
1 INTRODUCTION 

This paper presents a software design for dynamic 
building model services. As such, it represents a 
component of ongoing work on a larger research 
project toward realization of sentient buildings 
(Mahdavi 2004). Sentient buildings possess an inter-
nal, dynamic, and self-updating representation 
(model) of themselves. They use this model to sup-
port various services and operations. The research 
project focuses on the application of such internal 
models toward supporting indoor-environmental 
control systems of buildings (e.g. heating, cooling, 
ventilation, and illumination systems). Specifically, 
we have been investigating the potential of dynamic 
building models to enable simulation-based building 
control strategies (Mahdavi 1997, 2001, Clarke et al. 
2001). To identify a desirable state for a building 
control device, the simulation-based control method 
projects a number of alternative device states into 
the future, predicts the implications of these alterna-
tive states via simulation, compares the simulation 
results in view of pertinent objective functions, iden-
tifies the most preferable device state, and informs 
the user (or instructs a relevant actuator) toward the 
realization of this state. As compared with tradi-
tional control algorithms, simulation-based strategies 
have been shown to be highly effective in the con-
text of built environment. This is primarily due to 
two circumstances: i) building control operation in-
volves a large number of environmental sub-systems 

and a multitude of devices and networks; ii) build-
ings are subject to both dynamic contextual forces 
(e.g. weather conditions) and internal fluctuations 
(e.g. occupancy presence and actions) that are diffi-
cult to predict. 

Whilst simulation-based control strategies have a 
number of advantages, they are not easy to imple-
ment. First, they require a fairly detailed model of 
the building, its systems, its context, and its occu-
pancy. Second, given the dynamic nature of build-
ing-related processes, such a model must be con-
tinuously updated to be reliable. Advances in 
computer hardware and simulation algorithms have 
brought simulation times to a level that is useable for 
BEMS (Building Energy Management Systems) ap-
plications. However, creating simulation models is 
still, to varying extent, manual labour. The transition 
from initial CAD (computer-aided design) building 
documents to simulation models is hardly seamless 
and often requires additional domain-specific infor-
mation and extensive post-processing. Moreover, 
any significant change in the building must also be 
reflected in the simulation models, if they are going 
to be of any use in the context of building systems 
control. Ideally, simulation-based control requires a 
model of the building’s status that is updated with-
out human intervention. This evidently requires an 
extensive sensor infrastructure in the building gener-
ating a huge amount of raw data – and consequently, 
software that processes these data, collating and or-
ganizing them contextually for access by other soft-
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ware. We believe that such a dynamic building 
model would be useful for many other purposes be-
sides simulation-based building systems control, of-
fering a level of abstraction and a common interface 
that has not been available so far. 

Today, modern office buildings are often 
equipped with considerable networks of sensors and 
actuators. However, there is generally a lack of 
meaningful integration and open access to make full 
use of these available data. We therefore propose a 
dynamic building model service to address this need, 
outlining requirements and a prototype software de-
sign, and report our experiences with an actual im-
plementation. 

2 BACKGROUND 

Considerable work has been done in the field of 
building product modelling (Eastman 1999, 
Mahdavi et al. 1999). Product model specifications 
formally describe structures and notations and thus 
serve as a conceptual basis for building models; 
however, they do not address the architecture and 
run-time behaviour of a building model service.  

Work on communications infrastructure for sen-
sors and actuators within buildings has resulted in 
many specifications and products, e.g. BACnet, 
LonWorks, LUXMATE and others (Bushby 1997, 
Sharples et al. 1999, Luxmate 2005). A building 
model service naturally relies on some form of 
communications infrastructure and should be easily 
adaptable to specific variants.  

