

A PROBABILISTIC SEARCH ALGORITHM FOR FINDING
OPTIMALLY DIRECTED SOLUTIONS

B. Raphael and I.F.C. Smith

Institute of Structural Engineering and Mechanics (ISS-IMAC)
EPFL-Federal Institute of Technology

CH-1015 Lausanne
Switzerland

Email : Benny.Raphael@epfl.ch

ABSTRACT: A new global search technique called "Probabilistic Global Search-
Lausanne" (PGSL), is presented in this paper. The technique is based on selective
sampling of the search space according to a probability distribution function. The
performance of the technique is compared with genetic algorithms using non-linear
benchmark problems involving a large number of variables. For most of these
problems, PGSL performs better than GAs. PGSL shows promise for improving the
performance of advanced software for the construction industry.

KEYWORDS: Global search, genetic algorithms, optimisation

1. INTRODUCTION
Evolutionary search techniques such as Genetic Algorithms (GA) have recently
gained considerable attention. They have been used for solving a wide range of
problems including function optimisation and learning. They are applied mostly to
exponentially complex problems in which it is impossible to obtain exact solutions
within reasonable amount of time.

In this paper, a new global search technique, called "Probabilistic Global Search-
Lausanne" (PGSL), is presented. The technique is based on selective sampling of the
search space according to a probability distribution function that is varied
dynamically during the search process. Probabilities are increased in regions where
good solutions are found and hence these regions are searched with greater intensity.
Similar to many other methods derivatives are not used and therefore, problems due to
numerical instability are avoided and the chance of getting trapped in local optima is
reduced. Results of benchmark tests indicate that this technique performs better than
genetic algorithms on a wide range of problems. Finally, several potential applications
for the AEC industry are discussed.

2. SEARCH TECHNIQUES

There are several classes of engineering problems that require searching in large
solution spaces. Typically, search methods involve generating solutions and testing
them for constraint satisfaction and other optimality criteria. Since the search space is
huge in most engineering situations, it is impossible to perform an exhaustive search.
Probabilistic approaches have been used where a near optimal solution is sufficient.
In this section, some of these techniques and their applications are discussed.

C
on

st
ru

ct
io

n
In

fo
rm

at
ic

s
D

ig
ita

l L
ib

ra
ry

 h
ttp

://
itc

.s
ci

x.
ne

t/
pa

pe
r

w
78

-2
00

0-
70

8.
co

nt
en

t

2.1 Random start local search
Local search techniques involve iteratively improving upon a solution point by
searching in its neighbourhood for better solutions. If better solutions are not found,
the process terminates; the current point is taken as a locally optimal solution. Since
local search performs poorly when there are multiple local optima, a modification of
this technique has been suggested in which local search is repeated several times
using randomly selected starting points. This process is computationally expensive;
after each iteration, search starts from a point very far away from the optimum and no
information obtained from previous iterations is reused.

Random Bit Climbing (RBC) [Davis 1991] is a form of local search in which
neighbouring points are randomly evaluated and the first move producing an
improvement is accepted for the next stage. This process continues till the point
cannot be improved any further.

2.2 Heuristic search
This is another search technique in which problem dependent heuristics are used to
guide the search path. A well-known example of this is the Lin-Kernighan heuristic
for solving the travelling salesman problem [Lin 1973]. It is found that this heuristic
reduces the computation time by more than ten-fold compared to other generic search
methods such as simulated annealing [Martin 1995].

2.3 Simulated annealing
Simulated annealing [Kirkpatrick et.al. 1983] is a generic method based on Markov
Chains. It improves upon local search algorithms by occasionally allowing
movements to worse solution points and is thus capable of jumping out of local
optima. The method draws analogy from the annealing of metals where the
temperature controls the arrangement of atoms in their lowest energy configuration
during the crystallisation process. In simulated annealing, moves are accepted or
rejected with a certain probability depending on a function of the temperature such
that at higher temperatures there is greater probability of accepting inferior moves.
Temperature is gradually brought down so that the solution converges. One of the
drawbacks of simulated annealing is that it works with point solutions rather than a
class of "optimal" solutions. Nevertheless, point solutions might be useful in many
cases.

