

20-1

20 TYPES AND DOCUMENTS: STRUCTURING BUILDING PROJECT
INFORMATION

Bige Tunçer, Rudi Stouffs, Sevil Sariyildiz

Chair Technical Design & Informatics, Faculty of Architecture, Delft University of Technology

b.tuncer@bk.tudelft.nl, r.stouffs@bk.tudelft.nl, i.s.sariyildiz@bk.tudelft.nl

Abstract

We describe a methodology for integrating a number of design documents of different formats
within a single information structure. When this integrated structure is highly related, it provides
support for effective searching and browsing of this information. To achieve such relatedness, we
consider a notion of types from architecture as a semantic structure for project document
management in the AEC industry. We discuss specific techniques to support this use of types with
respect to EDMS’s and Web-based project management systems. We describe a prototype
application, a presentation tool for architectural analyses that combines these techniques.

Keywords: types, EDMS, document classification, information structure, recognition

C
on

st
ru

ct
io

n
In

fo
rm

at
ic

s
D

ig
ita

l L
ib

ra
ry

 h
ttp

://
itc

.s
ci

x.
ne

t/
pa

pe
r

w
78

-2
00

1-
33

.c
on

te
nt

20-2

INTRODUCTION

Building projects are expressed in a variety of documents presenting different aspects of the
building. Web-based project management systems are gaining ground as environments for
organizing and managing these documents. However, a common problem of such systems is that
they either offer only a loose organization of the design documents or, on the contrary, impose a
rigid structure. We propose a methodology for increasing the effectiveness of such a system that
does not impose a fixed frame of reference. This methodology integrates a number of design
documents of different formats within a single information structure. When this integrated
structure is highly related, it provides support for effective searching and browsing of this
information.

The first part of the paper introduces a notion of types from architecture and explores how this
notion can be beneficially applied in the area of information management for the AEC industry.
The second part of the paper discusses specific techniques to support this use of types with
respect to Electronic Document Management Systems (EDMS’s) and Web-based project
management systems. The third part describes a prototype application, a presentation tool for
architectural analyses that combines these techniques.

TYPES: A CONCEPT FROM ARCHITECTURE

Within a discipline, members commonly share a definition and classification of common
concepts. This structuring of shared knowledge through common concepts gives insight into that
particular discipline (Leupen et al., 1997). Architects generally classify building designs based on
spatial and formal features. This classification features the concepts of type and typology.

The concept of building types plays a central role in architecture, although there is no single
definition of type and various approaches to the subject exist (Madrazo, 1995). Building types
generally define classes of buildings that have common, often functional, characteristics. For
example, we can define museums, offices, or libraries as building types. However, the functional
classification is not the only aspect of building types. Generally a type can be described as the
encoding of prominent features of a design object. Such features include function, form, and
context. According to Moneo (1978), a type can be “defined as a concept which describes a
group of objects characterized by some formal structure. It is fundamentally based on the
possibility of grouping objects by certain inherent structural similarities.” Type as a formal
structure embraces a vast hierarchy of concerns from social activity to building construction. The
relationships between all these aspects and the elements that make up the whole define the formal
structure.

Types in architecture assist, besides the communication of shared knowledge, analysis of existing
buildings, and design of new buildings (Leupen et al., 1997). In analysis, one gives names to
aspects of buildings and describes how these fit into a composition, resulting in an “analytical
typology” (e.g., Madrazo, 2000; Flemming, 1990; Mitchell, 1990). In design, a reproducible
system of design choices is stored in a “generative typology” (e.g., Achten, 1997; van Leusen,
1994; Gero, 1990). Within a generative typology, a type can be considered as bearing a specific
design experience for a specific situation (e.g., a design aid).

20-3

Studies that make use of typological classification have established a rich body of architectural
knowledge. Exporting the notion of classification using types to other domains, such as project
document management in the AEC industry, may also deliver important results. We discuss three
points where the concept of types is of interest in such a context.

Separation of Syntax and Semantics

Types in architecture are highly conceptual. Types define classes of design objects that share
common characteristics. The designs themselves are represented through design documents, e.g.,
texts, drawings, models. A design document is associated with a conventional image of the
respective type or class of objects. This association is understood both by the creators and by the
users of this object, be it a building, a window, or a chair (Lawrence, 1994). Type as a concept
has no notion of representation. Instead, relationships between types play an important role. This
results in a semantic structure of types and relationships. However, it does not impose any
particular structure on the design document depicting an instance of a type. The explicit linking
between documents and types may be achieved simply through assignment.

