

 42-1

42 STANDARDIZATION: A CRITICAL VIEW

Rudi Stouffs, Ramesh Krishnamurti1

Faculty of Architecture, Delft University of Technology
1Department of Architecture, Carnegie Mellon University

Abstract

Standardization is often touted as the ultimate solution for electronic data exchange. With respect
to design, it is arguable that while standardization can improve the design process through
effective data exchange, it may also hinder the process by imposing a specific language for
designers to express their ideas and concepts. With respect to architectural design, to support the
dynamic nature of design, flexibility and extensibility are factors that must be considered in any
standardization effort. We contend that a syntactic approach specifying a framework for
expressing and comparing various representations holds more promise. In this paper, we
describe a framework for representational flexibility, which borrows from various existing
approaches and technologies.

Keywords: standardization, representations, flexibility, extensibility, syntactic

C
on

st
ru

ct
io

n
In

fo
rm

at
ic

s
D

ig
ita

l L
ib

ra
ry

 h
ttp

://
itc

.s
ci

x.
ne

t/
pa

pe
r

w
78

-2
00

1-
73

.c
on

te
nt

 42-2

THE QUESTION OF STANDARDIZATION

Standardization is generally considered to be the ultimate solution to the problem of data
exchange among collaborative partners. In non-digital exchanges, standardization has not been
much of an issue, except, perhaps, at a national level. Project partners exchange information with
little attention to or the need for any global standard, relying instead, either on their own sources
of knowledge in order to interpret exchanged data, or querying their colleagues for an
explanation. In digital exchanges, there are implicit assumptions made on the capabilities of any
computer application. However, one cannot rely on interpretive knowledge being resident in an
application. Neither, even assuming that common sense usually eludes software, can one expect
nor require the user to assist applications in interpreting this data. As a result, in order to resolve
the data exchange problem, a standardization approach has been at the core of most research
efforts. The assumption is simple: if everyone adopts the same concepts, vocabulary, and
language, any data expressed within this language will be accessible to everyone.

With respect to design, the real question becomes whether standardization will improve the
design process through effective data exchange or, instead, would it hinder the process by
imposing a specific language for designers to express their ideas and conceptualizations? A
standard vocabulary or language facilitates communication between different disciplines in the
building industry. It may enable new streams of communication between partners from remote
knowledge domains. Representationally, a standard for data exchange reduces the need to concur
on a set of software applications for all design partners to adopt. Instead, partners in each
discipline may employ software that best suits their needs and processes, that is characteristic of
their discipline. Thus, a variety of applications might be employed interchangeably, provided
these all adhere to the same standard.

At the same time, a standard vocabulary or data model may act as a straitjacket enabling only
certain forms of communication, possibly denying certain solutions, or even impeding creative
new approaches to a given problem. One advantage from having a lack of standards is that the
range of applications a project partner can choose from is intrinsically indefinite. In the design
stage, especially, a creative approach may necessitate the creative selection of design software.
This may include using design applications from other design domains and even putting to novel
use different types of applications or tools. For example, CAD software such as CATIA, first
developed for the aerospace industry, and Maya, developed for the animation and movie industry,
have been used for architectural design. If there is, however, an insistence that electronic data
adhere to a specific standard, this then may strongly constrain the selection of software
applications. It may further require the author of any information to recast it into a different
format, resulting in a possibly tedious and uninteresting conversion process.

Two practical considerations are important here. The first is the time it takes to develop and have
accepted a standard that covers the disciplines and domains within the AEC industry, and,
perhaps, beyond. The second is the rate of development of software solutions that adhere to this
evolving standard, that also respond to evolving needs of designers and other users and for tools
to support them in their creative as well as minutiae work. With respect to architectural design,
given the dynamic nature of design, additionally, flexibility and extensibility must be considered

 42-3

in a standardization approach. For these reasons, a syntactic approach specifying a framework for
expressing and comparing various representations holds more promise.

DEVELOPMENT AND ACCEPTANCE OF STANDARDS

Standards are difficult to develop and, more so, to have accepted within the industry. This
difficulty is primarily due to the extended range of disciplines and knowledge domains that are
involved and the need for a broad consensus among industry members. This is particularly the
case in the building industry where such consensus is hard to achieve both within and between
disciplines. There are many reasons for this. Most commonly, the fragmented nature of the
building industry and the uniqueness of each building project (Buckley et al., 1998) are cited as
primary causes for the failure to achieve a standard for data sharing among project partners. On
the other hand, partial standards have a much higher chance of success. These may be achieved
by focusing on a particular aspect of the building project such as a single phase in the design or
construction process, a specific knowledge domain, or a particular set of interactions between
project partners. By isolating this aspect from the broader context, standardization processes that
have proven to be successful in other fields may apply and yield a usable solution to a limited
form of the data exchange problem.