2.4 Genetic algorithms
Genetic algorithms draw analogy from the evolution of species in biology. Species
evolve by means of genetic operators such as crossover and mutation and they survive
through the mechanism of the survival of the fittest. In genetic algorithms, this
process is simulated by encoding potential solutions (individuals) using a
chromosome-like data structure. Unlike local search and simulated annealing, genetic
algorithms work with a population of potential solutions. New individuals (children)
are created in the population through reproduction using crossover and mutation
operators. These operators ensure that children inherit qualities of parents and they
are passed on from one generation to the other. Only a certain number of good
quality individuals survive each generation and this ensures that the quality of the
population improves with each generation.

Over the years, several improvements have been suggested to the original algorithm
introduced by John Holland [Holland 1975] and the result is a family of algorithms
based on evolutionary principles. Several variations of GA are discussed in the
following subsections.

2.4.1 The simple genetic algorithm
The original algorithm introduced by John Holland is sometimes known as the simple
genetic algorithm (SGA). Its steps are given below:

1. Generate initial population
2. Evaluate the population using a fitness function
3. Create an intermediate population (mating pool) containing individuals that take part in

reproduction to generate the next population
4. Apply reproduction operators crossover and mutation to create the next population
5. Repeat steps 2-4 until the termination condition is met

The selection of individuals to be placed in the mating pool is performed according to
a probability function that depends on the fitness. According to this scheme,
individuals having higher fitness might be replicated multiple times to be placed in
the mating pool. Crossover is applied to randomly selected pairs of strings
representing individuals according to a probability pc. After crossover, a mutation
operator is applied with a low probability pm. The newly created individuals replace
parents.

2.4.2 Steady state genetic algorithm
This is a variation of the simple genetic algorithm. The main differences are the
following:

• There is no intermediate population. Two parents are selected for reproduction and the offspring is

immediately placed into the population
• Offspring do not replace parents, but the least fit member of the population
• There is no fitness proportionate reproduction

For several classes of problems the steady state genetic algorithm (Syswerda 1991)
performs much better than the simple genetic algorithm.

2.4.3 CHC
The CHC algorithm developed by Larry Eshelman [Eshelman 1991] is another
variation of the genetic algorithm. CHC stands for Cross generational elitist selection,
heterogeneous recombination (by incest prevention) and Cataclysmic mutation.
Important features of the algorithm are given below:

• After recombination, N best individuals are selected from the parent and offspring to create the

next generation. Duplicates are removed from the population.
• Individuals are randomly selected for reproduction, however, certain restrictions are imposed on

which strings are allowed to mate. Strings within a certain hamming distance are not allowed to
mate.

• A form of uniform crossover called HUX is used in which exactly half of the differing bits are
swapped.

• When population converges and starts producing more or less same strings, cataclysmic mutation
is activated. All strings except the best are heavily mutated.

Recent evaluations indicate that CHC is generally more efficient than SGA and steady
state genetic algorithm.

3. PROBABILISTIC GLOBAL SEARCH LAUSANNE
The Probabilistic Global Search Lausanne (PGSL) algorithm was developed based on
the observation that optimally directed solutions can be obtained efficiently through
carefully sampling the search space without using special operators. The basic
assumption is that better points are more likely to be found in the neighbourhood of
good points. Hence, search is intensified in regions containing good solutions.

The search space is sampled by means of a probability distribution function (PDF)
defined over the entire search space. Each axis is divided into a fixed number of
intervals and a uniform probability distribution is assumed in the beginning. As
search progresses, intervals and probabilities are dynamically updated so that points
are generated with higher probability in regions containing good solutions. The search
space is gradually narrowed down so that convergence is achieved.