An EDMS offers a framework for a flexible organization of documents, treating the individual
documents as entities or objects that are organized and related according to different categories
and attributes. However, simply specifying one or more keywords for each document does not
provide the powerful organization that successfully assists users in retrieving documents of
interest. A semantic network describing the document’s composition, as in a product model, is
too rigid (Tunçer and Stouffs, 2000). Taking a middle way between a collection of categorized
documents and a full product model is desirable. Separating syntax and semantics allows the
semantic structure to augment the document structure without imposing a specific compositional
structure. This separation provides extensibility and flexibility within a system without imposing
a fixed frame of reference, as the semantics can easily be altered without an adaptation of the
syntactic structure. Types can be imported as a network of concepts, organized according to their
relationships and dependencies, then associated with documents.

Semantic Structure

We can consider types in their most simplistic form as keywords. Keywords are commonly used
as a means for the categorization of documents in EDMS’s. An analogy with types adds a notion
of relatedness to keywords: a type is related to and dependent on other types. According to
Johnson (1994), a relationship has first to do with identifying characteristics of elements. These
make the elements recognizable as belonging to some family of elements. Second, a relationship
relates to the distance between the elements, be it abstract, conceptual, mathematical, semantic,
or physical distance. Relationships between types result in formal and spatial organizations and
ordering principles (Ching, 1979). For example, relationships can be expressed in the form of a
hierarchy. As types are associated to documents, in the form of keywords, relationships between
types induce additional relationships between document entities that otherwise do not exist.
These additional relationships tighten the information structure, already defined by the document
entities and their relationships. Such a tight information structure provides support for effective
searching and browsing of an information space (Tunçer and Stouffs, 2000).

20-4

The semantic structure may also facilitate the assignment of types to document entities. When
types or keywords are organized in a structure, these are more easily visualized and
conceptualized. Effective visualizations allow efficient and fast access to data, and provide a
better overview of data entities (Papanikolaou, 2001). Effective visualizations that facilitate
visual exploration and manipulation support the process of relating appropriate types or keywords
to document entities.

Various Formalizations

Types in architecture usually have various formalizations related to them. Formalizations of types
make it possible to search for instances of types within documents of different formats. Since
types are conceptual entities, with images of these associated to design documents, the format of
a document defines the respective type’s formalization: as a keyword, an image, a sketch, etc.
Formalizations of types in different formats can assist in automating the classification of
documents by automatically recognizing instances of types within documents. This automation
facilitates the process of relating and categorizing documents within an EDMS. It also supports
the creation of a component view of a document. Recognizing instances of types in documents
provides both qualitative and quantitative information about the importance of a type for a
document. Furthermore, it enables a specification of exactly which part of a document a type
applies to.

The recognition of document components corresponding to types further increases the relatedness
of documents in an EDMS. Going back to the concept of a tight information structure, an
enumeration of the different types of relationships that exist between documents assists in
establishing how the organizational structure supports effective searching and browsing of
documents. In this organization, keywords or types, which define the semantic structure, are
related within a network. These keywords are associated with documents. Documents that share a
keyword are implicitly related. Furthermore, since keywords are organized in a network, their
relationships add to the relationships between documents. The level to which this relatedness is
considered is flexible. Finally, document decompositions create additional relationships in the
form of document component hierarchies.

The result of these various relationships between documents is a tight information structure
defined by the relatedness between documents offering new possibilities for accessing, viewing,
and interpreting this information. First, it allows one to access specific information directly
instead of requiring a traversal of the document hierarchy. Individual components can be reached
and retrieved more quickly when provided with more relationships. Second, components can be
considered from a different point of view. The location of a component in the structure is no
longer only defined by its place in the document hierarchy. Instead, components provide direct
access to other related components, forming a part of the first component’s view. Third, one can
access the information structure from alternative views to those that are expressed by the
individual design documents. New compositions of components and relationships offer new
interpretations of the structure and generate views not inherent in the structure as created by the
original design documents. (Tunçer and Stouffs, 2000).