Recent standardization efforts show a renewed interest in such solutions. For example, Object
trees (van Nederveen, 2000) constitute an approach primarily aimed at the construction planning
phase of large-scale construction projects. Object trees serve to improve electronic
communication between different disciplines by offering participants a methodology for
developing representational object trees that correspond to concept hierarchies of construction
aspects, elements and their attributes. The methodology requires all participants to concur on the
concepts and attributes involved; in return, it presents them with a unified framework for relating
activities and for data exchange among participants. It is specifically suited for the construction
and construction planning phases of large-scale projects in which the advantages of the
conceptual and representational framework far outweigh the disadvantages of the need for an a-
priori consensus. Distinct from many other standardization approaches, the object trees
methodology does not impose a concept vocabulary. Instead, it leaves the definition of the
vocabulary up to the project participants, typically based upon their prior experience and on the
project specifics.

The E-Construct project is another example of a standardization effort, in which a particular need
in the building construction industry is recognized and a solution developed: bcXML, an
extension of XML, is a Web-based universal format for structured documents and data to support
e-commerce in the E.U. building industry, taking into account national languages, classification
and code systems (Tolman and Böhms, 2000). It is perhaps characteristic of recent efforts that
both examples are concerned with aspects related to the construction phase, in particular,
construction planning and tendering, and avoid building design phases. These examples are
illustrative of the additional difficulty of developing effective standards to support the design
stages.
SUPPORT AND INTEGRATION OF STANDARDS

 42-4

Development of standards is further complicated as design cannot be completely rationalized nor
captured into specific processes. By nature and context, architectural designs are ill defined and
poorly constrained; architects find themselves having to conceive and create novel solutions. In
this creative environment, design applications serve as tools for exploring new ideas both in form
and function. Preferably, such explorations are neither restricted nor hindered by software
functionality and their underlying representations. For this reason, designers may adopt
applications from outside their design domain, to extend their ability to express their ideas and
methods. If designers are bound to a standard representation for data exchange, it may undermine
their ability to exploit new tools, in the design process, that do not adhere to this representation.

It is unrealistic to expect the software industry to stay abreast of demands in supporting new
design techniques and methodologies. Recent history shows that the AEC CAD software
industry, in particular, is far from being a frontrunner when it comes to developing new support
for creative form finding. Evolutions in design are led by those who are willing to step outside
conventional approaches and explore new design techniques and technologies. When faced with
project partners requiring an adherence to specific standards for electronic data exchange, such
pioneers may be forced to invest time and effort in developing the necessary translation support.
Depending on the current status of the standard, it may not even be possible to develop such
support that is fully satisfactory with respect to the translation needs. Consider, as an example, the
current “standard” for the exchange of CAD drawings in the AEC industry, DXF. In the case of
translation from Maya to DXF, the corresponding facility can only consider that part of the data
that is understood by the DXF format and has to omit information about texture and NURBS
geometry. Unless the standard is fully compatible to the concepts or techniques underlying the
outside tool or application, the designer may be forced to forego its use.

In the extreme, it could be argued, with the danger of antagonizing those who are leading the
drive for standardization, that this process of standardization supports the software industry in
their struggle for self-preservation. The acceptance of a single standard for the building industry
would afford AEC CAD software developers as before to lag behind in their inclusion of new
features and techniques. A standard to which almost everyone adheres offers them the necessary
time to respond to influences that find their origin in other design domains, without the fear of
being left at the wayside of such evolutions. CAD software developers active within other
disciplines may not be tempted to invest in a standard that is of little or no importance to their
target market. Though this target market may shift or expand as a result of outsiders exploring the
effectiveness of the software application for their purposes, such market changes do not occur
overnight.

At the same time, software providers argue that it is the industry’s responsibility to develop and
agree on a standard for data exchange. When applied to a conceptual standard, their argument
makes sense. After all, concepts are defined by the industry members, and are merely adopted by
the software developers. On the other hand, software providers have better knowledge of the
technical possibilities for standardization and have the ability to pull the standardization process
by adopting and integrating standardization efforts early on. Currently, the AEC software industry
plays an important role within the International Alliance for Interoperability (IAI).
Standardization efforts of the IAI have resulted in a specification of Industry Foundation Classes

 42-5

(IFCs) defining a building object model shared by all IFC-compliant applications (Bazjanac,
1998). The IAI also supports the aecXML Working Group, which is working on an extension to
XML in order to facilitate electronic communication primarily in the U.S. architectural,
engineering, and construction industries (aecXML, 1999).