The algorithm includes four nested cycles:
• Sampling
• Probability updating
• Focusing
• Subdomain

In the sampling cycle (innermost cycle) a certain number of points, ns, are generated
randomly according to the current PDF. Each point is evaluated by the user defined
objective function and the best point is selected. In the next cycle, probabilities of
regions containing good solutions are increased and probabilities decreased in regions
containing less attractive solutions. In the third cycle, search is focused on the interval
containing the best solution after a number of probability updating cycles, by further
subdivision of the interval. In the subdomain cycle, the search space is progressively
narrowed by selecting a subdomain of smaller size centred on the best point after each
focusing cycle.

Each cycle serves a different purpose in the search for a global optimum. The
sampling cycle permits a more uniform and exhaustive search over the entire search
space than other cycles. Probability updating and focusing cycles refine search in the
neighbourhood of good solutions. Convergence is achieved by means of the
subdomain cycle.

3.1 Terminology
The following definitions are used in the explanation of the algorithm:
Search space: The set of all potential solutions. It is an n-dimensional space with an

axis corresponding to each variable. The user defines the minimum and
maximum values along each axis. A subset of the search space is called a
subdomain.

Solution point: A point in the search space consisting of a set of values for each
variable.

Axis width: The difference between the minimum and the maximum along an axis of
the search space or a subdomain.

End of subdomain cycle

End of focusing cycle

End of probability updating cycle

Yes

Yes

Yes

No

No

No

STOP

IPUC > NPUC

Increment IPUC

ISDC > NSDC

IFC > NFC

Increment IFC

Subdomain redefinition: For each variable, change the minimum and
maximum in order to search a smaller subdomain centred about CBEST

Interval subdivision: For each variable, subdivide the interval containing
the value of the variable in CBEST, update probabilities

Probability updating: For each variable, increase the probability of
the interval containing the value of the variable in BS

Sampling cycle: get the best point in this cycle BS and the
corresponding cost, BSCOST; Update CBEST

Start probability updating cycle: initialise counter IPUC to 0

Start focusing cycle: initialise counter IFC to 0

Start subdomain cycle: initialise counter ISDC to 0

Initialise: Set current best point CBEST to NULL

Figure 1. Flow chart for the PGSL algorithm

Cost function: A user-supplied function to evaluate a solution point. The value of the
cost function for a given point is called the cost of the solution point.

Probability density function, PDF: The PDF of a variable is defined in the form of a
histogram. The axis represented by the variable is discretised into a fixed
number of intervals, NINTERVALS. Uniform probability distribution is
assumed within each interval. The cumulative distribution function (CDF) is
obtained by integrating the PDF.

Important parameters involved in the algorithm are listed below:
Number of samples, NS: The number of samples evaluated in the sampling cycle.
Iterations in the probability updating cycle, NPUC: The number of times the

sampling cycle is repeated in a probability updating cycle.
Iterations in the focusing cycle, NFC: The number of times the probability updating

cycle is repeated in a focusing cycle.
Iterations in the subdomain cycle, NSDC: The number of times the focusing cycle is

repeated in a subdomain cycle.
Subdomain scale factors, SDSF1, SDSF2 : The default factors for scaling down the

axis width in the subdomain cycle. SDF1 is used when there is an
improvement and SDF2 if there is no improvement.

3.2 Algorithm details
The algorithm is illustrated in the form of a flowchart in Figure 1 and is explained in
more detail below:

3.2.1 Initialisation
The search space is defined by reading the minimum and maximum values for each
variable given by the user. The PDF of each variable is created by assuming a
uniform distribution over the entire domain. All PDFs have intervals of constant
width in the beginning.

3.2.2 Sampling cycle

NS points are generated randomly by generating a value for each variable according
to its PDF. This is similar to sampling in the Montecarlo technique. Each point is
evaluated and the point having the minimum cost, BS (Best Sample) is selected.