Recently, the integration of various control do-
mains has become a focus of research in building 
energy management systems (BEMS). The EDIFI-
CIO project (Guillemin & Morel 2001) has shown 
the use of soft computing techniques applied to con-
current control of heating, ventilation, and lighting. 
Simulation-based control has been argued for and 
demonstrated successfully by Mahdavi (2001) and 
Clarke et al. (2001). The models used in these in-
stances were specialised to the given experimental 
setups and control tasks and not designed to be scal-
able or usable for multiple applications concurrently. 

The S2 project (Mahdavi et al. 1999) demon-
strated automated derivation of domain-specific 
models for simulation from a general building 
model, in a distributed environment. However, it 
was geared toward the design phase only and did not 
support simulation-based control or dynamic build-
ing model updating during its operational phase.  

3 DESIGN AND IMPLEMENTATION 

In this section, we outline the design of the model 
service and discuss its key elements. Functional and 
non-functional requirements for a dynamic building 

model service are stated in section 3.1 and previous 
work (Brunner & Mahdavi 2005). The most impor-
tant non-functional requirements are scalability and 
versatility. Scalability relates to the need to handle 
large buildings with great numbers of spaces, sen-
sors, actuators, and other elements efficiently. Ver-
satility (or flexibility) means that the model service 
must be able to accommodate a wide range of differ-
ent uses and application software: this suggests a 
lean core application that can be extended during 
run-time with additional data and behaviours as 
needed. 

3.1 Concepts 
An integrated building model comprises information 
on all elements of a building to a level of detail that 
is sufficient to support a wide range of applications, 
such as photorealistic rendering, occupancy monitor-
ing, and thermal simulation. Contrary to domain-
specific, parametric models such as those used in 
model-based control (Pargfrieder and Jörgl 2002), it 
must be designed to hold multi-aspect, multi-
purpose data and to be openly accessible for any ap-
plication through a well-defined interface. 

Unlike a simple database of raw values, data are 
organized in the form of a well-defined object-
oriented product model providing context and se-
mantics. 

A dynamic building model service is updated 
regularly, e.g. through sensor readings, to reflect the 
current state of the building as accurately as possible 
at all times. As it does not merely store the received 
data, but can also apply some processing to them or 
reconfigure itself if necessary, it can be seen as 
“self-updating”. Thus, the model is not merely a de-
scription used for reference and off-line analysis; it 
is a live object tree to be used by any number of ap-
plications during the building’s operation, process-
ing data updates and application requests concur-
rently. Input data may come from a range of 
different sources and must be correctly placed in 
model context. Such data updates can happen con-
tinuously (e.g. a stream of measurement values from 
an illuminance sensor) and must be processed within 
a short timeframe to meet the requirements of con-
trol applications. Additionally, it is desirable that not 
just the current, but all historic states of the model 
are stored persistently to be easily retrieved. 

3.2 Centralised vs. decentralised architecture 
Some types of applications (e.g. thermal simulation) 
span the entire building, while others (e.g. lighting 
control for a windowless room) may be focused on 
just a small portion. This determines their usage pat-
terns for building data and suggests different de-
signs: an all-encompassing central model service al-
lowing random access to any portion of the building, C
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or multiple, loosely connected or even independent 
sub-model services focused on different parts of the 
building (Sharples et al. 1999). 

The burden of model-keeping for a centralised 
model in terms of memory and CPU usage may be 
huge. A central model has to receive data from all 
sources in the building, essentially forming a bottle-
neck in the data flow. Decentralised model services 
could be distributed to different computers for work-
load distribution and shorter data paths. 

Decentralisation means that it must be decided 
from the outset how the entire model is broken into 
parts. However, it is hard to find an optimal division 
scheme for all possible applications. While many 
applications lend themselves easily to a division 
along units such as “floor”, “apartment”, “room”, 
some building systems work across these lines, such 
as elevators or HVAC piping. Applications monitor-
ing these systems would have to be in constant 
communication with multiple sub-models, increas-
ing network traffic and CPU loads.  