FLEXIBILITY AND STANDARDIZATION

Though different areas may require different solutions for data exchange, when it comes to
architectural design, one must consider flexibility and extensibility in the solution in order to
support the dynamic nature of design (van Leeuwen and de Vries, 2000; Stouffs and
Krishnamurti, 2001a, 1996). Effective flexibility and extensibility with respect to a
representational format will enable designers and developers to alter this format, to various
extents, in order to support new design tools and descriptions. These must also ensure the ability
to exchange data in this new format with other applications and participants in the design process.
Though a standard vocabulary will enable all participants to effectively communicate and
exchange data within the context of this standard, it will not support such flexibility and
extensibility. Instead, a representational framework is needed that encourages participants to
express their design information in such a way that data exchange is supported to the best extent
possible.

Such a framework will most likely be based on a representational language for expressing various
information models, together with a collection of tools to compare these models and exchange
information between these. Various standardization approaches already encompass a descriptive
language for the development of different product models, even if their main emphasis may be on
the conception of a semantic model. The EXPRESS modeling language from the ISO STEP
development (ISO, 1994) and to some extent the Internet Foundation Classes of the IAI serve as
examples. However, the purpose of EXPRESS is to serve as a tool for specifying product models
and, as such, does not provide support for exchanging information between these models. While
the specification and sharing of object classes, in the IFC, may support data exchange to some
extent between various models, the adoption of an object model is in itself insufficient to support
effective data exchange.

The situation might be remarkably different if a standard could be designed that would
encompass almost all design disciplines. It would enable cross-fertilization between design
disciplines in terms of tools and applications as well as techniques and methodologies. However,
as it already proves to be so difficult to achieve a standard for the AEC industry, even
conceptually, it is indefinitely more difficult to design such a global standard. Even if such a
standardization effort bears fruit, it can be expected that due to the immense challenge, the result
will be a syntactic language of representational objects and relationships rather than a semantic
model of conceptual entities and their relationships.

 42-6

SYNTACTIC STANDARDIZATION

In order to support representational flexibility and extensibility, a framework must be conceived
and developed that provides support for exploring alternative design representations, for
comparing design representations with respect to scope and coverage, and for mapping design
information between representations, even when scopes are not identical. A representation can be
considered as a structure of primitive data entities and compositional relationships (Stouffs et al.,
1996). Comparing different representations, therefore, requires a comparison of the primitive
components as well as the overall compositional structures. On the other hand, the expressive
power of a representational framework is defined by its vocabularies of primitive data types and
compositional relationships. By carefully selecting the vocabulary of compositional relationships,
designers can be given the necessary freedom and flexibility to develop and adopt representations
that serve their intentions and needs. At the same time, these can be formally compared with
respect to scope and coverage in order to support information exchange. Such a comparison will
not only yield a possible mapping, but also uncover potential data loss when moving data from
less restrictive to more restrictive representations. Translation services can be provided based on
syntactic similarity, next to semantic identity.

The Lexicon model suggests a syntactic approach. Though as part of a semantic model, it
considers a semi-syntactic approach in which concepts are unambiguously defined by their
constituent attributes (Woestenenk, 1998). These attributes then comprise the primitive concepts
that define the semantic vocabulary of this model. Taking this descriptive approach one step
further, the attributes can be described syntactically, leading to a purely syntactic description of
the concepts as compositions of primitive data types. Within a formal structure, these syntactic
descriptions may be compared independently of their conceptual meanings, thus allowing for
synonym concepts.

XML too offers such a formal framework. XML can be considered a meta-language that serves to
define markup languages for specific purposes. By specifying a grammatical structure of markup
tags and their composition, a markup language is defined that can be shared with others. When
project partners agree on tags, they can exchange data described in any markup language based on
these tags, even when their own markup language differs in scope or composition. XML has the
advantages that it is readable both by humans and by the computer. Markup languages based on
XML can easily be adapted or extended to specific purposes or needs. In this way, XML allows
for syntactic standardization, providing all participants with the ability to define or adopt their
own data model, and considering ways of translating these different models between one another
at a later stage, using tools developed for this purpose. Already, XML may be considered to lead
the way to such a standard syntax, as a number of standardization and product modeling efforts
are “grafting” themselves onto XML (Tolman and Böhms, 2000; aecXML, 1999). It has been
argued, however, that the use of XML to create standards misunderstands the real power of XML
(O’Brien and Al-Biqami, 2000).