3.2.2 Probability updating cycle
The sampling cycle is invoked NPUC times. After each iteration, the PDF of each
variable is modified using the probability-updating algorithm. This ensures that the
sampling frequencies in regions containing good points are increased. The evolution
of the PDF for a variable after several sampling cycles is illustrated in Figure 2.

Figure 2: Evolution of the PDF of a variable after several probability updating cycles

3.2.3 Probability-updating algorithm
The PDF of a variable is updated through these steps:
• Locate the interval containing the value of the variable in BS.
• Multiply the probability of the interval by a factor (greater than 1), PUF.
• Normalise the PDF

3.2.3 Focusing cycle
The probability updating cycle is repeated NFC times. After each iteration, the search
is increasingly focused on the interval containing the current best point, CBEST. This

The evolution of the PDF after several probability-updating cycles is illustrated in
Figure 3.

is done by subdividing the interval containing the value of each variable in CBEST.

Figure 3: Evolution of the PDF of a variable after several focusing cycles

3.2.4 Interval subdivision

The following steps are used for subdividing intervals in the focusing cycle:
• Locate the interval (called BESTINTERVAL) containing the value of the variable in CBEST.
• Divide the interval into NDIV uniform subintervals.
• Assign 50% probability to BESTINTERVAL, (so that half of the points generated will be in this

interval). Divide this probability uniformly to its subintervals.
• Calculate the number of intervals into which the remainder of the domain should be divided so that

the total number of intervals remain constant.
• Distribute the remaining probability to the region outside the BESTINTERVAL so that the PDF

decays exponentially away from the BESTREGION.

After subdivision, intervals no longer have the same width and probabilities are
heavily concentrated near the current best.

3.2.5 Subdomain cycle

In the subdomain cycle, the focusing cycle is repeated NSDC times and at the end of
each iteration, the current search space is modified. In the beginning, the entire space

selected for search. The size of the subdomain decreases gradually and the solution
converges to a point. A subdomain is selected by changing the minimum and
maximum of each variable.

(the global search space) is searched, but in subsequent iterations a subdomain is

While choosing the next subdomain, certain precautionary measures are taken to
avoid premature convergence. Firstly, a higher scale factor is used after an iteration

that does not produce a better cost. This avoids rapid reduction of the axis width after
several unsuccessful iterations. Secondly, the statistical variations of the values of the
variable in previous iterations are considered in determining the new minimum and
maximum. If the value of the variable fluctuates by a large amount the convergence is
slowed down.

The method to compute the new values of minimum and maximum for each variable
is explained in pseudo-code below:
• Let XP = the value of the variable in CBEST
• Let DX = (Current Axis Width)/2
• Let GX1 = Minimum of the axis in the global search space
• Let GX2 = Maximum of the axis in the global search space
• Let STDEV be the standard deviation of the value of the variable in previous 5 iterations
• If there has been an improvement in cost in the current iteration, scale factor, SCF = SDF1, else

SCF = SDF2.
• The new half width, NDX = DX * SCF.
• If NDX < STDEV NDX = STDEV
• The new minimum of the axis, X1 = XP-NDX.
• The new maximum of the axis X2 = XP+NDX.
• If X1 < GX1 then X1 = GX1
• If X2 > GX2 then X2 = GX2

3.3 Choosing values for parameters

Values of parameters that have been empirically found to be insensitive to the
problem-type are given below:
• Number of intervals in the PDF, NINTERVALS = 20
• The number of subintervals, NDIV = 6
• Subdomain scale factor SDSF2 = 0.96

Problem dependent parameters include:
• Number of samples, NS
• Iterations in the probability updating cycle, NPUC.
• Iterations in the focusing cycle, NFC
• Iterations in the subdomain cycle, NSDC
• Subdomain scale factor, SDSF1

It is found that for reasonably smooth problems, the values of NS and NPUC can be
taken as 2 and 1 respectively. Increasing these values appear to produce no better
results. However, for highly irregular domains higher values should be used. It can
be shown that best results are obtained when these values are proportional to the
number of reasonably regular sub-regions within the space. However, even for highly
non-linear problems, the default values of 2 and 1 seem to work quite well and they
were used in all the benchmark problems listed in the next section.