As versatility is a key requirement of our specifi-
cation, we have opted for a centralised model de-
sign. The full current state of the model is kept in 
working memory of a single process on one com-
puter. However, it is possible to extract copies of 
parts or the entire object tree for off-line analysis. 
This way, an application working repeatedly on a 
relatively static portion of the model can be fully de-
coupled from the model service. 

The Java language system was chosen as our im-
plementation platform mainly for reasons of operat-
ing system independence, good availability of third-
party class libraries and mature facilities for distrib-
uted computing. 

3.3 Interconnection of system components 
In our project, the model service is part of a distrib-
uted infrastructure that comprises a number of other 
services that depend on or assist the model’s opera-
tion (Brunner & Mahdavi 2005). As a design guide-
line, we identify two types of runtime behaviour in 
terms of model access patterns: 

a) Batch behaviour: a module collects some input 
data, performs intensive processing on it, and returns 
some output data. One example is model-based 
lighting simulation (by ray tracing or radiosity), an-
other is spatial reasoning (e.g. to generate space 
boundaries from tag locations). Modules of this kind 
are essentially services operating on a request-
response basis. 

b) Interactive behaviour: a module keeps access-
ing a number of objects repeatedly, possibly reacting 
to events and changing the objects. It requires little 
processing power, but low-latency object access. 
One example is a lighting controller task that moni-
tors workplaces and registers any relevant events 

that may occur, e.g. changes in occupancy or day-
light. 

Modules with batch behaviour benefit from dis-
tribution to keep high CPU workloads off the com-
puter hosting the model service. To achieve this dis-
tribution, we are using a tuple spaces system based 
on JavaSpaces (Freeman et al. 1999). For instance, a 
client’s request for lighting simulation can be posted 
to the service space and subsequently picked up and 
processed by any connected machine running an in-
stance of such a service. Once completed, the results 
are placed back into the space to be picked up by the 
client. This allows a simple and transparent load dis-
tribution that decouples modules in time and space 
as much as desirable. Neither clients nor servers 
need to know anything about each other except how 
to access the common space and the signature of the 
relevant request and response objects. Clients can 
choose a synchronous or asynchronous mode of op-
eration: either posting requests and waiting for re-
sponses sequentially, or posting a batch of requests 
at once and coming back later to pick up the results. 
The latter scenario is particularly suited for simula-
tion-based control programs, which frequently need 
to commission a set of simulations to select the best 
control decision. 

The characteristics of modules with interactive 
behaviour suggest a different approach. It is desir-
able to keep these modules’ code close to the data 
during runtime without losing the flexibility and 
loose coupling of the system by hard-wiring their 
code into the model service. One way to achieve this 
goal is to design an elaborate query language for the 
model: the main advantage of this approach is that 
modules are not bound to any specific programming 
language, as long as they can submit well-formed 
query strings to the model service and process the 
results. However, the developer effort of translating 
query or program logic into an intermediary is con-
siderable, and there would be significant communi-
cations overhead incurred by repeated queries and 
responses. Ideally, modules should be able to access 
the model just like any other Java object. 

 This is achieved by implementing them as 
agents, which might also be called “mobile plug-
ins”. Agents are thread objects that may be submit-
ted to the model service over the JavaSpace, where 
they are started inside the service process. They can 
directly access the object tree and use all public op-
erations on the objects as well as a number of utility 
methods for traversing the object tree, retrieving his-
toric versions, and communicating with other mod-
ules via the JavaSpace. Moreover, agents can regis-
ter for events on specific objects to be notified of 
data updates. 

As an example, the core of a heating control ap-
plication can be sent to the JavaSpace, where it can 
examine the relevant objects, derive a number of 
possible control decisions and send a batch of simu-C
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lation requests (containing relevant model data) to 
the JavaSpace. Using the results provided by one or 
more simulation services connected to the JavaS-
pace, the controller can take appropriate action (e.g. 
opening a valve). Further control cycles can either 
be triggered in time intervals or based on update 
events (e.g. when a temperature sensor reading rises 
above a threshold). 

