
  

 42-1

42 STANDARDIZATION: A CRITICAL VIEW 
 
Rudi Stouffs, Ramesh Krishnamurti1 

 
Faculty of Architecture, Delft University of Technology 
1Department of Architecture, Carnegie Mellon University 
 
 
Abstract 
 
Standardization is often touted as the ultimate solution for electronic data exchange. With respect 
to design, it is arguable that while standardization can improve the design process through 
effective data exchange, it may also hinder the process by imposing a specific language for 
designers to express their ideas and concepts. With respect to architectural design, to support the 
dynamic nature of design, flexibility and extensibility are factors that must be considered in any 
standardization effort.  We contend that a syntactic approach specifying a framework for 
expressing and comparing various representations holds more promise.  In this paper, we 
describe a framework for representational flexibility, which borrows from various existing 
approaches and technologies. 
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THE QUESTION OF STANDARDIZATION 
 
Standardization is generally considered to be the ultimate solution to the problem of data 
exchange among collaborative partners. In non-digital exchanges, standardization has not been 
much of an issue, except, perhaps, at a national level.  Project partners exchange information with 
little attention to or the need for any global standard, relying instead, either on their own sources 
of knowledge in order to interpret exchanged data, or querying their colleagues for an 
explanation. In digital exchanges, there are implicit assumptions made on the capabilities of any 
computer application.  However, one cannot rely on interpretive knowledge being resident in an 
application. Neither, even assuming that common sense usually eludes software, can one expect 
nor require the user to assist applications in interpreting this data.  As a result, in order to resolve 
the data exchange problem, a standardization approach has been at the core of most research 
efforts. The assumption is simple: if everyone adopts the same concepts, vocabulary, and 
language, any data expressed within this language will be accessible to everyone. 
 
With respect to design, the real question becomes whether standardization will improve the 
design process through effective data exchange or, instead, would it hinder the process by 
imposing a specific language for designers to express their ideas and conceptualizations?  A 
standard vocabulary or language facilitates communication between different disciplines in the 
building industry. It may enable new streams of communication between partners from remote 
knowledge domains. Representationally, a standard for data exchange reduces the need to concur 
on a set of software applications for all design partners to adopt.  Instead, partners in each 
discipline may employ software that best suits their needs and processes, that is characteristic of 
their discipline. Thus, a variety of applications might be employed interchangeably, provided 
these all adhere to the same standard. 
 
At the same time, a standard vocabulary or data model may act as a straitjacket enabling only 
certain forms of communication, possibly denying certain solutions, or even impeding creative 
new approaches to a given problem.  One advantage from having a lack of standards is that the 
range of applications a project partner can choose from is intrinsically indefinite. In the design 
stage, especially, a creative approach may necessitate the creative selection of design software. 
This may include using design applications from other design domains and even putting to novel 
use different types of applications or tools.  For example, CAD software such as CATIA, first 
developed for the aerospace industry, and Maya, developed for the animation and movie industry, 
have been used for architectural design. If there is, however, an insistence that electronic data 
adhere to a specific standard, this then may strongly constrain the selection of software 
applications. It may further require the author of any information to recast it into a different 
format, resulting in a possibly tedious and uninteresting conversion process. 
 
Two practical considerations are important here. The first is the time it takes to develop and have 
accepted a standard that covers the disciplines and domains within the AEC industry, and, 
perhaps, beyond. The second is the rate of development of software solutions that adhere to this 
evolving standard, that also respond to evolving needs of designers and other users and for tools 
to support them in their creative as well as minutiae work. With respect to architectural design, 
given the dynamic nature of design, additionally, flexibility and extensibility must be considered 
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in a standardization approach. For these reasons, a syntactic approach specifying a framework for 
expressing and comparing various representations holds more promise. 
 
