10 
variables the performance of CHC is comparable with that of CHC.  In terms of the 
mean value of the optimum, PGSL outperforms all other algorithms.   
 
Nb Var 10 20 50 

ESGAT 0 
CHC 10 
Genitor 5 

Succ 

PGSL 9 

 

ESGAT 3.131 8.880 212.737 
CHC 1.283 8.157 83.737 
Genitor 1.292 12.161 145.362 

Mean  
solution 

PGSL 0.0151 0.1400 1.4438 
ESGAT   
CHC 222933 
Genitor 151369 

Mean  
Num 
Evals. 

PGSL 212311 

  

Table 3: Results for EF8AVG test function 
 



4.1.4 EF8F2  test function  

Results for the composite function EF8F2 are given in Table 4. None of the algorithms 
is able to find the global optimum for this problem.  However, in terms of the quality 
of the mean solution, PGSL fares better than the rest. 
 
 
Nb Var 10 20 50 

ESGAT 4.077 47.998 527.1 
CHC 1.344 5.63 75.0995 
Genitor 4.365 21.452 398.12 

Mean  
solution 

PGSL 0.123441 0.4139 1.6836 
Table 4:  Results for EF8F2 test function 

 

4.2 Discussion  

Among the three implementations of GAs considered in this section, CHC performs 
better than the rest. In most cases, the quality of results produced by PGSL is better 
than CHC.  However, PGSL requires a greater number of evaluations than CHC, 
especially for small problems. The overall performance of PGSL is comparable to, if 
not better than CHC. 

5. POTENTIAL FOR APPLICATIONS IN CONSTRUCTION 

There is potential for the application of the technique in construction.  Several 
applications of global search techniques can be found in recent publications.  For 
example, simulated annealing has been used for the control of tensegrity structures 
[Smith and Shea 1999]. GAs have been widely used in design and optimization [Sisk  
et.al.1999, Grierson and Khajehpour 1999].  An application of PGSL for bridge 
diagnosis is presented in these proceedings [Robert-Nicoud et.al. 2000].   

 

6. CONCLUDING REMARKS 

Results reported in this paper indicate that PGSL is a robust search technique that 
performs well in spaces with multiple local optima.  For test problems of continuous 
non-linear functions with multiple local minima, its performance is better than GAs in 
terms of i) the quality of solutions, ii) the success rate as well as iii) the number of 
evaluations required to find the optimum. PGSL is based on the idea of selective 
sampling and evaluation of the search space and therefore, it has less computational 
overhead than genetic algorithms.   

PGSL resembles grid search techniques in which the space is partitioned and refined 
over time.  However, grid search techniques suffer from exponential growth of 
partition elements resulting in exponential growth of samples to cover all partitions 
effectively and consequently, large tables to maintain them.  PGSL avoids this 
problem by creating a single PDF for each variable.  Interesting partitions are encoded 
implicitly in this PDF and hence the complexity of the algorithm is linear with respect 
to the number of variables that define the search space.   



Comparison of the method with other search techniques and testing on large scale 
engineering examples are currently in progress.   
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