 42-7

AN ECLECTIC APPROACH

XML is particularly suited to structure otherwise unstructured information, such as textual data,
and to organize information available on the Web. However, it does not provide any information
on how to manipulate the data and, as such, is ill suited to represent detailed graphical or
geometrical data (Tunçer and Stouffs, 2000). Instead, a framework for supporting representational
flexibility may be conceived by borrowing from different approaches in order to combine their
respective advantages. From XML, it may inherit a foundation consisting of an extensible
vocabulary of data components that can be composed hierarchically into a representational
language. From the IFC effort, it may borrow the object-oriented approach, defining the data
components as objects that encapsulate both the data structure and the operations defined on these
structures. The symbiosis of these two approaches requires that the compositional operators be
defined so that any compositional structure offers the same functionality as each component
object separately. Hereto, a behavior can be defined for every component and structure as a
collection of common operations on these structures for creation or deletion, or the merging of
structures under some formal operations. Through a careful definition of the compositional
operators, structures may derive their behavior from their components in accordance to the
compositional relationship.

Similar to the IFC approach, a language specification can be derived on two levels. A first
syntactic level specifies the vocabulary of primitive object classes and their respective behaviors.
This behavior, in itself, does not provide any meaning to the object class. In fact, the same data
structure may define two or more object classes, if as many different behaviors can be said to
apply to different purposes. On a second level, a selection of object classes is defined and,
individually, named in order to express a semantic concept. These named classes can,
subsequently, be composed into a hierarchical structure in order to define an appropriate
representational schema. In contrast to the IFC approach, users can specify this semantic concept
and the representational structure composed accordingly. Alternative representations can be
defined by altering the compositional structure or the selection of component classes. As each
representation defines the same common operations, these can be reasonably plugged into an
applicative interface for manipulation.

Sorts (Stouffs and Krishnamurti, 2001b, 1997) specify such a framework for representational
flexibility. Elementary data types define primitive sorts that combine to composite sorts under
formal compositional operations. Examples of such operations are an operation of sum, allowing
for disjunctively co-ordinate compositions of sorts, and an attribute relationship, providing for
(recursively) subordinate compositions of sorts in both one-to-many and one-to-one
instantiations. The result is a constructive, hierarchical description of sorts as compositions of
other sorts, where each leaf node specifies a primitive data type and every other node defines a
compositional operation on its operand children nodes (figure 1).

 42-8

The definition of a sort includes a specification of the operational behavior of its members and
collections, denoted as forms. The behavioral specification enables a uniform handling of forms
of different sorts, on the proviso that the universe of all forms of a sort is closed under the
respective operations. Primitive sorts have their behaviors assigned in order to achieve a desired
effect, e.g., discrete behaviors for points and labels, an interval behavior for line segments, and an
ordinal behavior for weights such as thickness or tones. On the other hand, a composite sort
receives its behavior from its component sorts, based on its compositional relationships (Stouffs
and Krishnamurti, 1997). The formal relationships between sorts enable the comparison and
mapping of sorts as representational structures; the behavioral specification of sorts supports the
mapping of information structures onto different sorts, such that the resulting information
structures conform to the definition of the respective sorts or representations.

The concept of sorts only specifies a common syntax, allowing for different vocabularies and
languages to be created, and providing the means to develop translation facilities between these.
For example, a point may be specified with any number of coordinates depending on its
dimensionality, its coordinates may constitute integers, reals, or rationals, these may be bounded
in space, etc. Sorts can be defined accordingly and, based on their compositional structures,
compared and related. For example, the operation of sum specifies a subsumption relationship on
sorts, where one sort may match a part of another sort, under sum (Stouffs and Krishnamurti,
1997). Compositional structures under the attribute relationship, if not equal, may be fully (or
partially) convertible: the attribute relationship is associative though not commutative. Based on
the result of this comparison, translation support can be provided for and data loss monitored. For
example, partial conversions always result in data loss; complete conversions may result in data
loss depending on the behavioral categories of the constituent sorts.

concepttree

+

^ ^ ^

[Label]

concepts concepttree
concepts hasrefs

concepts

:

:
concepts

isrefsconceptrefs :

[Property]

(hasrefs, isrefs) :

concepts conceptrefs

sort conceptrefs : (concepts : [Label]);
sort (hasrefs, isrefs) : [Property] (concepts, conceptrefs);
sort concepttree : concepts ^ concepttree + concepts ^ hasrefs + concepts + conceptrefs ^ isrefs

Figure 1. Textual and graphical definition of a recursive concepttree sort. A concepttree may
include multiple instances of a single concept, with one instance defined and referenced by all
other instances. ‘+’ and ‘^’ denote the operations of sum and attribute, respectively. ‘:’ denotes
the naming of a sort. ‘Label’ and ‘Property’ are primitive sorts; the latter defines a property
relationship sort between two given sorts.