DEVELOPMENT AND ACCEPTANCE OF STANDARDS 
 
Standards are difficult to develop and, more so, to have accepted within the industry. This 
difficulty is primarily due to the extended range of disciplines and knowledge domains that are 
involved and the need for a broad consensus among industry members. This is particularly the 
case in the building industry where such consensus is hard to achieve both within and between 
disciplines. There are many reasons for this. Most commonly, the fragmented nature of the 
building industry and the uniqueness of each building project (Buckley et al., 1998) are cited as 
primary causes for the failure to achieve a standard for data sharing among project partners. On 
the other hand, partial standards have a much higher chance of success. These may be achieved 
by focusing on a particular aspect of the building project such as a single phase in the design or 
construction process, a specific knowledge domain, or a particular set of interactions between 
project partners. By isolating this aspect from the broader context, standardization processes that 
have proven to be successful in other fields may apply and yield a usable solution to a limited 
form of the data exchange problem. 
 
Recent standardization efforts show a renewed interest in such solutions. For example, Object 
trees (van Nederveen, 2000) constitute an approach primarily aimed at the construction planning 
phase of large-scale construction projects. Object trees serve to improve electronic 
communication between different disciplines by offering participants a methodology for 
developing representational object trees that correspond to concept hierarchies of construction 
aspects, elements and their attributes. The methodology requires all participants to concur on the 
concepts and attributes involved; in return, it presents them with a unified framework for relating 
activities and for data exchange among participants. It is specifically suited for the construction 
and construction planning phases of large-scale projects in which the advantages of the 
conceptual and representational framework far outweigh the disadvantages of the need for an a-
priori consensus. Distinct from many other standardization approaches, the object trees 
methodology does not impose a concept vocabulary.  Instead, it leaves the definition of the 
vocabulary up to the project participants, typically based upon their prior experience and on the 
project specifics. 
 
The E-Construct project is another example of a standardization effort, in which a particular need 
in the building construction industry is recognized and a solution developed: bcXML, an 
extension of XML, is a Web-based universal format for structured documents and data to support 
e-commerce in the E.U. building industry, taking into account national languages, classification 
and code systems (Tolman and Böhms, 2000). It is perhaps characteristic of recent efforts that 
both examples are concerned with aspects related to the construction phase, in particular, 
construction planning and tendering, and avoid building design phases. These examples are 
illustrative of the additional difficulty of developing effective standards to support the design 
stages.  
SUPPORT AND INTEGRATION OF STANDARDS 
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Development of standards is further complicated as design cannot be completely rationalized nor 
captured into specific processes.  By nature and context, architectural designs are ill defined and 
poorly constrained; architects find themselves having to conceive and create novel solutions. In 
this creative environment, design applications serve as tools for exploring new ideas both in form 
and function. Preferably, such explorations are neither restricted nor hindered by software 
functionality and their underlying representations. For this reason, designers may adopt 
applications from outside their design domain, to extend their ability to express their ideas and 
methods.  If designers are bound to a standard representation for data exchange, it may undermine 
their ability to exploit new tools, in the design process, that do not adhere to this representation. 
 
It is unrealistic to expect the software industry to stay abreast of demands in supporting new 
design techniques and methodologies. Recent history shows that the AEC CAD software 
industry, in particular, is far from being a frontrunner when it comes to developing new support 
for creative form finding. Evolutions in design are led by those who are willing to step outside 
conventional approaches and explore new design techniques and technologies. When faced with 
project partners requiring an adherence to specific standards for electronic data exchange, such 
pioneers may be forced to invest time and effort in developing the necessary translation support. 
Depending on the current status of the standard, it may not even be possible to develop such 
support that is fully satisfactory with respect to the translation needs. Consider, as an example, the 
current “standard” for the exchange of CAD drawings in the AEC industry, DXF. In the case of 
translation from Maya to DXF, the corresponding facility can only consider that part of the data 
that is understood by the DXF format and has to omit information about texture and NURBS 
geometry. Unless the standard is fully compatible to the concepts or techniques underlying the 
outside tool or application, the designer may be forced to forego its use. 
 