For both batch and interactive access patterns, the 
proposed design ensures modularity and flexibility 
while the specific runtime characteristics are taken 
into account. 

3.4 SOM objects 
We have chosen the Shared Object Model SOM 
(Mahdavi et al. 1999) as basis for our model. SOM 
defines only a core set of general attributes (mainly 
geometry and surface properties, and a few others 
depending on the object type) for the various ele-
ments of a building, as it was not designed to be a 
model for all conceivable building applications. 
Domain-specific data (e.g. the photometric charac-
teristics of a light fixture) can be associated as sepa-
rate objects if necessary.  
 
 

 
 
Figure 1. A generic SOM object and some of its most impor-
tant associations, methods, and attributes (simplified). 
 

Each SOM object can be associated at run-time 
with a number of tags. Tag objects represent keys 
for the given object: for instance, a light fixture’s 
address in the LUXMATE device control network is 
one kind of tag; the ID of a physical location sensing 
tag attached to the same light fixture is another. In 
both cases, the tag object serves as a key for the 
model service to route incoming sensor data to the 

proper object. SOM objects may have child and par-
ent objects (Figure 1). 

Note that, while we use SOM as the underlying 
building model, the proposed software design does 
not preclude the use of other models (such as IFC). 
As our past research has shown, SOM classes can be 
effectively mapped to IFC classes, thus ensuring the 
interoperability of our developments with IFC-
compliant applications (Lam et al. 2003). 

3.5 Sensor and actuator communications 
As input data may come from a variety of source at 
the same time, multiple threads can be working on 
reading data and routing it to the proper objects, 
based on their tags. For our experimental setup, we 
use a separate JavaSpace that holds data from differ-
ent sources, such as illuminance sensors and an in-
door location sensing system (Icoglu et al. 2004, 
Brunner & Mahdavi 2005). Distributed sensors push 
data objects to the space which are picked up by the 
model service. 

The primary task of the input worker threads is to 
find the relevant SOM objects (based on their asso-
ciated Tags) and call their processData() method. 
This method decides if and how incoming data is 
processed, which may result in updates on the ob-
ject’s data or the creation and deletion of new child 
objects. With the help of location sensing data, new 
objects can, to some extent, be automatically in-
cluded in the  building model: a temperature sensor 
that is marked with a location sensing tag will be 
represented by a new SOM object and attached to 
the proper space as soon as both location sensing 
and sensor reading data are available. We plan to 
reach a further degree of automation through spatial 
reasoning to automatically discover the boundaries 
of spaces (Suter et al. 2005). 

To handle new sensor data types, data handler ob-
jects can be dynamically registered with the model 
service at runtime. These are used if a SOM object 
signals that it is unable to process the received data. 

For actuators, SOM objects also serve as inter-
faces to initiate physical change. For instance, an 
agent can change the dimming level of a light fixture 
by calling the commandDimmingLevel() method on 
the appropriate LightFixture object. This method 
sends the appropriate commands to an output worker 
thread, which in turn passes them on to the physical 
device. 

3.6 Persistent storage and retrieval 
The model service is backed by a relational database 
for persistent storage, handled by an ObjectStor-
ageManager component. Each SOM object carries a 
unique object ID and a ticket obtained from a global, 
strictly monotonously increasing counter.  
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3.6.1 Storing and retrieving single objects 
When an object’s data are modified through a set() 
operation, a new ticket value v is obtained from the 
counter and set in the object. A new table row is 
then inserted into the database, containing a copy of 
the object as a byte array created by the Java object 
serialization mechanism, and the object ID and 
ticket value as key attributes for later retrieval. As-
sociations to parent and child objects (which are 
normal Java references) are converted to object IDs 
before storage. To reduce delays, database storage is 
executed by a separate background thread. A map-
ping of tickets to clock time is kept for later queries.  