 42-9

CONCLUSION

Standardization is not the obvious solution to data exchange in the design process, if it attempts
to impose a common semantic model for all to adhere to. Instead, design participants should be
offered tools to map representations in order to assist electronic data exchange. In this way, each
participant can decide for herself whether to rely only on common software applications that are
known to fully support this representational standard or to explore new tools and develop
translation support for data exchange with others. Such a representational framework must offer a
large collection of different representational building blocks and compositional relationships in
order to develop a variety of different representations, and tools for comparing and mapping
representations and converting data between representations. A range of predefined
representations can be used as targets for comparing and mapping representations and as a basis
for developing new representations through alterations and extensions. In this way, a large variety
of data exchange situations can be resolved and representational freedom may be supported to
various extents, depending on the effort one is willing to make.

ACKNOWLEDGMENTS

The research on sorts is partly funded by the Netherlands Organization for Scientific Research
(NWO), grant nr. 016.007.007. The authors would like to thank Bige Tunçer for reviewing
various drafts of this paper.

REFERENCES

aecXML, 1999, AecXML: A framework for electronic communications for the AEC industries,
aecXML White Paper, IAI aecXML Domain Committee. http://www.aecxml.org/technical/

Bazjanac, V., 1998, “Industry Foundation Classes: Bringing software interoperability to the
building industry”, The Construction Specifier, 6/98, p. 47-54.

Buckley, E., A. Zarli, C. Reynolds, and O. Richaud, 1998, “Business objects in construct IT”, in:
R. Amor (ed.), Product and Process Modelling in the Building Industry, Building Research
Establishment, Watford, England, p. 117-130.

ISO, 1994, ISO 10303-1, Overview and fundamental principles, International Standardization
Organization, Geneva, Switzerland.

O’Brien, M.J. and N. Al-Biqami, 2000, “XML, flexibility and systems integration”, in: G.
Gudnason (ed.), Construction Information Technology 2000, Vol. 2, Icelandic Building Research
Institute, Reykjavik, Iceland, p. 656-661.

Tolman, F.P. and H.M. Böhms, 2000, “Electronic business in the building-construction industry:
preparing or the new Internet”, in: G. Gudnason (ed.), Construction Information Technology
2000, Vol. 2, Icelandic Building Research Institute, Reykjavik, Iceland, p. 928-936.

 42-10

van Leeuwen, J. and B. de Vries, 2000, “Capturing design knowledge in formal concept
definitions”, in: Design and Decision Support Systems in Architecture, Proceedings of the 5th
International Conference, Eindhoven University of Technology, p. 220-237.

van Nederveen, G.A., 2000, Object trees: improving electronic communication between
participants of different disciplines in large-scale construction projects, Delft University of
Technology, Delft, The Netherlands.

Stouffs, R. and R. Krishnamurti, 2001a, “Flexibility and dynamism in digital design
representations”, in: R. Beheshti (ed.), Advances in Building Informatics, Europia Productions,
Paris, France.

Stouffs, R. and R. Krishnamurti, 2001b, “On the road to standardization”, to appear in: B. de
Vries (ed.), CAAD Futures 2001, Kluwer Academic, Dordrecht, The Netherlands.

Stouffs, R. and R. Krishnamurti, 1997, “Sorts: a concept for representational flexibility”, in: R.
Junge (ed.), CAAD Futures 1997, Kluwer Academic, Dordrecht, The Netherlands, p. 553-564.

Stouffs, R. and R. Krishnamurti, 1996, “The extensibility and applicability of geometric
representations”, in: 3rd Design and Decision Support Systems in Architecture and Urban
Planning Conference, Architecture Proceedings, Eindhoven University of Technology,
Eindhoven, The Netherlands, p. 436-452.

Stouffs, R., R. Krishnamurti, and C.M. Eastman, 1996, “A formal structure for nonequivalent
solid representations”, in: S. Finger, M. Mäntylä and T. Tomiyama (eds.), Proceedings of IFIP
WG 5.2 Workshop on Knowledge Intensive CAD II, International Federation for Information
Processing, Working Group 5.2, p. 269-289.

Tunçer, B. and R. Stouffs, 2000, Modeling building project information, in: G. Gudnason (ed.),
Construction Information Technology 2000, Icelandic Building Research Institute, Reykjavik,
Iceland, p. 937-947.

Woestenenk, K., 1998, “A common construction vocabulary”, in: R. Amor (ed.), Product and
Process Modelling in the Building Industry, Building Research Establishment, Watford, England,
p. 561-568.