The conceptual nature of types in architecture allows various depictions of types in different
formats. When types are represented graphically and textually, one can browse or search a

20-5

document-based system using any of the available representations of keywords. Such flexible
representations are especially interesting for browsing information, when users do not have any
specific query in mind (Gross, 1995). In an architectural analysis, such uses are plentiful, as users
are not only interested in individual design documents but in an interpretation of the entire
structure seeking information related to a concept of interest. Graphical representations of
keywords, or types, are of great use in such a context.

TECHNIQUES FOR RELATING TYPES AND DOCUMENTS

We consider three techniques for achieving a tight information structure. These are the modeling
of the type structure, the decomposition of the documents with respect to these types, and the use
of recognition algorithms to assist in this decomposition.

Modeling and Visualizing the Type structure

The relationships between types constitute the semantic structure defined by these types. The
form of this structure, however, is not predefined. It may be a linear structure, such as a
chronological list of project phases. It may also be a hierarchical structure of types offering
various levels of detailing. Furthermore, parts of the hierarchy may be reused as leaf nodes at
various locations, resulting in a network structure, where elements can have more than one
‘parent’. Elements within such a network may be further individually related, creating an even
more complex structure. The structure’s complexity can be extended or reduced according to
individual cases. The overall structure may also constitute a combination of hierarchies and linear
dependencies, describing different aspects or parts of a typology. In this case, the individual
structures may be considered as different dimensions within the semantic model.

Elements of such a structure do not necessarily need to be considered conceptually as types in the
architectural sense. Types in this context are used to denote the dependency between elements.
When these elements are related according to a semantic structure, they are more than simple
attributes.

The kinds and dimensions of a type structure results from the modeling of the semantics. The
chosen model, however, also has an impact on how the resulting structure is visualized in order to
facilitate an effective use of this structure in the process of augmenting the relatedness of project
documents. Simple attributes can be presented in a 2D list view. When types have relationships
and dependencies, this complexity initiates other ways of visualizing. These visualizations may
be 2D or 3D, depending on which best fits the particular purpose (Tunçer et al., 2000). A disc
view in which the user can navigate, zoom, and pan seems to be very appropriate in the
visualization of hierarchical structures (Papanikolaou, 2001). A dynamic visualization for
visualizing relationships in a network is very appropriate (Plumb Design, 1998).

Decomposition View of Documents

The use of XML (eXtensible Markup Language) (W3C, 2000) for the purpose of describing a
decomposition of documents related with types has many advantages. One of the strengths of
XML for this purpose is its ability to represent information structures: how various pieces of
information relate to one another. Once a structure is agreed upon, decompositions of existing

20-6

documents can easily be expressed in XML. XML also serves to integrate such a decomposition
of documents into an existing Web-based EDM environment. When decomposing documents in
XML, the effect of this decomposition on the structure and representation of the EDMS can be
kept to a minimum. Rather than having to replace a document entity by its composition hierarchy
of document components, the XML decomposition can be linked to the document as an attribute,
simply as text. By interpreting this document attribute, the decomposed document structure can
be retrieved and presented. In this way, both the flexibility and the effectiveness of the EDMS is
improved without altering the structure of the EDMS, nor imposing any fixed frame of reference.
Visualization approaches, as mentioned above, can also be integrated into an EDMS in order to
improve on its expression. These can be plugged into the EDMS and can work on different
levels, by interpreting the component hierarchy and displaying the relatedness of components
from different perspectives.

Recognition of Components and Relationships

The process of document decomposition can be (semi-)automated using pattern recognition
mechanisms and AI techniques. Within this paper, we are only concerned with text documents,
images, and simple line drawings. Other formats will require similar, though different,
recognition techniques. Image recognition mechanisms for images, shape recognition
mechanisms for simple line drawings, and keyword or concept recognition mechanisms for texts
can assist in presenting the user with suggestions about document components corresponding to
given types.

When dealing with texts, neural networks and pattern recognition algorithms can pinpoint
keywords in and extract key concepts from documents (Greenberg, 1999). Determining which
sets of text are related is achieved by identifying content patterns in one set and recognizing the
same or similar patterns in other sets. For simple line drawings, shape recognition algorithms can
be based on the matching of distinguishable elements in the drawing and the type descriptions
(Krishnamurti and Stouffs, 1997; Krishnamurti and Earl, 1992). In order to automate the process
of decomposing images, we propose a four step approach. Starting with a collection of types
whose instances may appear in these images, we proceed from the assumption that each type has
an associated set of shapes and forms dependent on the current context that makes it possible to
recognize this type within the images.