In the extreme, it could be argued, with the danger of antagonizing those who are leading the 
drive for standardization, that this process of standardization supports the software industry in 
their struggle for self-preservation. The acceptance of a single standard for the building industry 
would afford AEC CAD software developers as before to lag behind in their inclusion of new 
features and techniques. A standard to which almost everyone adheres offers them the necessary 
time to respond to influences that find their origin in other design domains, without the fear of 
being left at the wayside of such evolutions. CAD software developers active within other 
disciplines may not be tempted to invest in a standard that is of little or no importance to their 
target market. Though this target market may shift or expand as a result of outsiders exploring the 
effectiveness of the software application for their purposes, such market changes do not occur 
overnight. 
 
At the same time, software providers argue that it is the industry’s responsibility to develop and 
agree on a standard for data exchange. When applied to a conceptual standard, their argument 
makes sense. After all, concepts are defined by the industry members, and are merely adopted by 
the software developers. On the other hand, software providers have better knowledge of the 
technical possibilities for standardization and have the ability to pull the standardization process 
by adopting and integrating standardization efforts early on. Currently, the AEC software industry 
plays an important role within the International Alliance for Interoperability (IAI).  
Standardization efforts of the IAI have resulted in a specification of Industry Foundation Classes 
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(IFCs) defining a building object model shared by all IFC-compliant applications (Bazjanac, 
1998). The IAI also supports the aecXML Working Group, which is working on an extension to 
XML in order to facilitate electronic communication primarily in the U.S. architectural, 
engineering, and construction industries (aecXML, 1999). 
 
FLEXIBILITY AND STANDARDIZATION 
 
Though different areas may require different solutions for data exchange, when it comes to 
architectural design, one must consider flexibility and extensibility in the solution in order to 
support the dynamic nature of design (van Leeuwen and de Vries, 2000; Stouffs and 
Krishnamurti, 2001a, 1996). Effective flexibility and extensibility with respect to a 
representational format will enable designers and developers to alter this format, to various 
extents, in order to support new design tools and descriptions. These must also ensure the ability 
to exchange data in this new format with other applications and participants in the design process. 
Though a standard vocabulary will enable all participants to effectively communicate and 
exchange data within the context of this standard, it will not support such flexibility and 
extensibility. Instead, a representational framework is needed that encourages participants to 
express their design information in such a way that data exchange is supported to the best extent 
possible. 
 
Such a framework will most likely be based on a representational language for expressing various 
information models, together with a collection of tools to compare these models and exchange 
information between these. Various standardization approaches already encompass a descriptive 
language for the development of different product models, even if their main emphasis may be on 
the conception of a semantic model. The EXPRESS modeling language from the ISO STEP 
development (ISO, 1994) and to some extent the Internet Foundation Classes of the IAI serve as 
examples. However, the purpose of EXPRESS is to serve as a tool for specifying product models 
and, as such, does not provide support for exchanging information between these models. While 
the specification and sharing of object classes, in the IFC, may support data exchange to some 
extent between various models, the adoption of an object model is in itself insufficient to support 
effective data exchange. 
 
The situation might be remarkably different if a standard could be designed that would 
encompass almost all design disciplines. It would enable cross-fertilization between design 
disciplines in terms of tools and applications as well as techniques and methodologies. However, 
as it already proves to be so difficult to achieve a standard for the AEC industry, even 
conceptually, it is indefinitely more difficult to design such a global standard. Even if such a 
standardization effort bears fruit, it can be expected that due to the immense challenge, the result 
will be a syntactic language of representational objects and relationships rather than a semantic 
model of conceptual entities and their relationships.  
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SYNTACTIC STANDARDIZATION 
 
In order to support representational flexibility and extensibility, a framework must be conceived 
and developed that provides support for exploring alternative design representations, for 
comparing design representations with respect to scope and coverage, and for mapping design 
information between representations, even when scopes are not identical. A representation can be 
considered as a structure of primitive data entities and compositional relationships (Stouffs et al., 
1996). Comparing different representations, therefore, requires a comparison of the primitive 
components as well as the overall compositional structures. On the other hand, the expressive 
power of a representational framework is defined by its vocabularies of primitive data types and 
compositional relationships. By carefully selecting the vocabulary of compositional relationships, 
designers can be given the necessary freedom and flexibility to develop and adopt representations 
that serve their intentions and needs. At the same time, these can be formally compared with 
respect to scope and coverage in order to support information exchange. Such a comparison will 
not only yield a possible mapping, but also uncover potential data loss when moving data from 
less restrictive to more restrictive representations. Translation services can be provided based on 
syntactic similarity, next to semantic identity. 
 