The value of NFC could be between 10N and 20N, where, N is the number of
variables in the problem. A higher value results in more intensive search in the
neighbourhood of the current best point.

The value of SDSF1 should be between 0.5 and 0.99. A lower value results in rapid
reduction in the sizes of subdomains and may cause premature convergence. A higher
value slows down convergence and it may take much longer to find the optimum,

however, much better quality solutions are obtained. The following empirical
formula is found to produce good results:

SDSF1 = N(-1/N)

The value of NSDC controls the precision of results and is dependent on the scale
factors. A lower value results in the axis width of the subdomain very large after all
iterations. The length of search (the number of evaluations) can be modified by
adjusting the values of SDSF1 and NSDC.

4. BENCHMARK TESTS

The performance of PGSL is evaluated by testing it on several benchmark problems.
Recent publications [Borkowski 1999, Topping 1999] indicate that genetic algorithms
are being more widely used for solving general optimisation problems compared to
other generic methods. Hence, the performance of PGSL is compared with three
versions of GAs.

De Jong [De Jong 1975] first proposed common test functions (F1-F5) with multiple
optima to be used for evaluating genetic algorithms. However, it has been shown that
some of them can be treated satisfactorily by local search [Davis 1991]. More difficult
test functions have been proposed recently [Whitley 1995], which are highly
nonlinear and which can be scaled to a large number of variables. Some of these
functions are used for testing the performance of the PGSL algorithm. A short
description of the test functions are given below:

F8 (Griewank's function):
It is a scalable, nonlinear, and non-separable function given by

∏∑
==

= −+=
N

i
i

N

i

x
Nii ixxf i

11
4000,1))/(cos(1)(

2

Expanded functions:
Expanded functions [Whitley 1995] are constructed by starting with a primitive
nonlinear function in two variables, F(x,y), and scaling to multiple variables using the
formula,

∑ ∑
= =

= =
N

j

N

i
jiNii xxFxEF

1 1
,1),()(

The expanded functions are no longer separable and introduce nonlinear interactions
across multiple variables. An example is the function EF10 created using the
primitive function F10 given by the following equation:

[]1))(50(sin)(),(10 1.022225.022 +++= yxyxyxF

Composite functions:
A composite function can be constructed from a primitive function F(x1, x2) and a
transformation function T(x,y) using the formula

∑
−

=
+= +=

1

1
11,1)),(()),(()(

N

i
iinNii xxTFxxTFxEF

The composite function EF8avg is created from the Griewank's function, F8 using the
transformation function T(x,y) = (x+y)/2

The composite test function EF8F2 is created from the Griewank's function, F8 using
the De Jong function F2 as the transformation function. F2 is defined as

)1()(100),(2 222 yyxyxF −+−=
The composite functions are known to be much harder than the primitive functions
and are resistant to hill climbing.

4.1 Results of benchmark tests
The performance of PGSL is compared with results reported for three programs based
on genetic algorithms, namely, ESGAT, CHC and Genitor [Whitley 1995]. ESGAT
is an implementation of simple genetic algorithm and Genitor an implementation of
steady state genetic algorithm. Four test functions are used for comparison, F8, EF10,
EF8AVG and EF8F2. All these test functions have a known optimum (minimum) of
zero. It is known that [Whitley 1995] local search techniques perform poorly in
solving these problems.

Results are summarised in tables 1-4. Thirty trial runs were performed for each
problem using different seed values for random numbers. In each trial, a maximum of
500,000 evaluations of the objective function is allowed. Performance is compared
using three criteria.
1. The success rate (the number of trials in which the global optimum was found)
2. The mean solution obtained in all the trials. The closer the mean solution is to

zero (the global optimum) the better is the performance of the algorithm.
3. The mean number of evaluations of the objective function required to obtain the

global optimum (only for trials in which the optimum was found)

4.1.1 Simple F8 test function
Results for simple F8 test function are given in Table 1. Thirty trial runs were
performed on problems with 10, 20, 50 and 100 variables. PGSL has a success rate of
100% for 50 and 100 variables, no version of GA is able to match this. (Surprisingly,
the success rate is slightly lower for fewer variables). However, the mean number of
evaluations to obtain the optimum is higher than CHC and Genitor for this problem.