The first step is to determine the intrinsic structure (Barrow and Tenenbaum, 1981) of the scene,
reflecting on the spatial properties of this scene. Using image processing and manipulation
techniques, the appearance of objects is enhanced and objects’ edges accentuated, thereby,
providing preliminary object description data such as edges, surfaces, surface orientations and
distances. This is done to reduce the large amount of information available in an image and to
extract the useful information necessary for the next step. We intend to use neural networks for
the manipulation of image data.

The second step is to determine boundaries and regions of the geometry by segmenting and
grouping the features in the intrinsic images. The resulting segmented images are formed by
gathering the feature elements into sets likely to be associated with meaningful objects in the
scene, i.e., edge segments corresponding to polyhedral edges. Some domain-dependent
information may be used in this stage in order to determine the type of a boundary curve and to

20-7

reduce noise. The form and shape information encoded within types plays an important role in
providing this domain information.

The third step is the recovery of the geometry or shape of objects that make up the scene, from
the line drawings resulting from the previous step. Information about regions and their adjacency,
the relationships between boundary lines and vertices, and surface orientation information, enable
the building of a geometric representation of the scene.

The last step is to interpret the geometry, matching it with a representation of instances of types
that may be in the scene. These matches must subsequently be controlled and validated. The
overlaps between the geometries of matches can be optimized. The neighborhood relationships of
these geometries can be validated by relying on the relationships of types within the type
hierarchy. Shape recognition and artificial intelligence techniques can further be used for the
matching itself (Çiftçioglu et al., 1999), and for the control and validation of matches. As an
example, neural networks are widely used for pattern recognition (Inoue and Urahama, 2000;
Bishop, 1995).

PROTOTYPE APPLICATION

We are developing an application that will combine the described techniques in the form of a
Web-based tool for the presentation of architectural analyses in an educational setting. Analysis
plays an important role in design and education. From a representational point of view, an
analysis is composed of various abstractions describing different aspects of the building such as
geometry, structure, context, and functional organization (Schmitt, 1993). These abstractions
exist in a variety of formats. An information structure that integrates the different aspects of the
analysis, such that the analysis can be interpreted and used in ways other than the original
abstractions present, would be particularly useful in education. Examples of environments to
build up, store, and present architectural analyses exist on the Web (e.g., Madrazo, 2000;
Madrazo and Weder, 1998). These use keywords to organize and classify abstractions. This
organization can be augmented by applying the methodology presented in this paper. Ottoman
Mosques serve as a case study for this work.

The analysis presentation tool allows for a decomposition of documents by content using a
hierarchical type structure. The input to the application is a set of design documents in the form
of images, texts, and simple line drawings, and a type hierarchy. The output is an integrated
structure of components and relationships. In between, a number of steps are traversed:
documents are broken up into their components, and these components within and between
documents are related through types. We are using XML for the purpose of decomposing
documents and integrating these into a single structure.

Structure

The prototype application specifies two information hierarchies: types and documents (Tunçer
and Stouffs, 2000) (figure 1). The type hierarchy specifies the semantic structure. The document
hierarchy is defined by the collection of design documents and their decompositions. Both
hierarchies are recursively defined.

20-8

analysis

types documents

typetree

type typeref

classification

linktypetree

component

document

link

link

component

*

**

=#PCDATA =#PCDATA

id ID
description? ref IDREF

id ID
types IDREFS
title CDATA

id ID
types IDREFS
doctype CDATA
content CDATA
title?
creation?
author?
reference?
width?
height?

id ID
types IDREFS
content CDATA
title?
creation?
author?
width?
height?
xpos?
ypos?

=#PCDATA

…

…

…

link_to IDREF
creation?
author?

…

*

*

*

*

Figure 1. The recursively defined types and documents hierarchies. The grammar of XML, i.e.,
the DTD, specifies the structure of both hierarchies in the system: their elements, their nesting
and additional properties, and their attributes.