The Lexicon model suggests a syntactic approach. Though as part of a semantic model, it 
considers a semi-syntactic approach in which concepts are unambiguously defined by their 
constituent attributes (Woestenenk, 1998). These attributes then comprise the primitive concepts 
that define the semantic vocabulary of this model. Taking this descriptive approach one step 
further, the attributes can be described syntactically, leading to a purely syntactic description of 
the concepts as compositions of primitive data types. Within a formal structure, these syntactic 
descriptions may be compared independently of their conceptual meanings, thus allowing for 
synonym concepts. 
 
XML too offers such a formal framework. XML can be considered a meta-language that serves to 
define markup languages for specific purposes. By specifying a grammatical structure of markup 
tags and their composition, a markup language is defined that can be shared with others. When 
project partners agree on tags, they can exchange data described in any markup language based on 
these tags, even when their own markup language differs in scope or composition. XML has the 
advantages that it is readable both by humans and by the computer. Markup languages based on 
XML can easily be adapted or extended to specific purposes or needs. In this way, XML allows 
for syntactic standardization, providing all participants with the ability to define or adopt their 
own data model, and considering ways of translating these different models between one another 
at a later stage, using tools developed for this purpose. Already, XML may be considered to lead 
the way to such a standard syntax, as a number of standardization and product modeling efforts 
are “grafting” themselves onto XML (Tolman and Böhms, 2000; aecXML, 1999).  It has been 
argued, however, that the use of XML to create standards misunderstands the real power of XML 
(O’Brien and Al-Biqami, 2000). 
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AN ECLECTIC APPROACH 
 
XML is particularly suited to structure otherwise unstructured information, such as textual data, 
and to organize information available on the Web. However, it does not provide any information 
on how to manipulate the data and, as such, is ill suited to represent detailed graphical or 
geometrical data (Tunçer and Stouffs, 2000). Instead, a framework for supporting representational 
flexibility may be conceived by borrowing from different approaches in order to combine their 
respective advantages. From XML, it may inherit a foundation consisting of an extensible 
vocabulary of data components that can be composed hierarchically into a representational 
language. From the IFC effort, it may borrow the object-oriented approach, defining the data 
components as objects that encapsulate both the data structure and the operations defined on these 
structures. The symbiosis of these two approaches requires that the compositional operators be 
defined so that any compositional structure offers the same functionality as each component 
object separately. Hereto, a behavior can be defined for every component and structure as a 
collection of common operations on these structures for creation or deletion, or the merging of 
structures under some formal operations. Through a careful definition of the compositional 
operators, structures may derive their behavior from their components in accordance to the 
compositional relationship. 
 
Similar to the IFC approach, a language specification can be derived on two levels.  A first 
syntactic level specifies the vocabulary of primitive object classes and their respective behaviors. 
This behavior, in itself, does not provide any meaning to the object class. In fact, the same data 
structure may define two or more object classes, if as many different behaviors can be said to 
apply to different purposes. On a second level, a selection of object classes is defined and, 
individually, named in order to express a semantic concept. These named classes can, 
subsequently, be composed into a hierarchical structure in order to define an appropriate 
representational schema. In contrast to the IFC approach, users can specify this semantic concept 
and the representational structure composed accordingly. Alternative representations can be 
defined by altering the compositional structure or the selection of component classes. As each 
representation defines the same common operations, these can be reasonably plugged into an 
applicative interface for manipulation. 
 