Num. Variables 10 20 50 100

ESGAT 6 5 0 0
CHC 30 30 29 20
Genitor 25 17 21 21

Succ

PGSL 28 29 30 30
ESGAT 0.0515 0.0622 0.0990 0.262
CHC 0.0 0.0 0.00104 0.0145
Genitor 0.00496 0.0240 0.0170 0.0195

Mean
solution

PGSL 0.0007 0.0002 0.0 0.0

ESGAT 354422 405068
CHC 51015 50509 182943 242633
Genitor 92239 104975 219919 428321

Mean
Num.
Evals.

PGSL 283532 123641 243610 455961
Table 1: Results for Simple F8 test function

4.1.2 EF10 test function
Results for the extended function EF10 are summarised in Table 2. It can be seen that
PGSL has a very high success rate (27 out of 30) even for 50 variables. For all
criteria, PGSL performs better than all versions of GAs.

Nb Var 10 20 50

ESGAT 25 2 0
CHC 30 30 3
Genitor 30 4 0

Succ

PGSL 30 30 27
ESGAT 0.572 1.617 770.576
CHC 0.0 0.0 7.463
Genitor 0.0 3.349 294.519

Mean
solution

PGSL 0.0 0.0 0.509639
ESGAT 282299 465875
CHC 51946 139242 488966
Genitor 136950 339727

Mean
Num
Evals.

PGSL 61970 119058 348095
Table 2: Results for the extended function EF10

4.1.3 EF8AVG test function
Results for the composite function EF8AVG are summarised in Table 3. For 20 and 50
variables, none of the algorithms is able to find the exact global optimum. For 10
variables the performance of CHC is comparable with that of CHC. In terms of the
mean value of the optimum, PGSL outperforms all other algorithms.

Nb Var 10 20 50

ESGAT 0
CHC 10
Genitor 5

Succ

PGSL 9

ESGAT 3.131 8.880 212.737
CHC 1.283 8.157 83.737
Genitor 1.292 12.161 145.362

Mean
solution

PGSL 0.0151 0.1400 1.4438
ESGAT
CHC 222933
Genitor 151369

Mean
Num
Evals.

PGSL 212311

Table 3: Results for EF8AVG test function

4.1.4 EF8F2 test function

Results for the composite function EF8F2 are given in Table 4. None of the algorithms
is able to find the global optimum for this problem. However, in terms of the quality
of the mean solution, PGSL fares better than the rest.

Nb Var 10 20 50

ESGAT 4.077 47.998 527.1
CHC 1.344 5.63 75.0995
Genitor 4.365 21.452 398.12

Mean
solution

PGSL 0.123441 0.4139 1.6836
Table 4: Results for EF8F2 test function

4.2 Discussion

Among the three implementations of GAs considered in this section, CHC performs
better than the rest. In most cases, the quality of results produced by PGSL is better
than CHC. However, PGSL requires a greater number of evaluations than CHC,
especially for small problems. The overall performance of PGSL is comparable to, if
not better than CHC.

5. POTENTIAL FOR APPLICATIONS IN CONSTRUCTION

There is potential for the application of the technique in construction. Several
applications of global search techniques can be found in recent publications. For
example, simulated annealing has been used for the control of tensegrity structures
[Smith and Shea 1999]. GAs have been widely used in design and optimization [Sisk
et.al.1999, Grierson and Khajehpour 1999]. An application of PGSL for bridge
diagnosis is presented in these proceedings [Robert-Nicoud et.al. 2000].