The type hierarchy (figure 2) can be incorporated from an external framework or specifically
defined corresponding to the subject of the analysis. The latter may require the hierarchy to be
constructed across the viewpoints of different groups or users. As a result of the separation of
syntax and semantics, this construction can easily be achieved, and altered even after documents
have been decomposed. The structure is defined in XML by using the type name as the tag, and
by nesting the elements according to the hierarchy. Each type is additionally identified by an ID,
which is used for linking types to components. Below is a snippet of XML code for the definition
of the type hierarchy:

<types>
<typetree>
<type id="t166">types</type>
<typetree>
<type id="t70">physical</type>
…
</typetree>
</typetree>
</types>

Decompositions of abstractions are expressed in XML. Each component is identified by an ID,
and the component hierarchy is defined by using the ID as the index, and by nesting the elements.
Types are assigned to components by their ID’s. Below is a snippet of XML code for the
decomposition of an image abstraction:

20-9

<document id="d6" types="t68 t66 t31" doctype="img" content="sehzade17" title="plan and
longitudinal section" creation="2000-05-03 15:35:03" reference="3" width="769"
height="1075">
<component id="d36" types="t68t t31t t66t" content="sehzade17-b" title="plan
highlighting different zones" creation="2000-05-04 12:49:06" width="769" height="489"
xpos="0" ypos="494">
<component id="d54" types="t48t" content="sehzade17-b-2" title="courtyard"
creation="2000-05-08 10:00:42" width="423" height="489" xpos="15" ypos="494">
</component>
</component>
</document>

types

domed baldachin

central dome

supporting
structure

portico

semi-
spherical-

dome

half-
dome

quarter-
dome

drum

fenestration

window

arch

pier

weight
towertympanum

front
courtyard

facadeside
courtyard

facade
portal

entrance

fenestration
@

door

front
facade

side
facade

qibla
facade

main
entrance

@

vitrail

buttress

entrance
@

fenestration
@

exterior gallery

arch
@

arcade
@crescent

transitional
structure

squinch

pendentive

muqarnas

arcade

arch
@ column

column
capital

dome
@

crescent
@

central
bay

arch
@

muqarnas
@

central
dome

@

balustrade
@

dome
@

main
entrance

main
door

muqarnas
@

relieving arch
jamb

dome
segmented

dome

crescent
@

column
base

spandrel

alinlik

relieving
arch
@

relieving arch
@

pediment

alinlik
@

transitional
structure

@

pier
@

arch
@

non-physical

perceptual

light

view
texture

color

acoustics

spatial

configuration

conceptual

contextual

proportion scale

organization

ordering

generic
human

centralized
grid

axis

linear

symmetry
hierarchy

rhythm
datum

transformation

repetition

approach
& entry

path configuration
& access

sequence
of spaces

symbolism

program

social & cultural
aspects

historical
precedents

economic
aspects

user
requirements client

requirements

environment

climate geography

sensory

luminosity

visual
communication

visibilityvisual unity
bay

crossing
parallel

volume

silhouette

function &
activities

man-society
relationship man-God

relationship

artistic
expression

religion
traditionpolitics

site

era

social & cultural
aspects

@

dates

architect

Sinan

begincompletion

style

Ottoman
Gothic

Renaissance

Byzantian

modular

orientation

horizontal
vertical

process

mosque
name

location

format

drawing or sketch photograph

diagram
elevation

section
plan axonometric

perspective
grayscale

full color

text

structural organizational

exterior shell courtyard

last place
of assembly

prayer hall minaret

balcony

interior
gallery

courtyard
facade arcade

@

fountain

roof
enclosure

wall

prayer hall
facade

arcade
@

pinnacle

crescent
@

qibla wall

mihrab
niche

minbar

muqarnas
@

balustrade

muqarnas
@

fluting

balustrade
@

mosque complex

decoration

imam’s
platform

central space

entrance
@

physical

material

limestone
red &
white

marble
lead

size

dimension

properties

transparency

structural organizational

exterior shell
courtyard

last place
of assembly

prayer hall
minaret

balcony

interior
gallery

courtyard
facade

arcade
@

fountain

roof
enclosure

wall

prayer hall
facade

arcade
@

pinnacle

crescent
@qibla wall

mihrab
niche

minbar

muqarnas
@

balustrademuqarnas
@

fluting

balustrade
@

mosque complex

decoration

imam’s
platform

central space

entrance
@

physical

material

limestone
red &
white

marble

lead

size

dimension

properties

Figure 2. An exemplar type hierarchy, defined for the categorization abstractions of three
Ottoman mosques. The keywords that are defined elsewhere in the hierarchy are marked by ‘@’.