Sorts (Stouffs and Krishnamurti, 2001b, 1997) specify such a framework for representational 
flexibility.  Elementary data types define primitive sorts that combine to composite sorts under 
formal compositional operations.  Examples of such operations are an operation of sum, allowing 
for disjunctively co-ordinate compositions of sorts, and an attribute relationship, providing for 
(recursively) subordinate compositions of sorts in both one-to-many and one-to-one 
instantiations. The result is a constructive, hierarchical description of sorts as compositions of 
other sorts, where each leaf node specifies a primitive data type and every other node defines a 
compositional operation on its operand children nodes (figure 1). 
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The definition of a sort includes a specification of the operational behavior of its members and 
collections, denoted as forms. The behavioral specification enables a uniform handling of forms 
of different sorts, on the proviso that the universe of all forms of a sort is closed under the 
respective operations.  Primitive sorts have their behaviors assigned in order to achieve a desired 
effect, e.g., discrete behaviors for points and labels, an interval behavior for line segments, and an 
ordinal behavior for weights such as thickness or tones. On the other hand, a composite sort 
receives its behavior from its component sorts, based on its compositional relationships (Stouffs 
and Krishnamurti, 1997). The formal relationships between sorts enable the comparison and 
mapping of sorts as representational structures; the behavioral specification of sorts supports the 
mapping of information structures onto different sorts, such that the resulting information 
structures conform to the definition of the respective sorts or representations. 
 
The concept of sorts only specifies a common syntax, allowing for different vocabularies and 
languages to be created, and providing the means to develop translation facilities between these. 
For example, a point may be specified with any number of coordinates depending on its 
dimensionality, its coordinates may constitute integers, reals, or rationals, these may be bounded 
in space, etc. Sorts can be defined accordingly and, based on their compositional structures, 
compared and related. For example, the operation of sum specifies a subsumption relationship on 
sorts, where one sort may match a part of another sort, under sum (Stouffs and Krishnamurti, 
1997). Compositional structures under the attribute relationship, if not equal, may be fully (or 
partially) convertible: the attribute relationship is associative though not commutative. Based on 
the result of this comparison, translation support can be provided for and data loss monitored. For 
example, partial conversions always result in data loss; complete conversions may result in data 
loss depending on the behavioral categories of the constituent sorts. 

concepttree

+

^ ^ ^

[Label]

concepts concepttree
concepts hasrefs

concepts

:

:
concepts

isrefsconceptrefs :

[Property]

(hasrefs, isrefs) :

concepts conceptrefs

sort conceptrefs : (concepts : [Label]);
sort (hasrefs, isrefs) : [Property] (concepts, conceptrefs);
sort concepttree : concepts ^ concepttree + concepts ^ hasrefs + concepts + conceptrefs ^ isrefs

 
Figure 1. Textual and graphical definition of a recursive concepttree sort. A concepttree may 
include multiple instances of a single concept, with one instance defined and referenced by all 
other instances.  ‘+’ and ‘^’ denote the operations of sum and attribute, respectively. ‘:’ denotes 
the naming of a sort. ‘Label’ and ‘Property’ are primitive sorts; the latter defines a property 
relationship sort between two given sorts. 
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CONCLUSION 
 
Standardization is not the obvious solution to data exchange in the design process, if it attempts 
to impose a common semantic model for all to adhere to. Instead, design participants should be 
offered tools to map representations in order to assist electronic data exchange. In this way, each 
participant can decide for herself whether to rely only on common software applications that are 
known to fully support this representational standard or to explore new tools and develop 
translation support for data exchange with others. Such a representational framework must offer a 
large collection of different representational building blocks and compositional relationships in 
order to develop a variety of different representations, and tools for comparing and mapping 
representations and converting data between representations. A range of predefined 
representations can be used as targets for comparing and mapping representations and as a basis 
for developing new representations through alterations and extensions. In this way, a large variety 
of data exchange situations can be resolved and representational freedom may be supported to 
various extents, depending on the effort one is willing to make. 
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