6. CONCLUDING REMARKS

Results reported in this paper indicate that PGSL is a robust search technique that
performs well in spaces with multiple local optima. For test problems of continuous
non-linear functions with multiple local minima, its performance is better than GAs in
terms of i) the quality of solutions, ii) the success rate as well as iii) the number of
evaluations required to find the optimum. PGSL is based on the idea of selective
sampling and evaluation of the search space and therefore, it has less computational
overhead than genetic algorithms.

PGSL resembles grid search techniques in which the space is partitioned and refined
over time. However, grid search techniques suffer from exponential growth of
partition elements resulting in exponential growth of samples to cover all partitions
effectively and consequently, large tables to maintain them. PGSL avoids this
problem by creating a single PDF for each variable. Interesting partitions are encoded
implicitly in this PDF and hence the complexity of the algorithm is linear with respect
to the number of variables that define the search space.

Comparison of the method with other search techniques and testing on large scale
engineering examples are currently in progress.

ACKNOWLEDGEMENTS
This research is funded by the Alliance for Global Sustainability (AGS), Swiss
National Science Foundation (NSF) and the commission for technology and
innovation (CTI). We would like to thank Dr. K. De Jong and K. Shea for valuable
comments and suggestions. We would also like to thank Logitech SA and Silicon
Graphics Incorporated for supporting this research.

REFERENCES

Borkowski A. (1999). Artificial Intelligence in Engineering, Information Technology
for design, manufacturing, maintenance and monitoring, Politechnika Warswawska.

Davis L. (1991). Bit-climbing, representational bias and test suite design, In
L.Booker and R.Belew, ed., Proceedings of the 4th international conference on GAs,
Morgan Kauffman.

De Jong, K (1975). Analyis of the behaviour of a class of genetic adaptive szstems.
Ph.D. thesis, Univerisity of Michigan, Ann Arbor.

Eshelman L. (1991). The CHC adaptive search algorithm. Foundations of genetic
algorithms, G.Rawlins (editor), Morgan-Kaufmann. Pp. 256-283.

Grierson D.E., S.Khajehpour (1999), Multi-criteria conceptual design of office
buildings using adaptive search, In Artificial intelligence in engineering, Information
technology for design, manufacturing, maintenance and monitoring, Adam Borkowski
(editor), Politechnika Warswawska.

Holland J. (1975). Adaptation in natural artificial systems, University of Michigan
Press.

Kirkpatrick, S.,C.Gelatt and Vecchi M. (1983). Optimisation by simulated annealing,
Science. pp. 220:673.

Kin S., Kernighan B. (1971). An effective heuristic for the travelling salesman
problem, Operations research, 21:498.

Martin O. (1995). Combining simulated annealing with local search heuristics,
Metaheuristics in combinatoric optimization, G.Laporte and I.Osman (editors).

Y.Robert-Nicoud, B.Raphael, Ian Smith (2000). Decision support through multiple
models and probabilistic search, In proceedings of Construction Information
Technology 2000, Iceland building research institute.

Sisk G.M., Moore C., Miles J. (1999). A decision support system for the conceptual
design of building structures using a genetic algorithm, In Artificial intelligence in
engineering, Information technology for design, manufacturing, maintenance and
monitoring, Adam Borkowski (editor), Politechnika Warswawska.

Smith, I. and Shea, K. (1999). Extending active control to build intelligent structures,
Structures for the Future - The Search for Quality, IABSE Reports, Vol. 83,
International Association for Bridge and Structural Engineering, Zurich, pp 1057-
1064.

Syswerda G. (1991). A study of reproduction in generational and steady-state genetic
algorithms, Foundations of Genetic algorithms, G.Rawlins, editor, Morgan-
Kaufmann. pp.94-101.

Topping B. and Kumar B. (1999). Optimization and control in civil and structural
engineering, CIVIL-COMP Press.

Whiltley D. (1995). Building better test functions, In L. Eshelman, editor,
Proceedings of the 6th international conference on GAs, Morgan Kauffman.