In this organization, the abstraction hierarchy initially relates components. Additionally,
components that share the same type are implicitly related. The type hierarchy further relates
components, these relationships are derived from the nesting in the type hierarchy. Finally,
explicit relationships between components can be specified as references to the component ID’s.
These are transferred to the XML structure as IDREFS tags.

The resulting XML structure offers a flexible source for further manipulation and traversal.
Components can be selected according to their relationships and attributes, offering various views
of the information structure. Views can be traversed and linked using both explicit and implicit

20-10

relationships. The XML documents are visualized through related developments such as XSL and
XSLT, also using XPointer and XLink.

Interface

The interface allows the user to view both the type and document hierarchies and their
relationships in an intuitive way. These views include both in-world and out-world views
(Papanikolaou and Tunçer, 1999). An in-world view presents a component (or type) together with
its immediate neighbors within the hierarchy, and displays all other components that share a type
with it (figure 3). The in-world view allows one to browse the structure and interpret
relationships, and as such lets the user be guided to interesting out-world views. Types mainly
serve as binding elements in the structure providing semantic relationships between components.
When traversing the information structure, the content as available in these components is of
most importance to the user. As such, while the component’s types, and their locations in the type
hierarchy, may be presented as properties of the component, its relationships are given primarily
as component-to-component relationships. This not only ensures that the links are presented as
shortly as possible, tightening the information structure, but it also shifts the focus onto the
content, rather than on the structure surrounding it. Types further serve a role as index to the
information structure. Access to the analysis is provided through the collection of abstractions
and from the type hierarchy.

Figure 3. A snapshot of an in-world view from the prototype implementation.

In addition to the different in-world views, structural maps can provide visual feedback to the
users on their traversals and offer selected views by presenting the location of the currently
viewed node within the hierarchy. Such maps can be developed using SVG, X3D, and Java in
relation to XML.

20-11

The presented approach provides the users with a simple interface and easy mechanisms for the
presentation of an analysis of design precedents, and possibly their own designs. The system is
designed in a way that the project grows as users add abstractions from different buildings, even
from their own designs. Since all the information is integrated within a single environment, users
will benefit from the different studies collected in the analysis, and can draw new conclusions
across studies and presentations.

BRIEF DISCUSSION

We have described a methodology and its implementation as a tool for the presentation of
architectural analyses in an educational setting. Our next step is to undertake an exemplar
integration of this methodology into an EDMS in order to augment its capabilities to confirm the
applicability of this methodology in this context. Though we have not attempted this yet, we are
confident this will be successful mainly because of the advantages of using XML for document
decomposition.

There has been a lot of research into the field of image recognition, especially in engineering.
Remarkably, there are very few practical applications of this research in the field of architecture.
With the advances in Web technologies, many institutions are placing their slide and image
archives on the web (de Jong and van der Voordt, 2000; Gross, 1995). One can expect to have
(semi-)automatic recognition mechanisms to be in place for the indexing of these images for
effective and efficient retrieval. The functionality of such mechanisms in these environments
should be pretty straightforward. We are hoping to have a practical contribution that would be of
immediate use in this respect.

20-12

REFERENCES

Achten H. (1997). Generic Representations, Ph.D. diss., Eindhoven University of Technology,
The Netherlands.

Barrow H.G. and Tenenbaum J.M. (1981). Computational vision, Proceedings of the IEEE 69(5),
572-595.

Bishop C.M. (1995). Neural networks for pattern recognition, Clarendon, Oxford.

Ching F.D.K. (1979). Architecture: Form, Space and Order, Van Nostrand Reinhold, New York.
Çiftçioglu Ö., Durmisevic S., Durmisevic E. and Sariyildiz I.S. (1999). Artificial intelligence in
building design, ISAMA 99 (eds. N.A. Friedma, and J. Barrallo), The University of the Basque
Country, San Sebastian, 113-120.

de Jong T.M. and van der Voordt T.J.M. (2000). Retrieval and reference, Ways to Study:
Architectural, Urban, and Technical Design (eds. T.M. de Jong, Y.J. Cuperus, and T.J.M. van
der Voordt), Faculty of Architecture, Delft University of Technology, 29-35.

Flemming U. (1990). Syntactic structures in architecture: teaching composition with computer
assistance, The Electronic Design Studio (eds. M. McCullough, W.J. Mitchell, and P. Purcell),
The MIT Press, Cambridge, Mass., 31-48.
Gero J.S. (1990). Design prototypes: a knowledge representation schema for design, AI Magazine
11(4), 26–36.

Greenberg I. (1999). Facing up to new interfaces, IEEE Computer 32(4), 14-16.

Gross M. (1995). Indexing visual databases of designs with diagrams, Visual Databases in
Architecture (eds. A. Koutamanis, H. Timmermans, and I. Vermeulen), Avebury, Aldershot, UK,
1-14.

Inoue K. and Urahama K. (2000). Learning of view-invariant pattern recognizer with temporal
context, Pattern Recognition 33, 1665-1674.

Johnson P.A. (1994). The Theory of Architecture: Concepts, Themes and Practices, Van
Nostrand Reinhold, New York, 347-348.

Krishnamurti R. and Stouffs R. (1997). Spatial change: continuity, reversibility and emergent
shapes, Environment and Planning B: Planning and Design 24, 359-384.

Krishnamurti R. and Earl C.F. (1992). Shape recognition in three dimensions, Environment and
Planning B: Planning and Design 19, 585-603.

Lawrence R.J. (1994). Types as analytical tool: reinterpretation and application, Ordering Space:
Types in Architecture and Design (eds. K.A. Franck, and L.H. Schneekloth), Van Nostrand
Reinhold, New York, 273.

20-13

Leupen B., Grafe C., Körnig N., Lampe M. and de Zeeuw P. (1997). Design and Analysis, OIO,
Rotterdam, 132.

Madrazo L. (2000). Computers and architectural design: going beyond the tool, Automation in
Construction 9(1), 5-17.

Madrazo L. and Weder A. (1998). AALTO on the Internet: architectural analysis and concept
representation with computer media, Proc. EuropIA'98, Cyber Design vs. Real Design (eds. C.
Branki, and K. Zreik), EuropIA Productions, Paris.

Madrazo L. (1995). The Concept of Type in Architecture: An Inquiry into the Nature of
Architectural Form, Ph.D. diss., Swiss Federal Institute of Technology, Zurich, Switzerland.

Mitchell W.J. (1990). The Logic of Architecture: Design, Computation, and Cognition, The MIT
Press, Cambridge, Mass.

Moneo R. (1978). On typology, Oppositions 13, 23-45.

Papanokolaou M. (2001). IT in virtual enterprises, Bits and Spaces: Architecture and Computing
for Physical, Virtual, Hybrid Realms (ed. M. Engeli), Birkhäuser, Basel, 172-175.
Papanikolaou M. and Tunçer B. (1999). The Fake.Space experience - exploring new spaces,
Architectural Computing: from Turing to 2000 (eds. A. Brown, M. Knight, and P. Berridge),
eCAADe and The University of Liverpool, Liverpool, UK, 395-402.

Plumb Design. (1998). Visual Thesaurus. http://www.visualthesaurus.com/
Schmitt G. (1993). Architectura et Machina: Computer Aided Architectural Design und Virtuelle
Architektur. Vieweg, Braunschweig, Germany, 39.

Tunçer B. and Stouffs R. (2000). Modeling building project information, Construction
Information Technology 2000 (ed. G. Gudnason), Icelandic Building Research Institute,
Reykjavik, Iceland, 937-947.

Tunçer B., Stouffs R. and Sariyildiz S. (2000). Collaborative information structures: educational
and research experiences, COOP 2000 workshop proceedings: Analysing and Modelling
Collective Design, INRIA, Rocquencourt, France, 20-28.

van Leusen M. (1994). A System of Types in the Domain of Residential Buildings, Ph.D. diss.,
Delft University of Technology, The Netherlands.

W3C. (2000). Extensible Markup Language (XML) 1.0 (Second Edition), W3C
Recommendation 6-October-2000. http://www.w3.org/TR/REC-xml