If the state of an object at a given clock time t is 
requested, first the corresponding ticket value v is re-
trieved. Due to the limited resolution of clock time-
keeping (milliseconds), multiple ticket values may 
exist for each point in time – in this case, the highest 
value will be chosen. The database is then queried 
for the row with the given ID and the highest ticket 
value that is less than or equal v, and the object ver-
sion is retrieved from the database und unserialized. 
As opposed to the latest, in-memory version of an 
object, older versions are immutable and cannot be 
changed or used to send actuator commands. 

This storage scheme is based on the principles of 
multiversion databases (Easton 1986). 

 

 
Figure 2. Four objects changing over time. At the time instant 
corresponding to ticket value 8, object 1 is changed. At the 
same point in time, the most recent versions of objects 2, 3, and 
4 had the tickets 6, 7, and 5, respectively. 
 

3.6.2 Storing and retrieving multiple objects 
Certain operations must be grouped atomically to 
avoid inconsistent tree states. E.g. if a SOM object is 
moved from one space to another, it must be de-
tached from the original parent object and attached 
to the new one, creating an intermediate step when 
the object is either not attached to any space, or at-
tached to both spaces at the same time. To avoid this 
situation, a sequence of operations can be grouped in 
one ticket. 

Obtaining a consistent view of a sub-tree from an 
object tree that is concurrently changed by other 
tasks (updating object data or adding or removing 
new objects) usually requires special measures. One 
way of ensuring that the object tree does not change 

while a client operation is traversing it is locking: 
entire parts of the tree are temporarily blocked from 
changes until the reading task has finished, resulting 
in frequent delays when many tasks are accessing 
regularly changed subtrees. 

The storage and retrieval method outlined above 
offers an alternative approach that follows naturally 
from the single-object retrieval procedure, in the pat-
tern of an overlapping tree (Burton et al. 1990). As-
sume that an application wants to traverse a subtree 
beginning with the root object O1, iterating through 
its child objects recursively. To obtain the state of 
the subtree at a given time instant, it must select a 
ticket value vmax that serves as the upper bound of all 
ticket values in the subtree. To obtain the most re-
cent version of the subtree (at the time of beginning 
the traversal), it can query the ticket counter for its 
current value. From then on, it recursively queries 
O1 and its child objects based on the condition that 
the ticket value of each object must not be greater 
than vmax. If an in-memory object does not fulfil this 
condition (because it has changed in the meantime, 
resulting in a new version), the latest version with a 
ticket value less than or equal vmax is restored from 
the database. An example is illustrated in Figure 2. 

4 EVALUATION 

The aim is to test i) whether the chosen design and 
implementation work correctly so that the general 
requirements for a dynamic building model are ful-
filled and ii) to test the performance of the system in 
a small-scale setup to estimate its scalability poten-
tial to larger setups. An overview of the system and 
some of the main modules used in our project is 
given in Figure 3. 

4.1 Experimental setup 
We are monitoring and controlling lighting in an of-
fice space with two workspaces, equipped with two 
dimmable uplights and two motorised Venetian 
blinds. 

Indoor and outdoor sensor data are collected by 
LabView applications; actuator commands and 
status information pertaining to light fixtures and the 
motorised shading are communicated via the LUX-
MATE bus. A location sensing system tracks the po-
sitions of furniture and light fixtures with attached 
optical markers (Icoglu et al. 2004) and supplies  its 
data over a TCP/IP connection. Additionally, the sky 
luminance distribution is measured through the use 
of a digital camera (Mahdavi and Spasojević 2004). 
All these data are collected and communicated as 
objects through a data space that decouples data 
producers and consumers. 
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Figure 3. Overview of the building model service and its context within the experimental setup (simplified).  
 

A commercial JavaSpaces implementation (Gi-
gaSpaces) is used for the data space and service 
space. The runtime locations of modules communi-
cating over the spaces are fully transparent: any 
module can be run on any connected computer with-
out configuration or code changes. 

The lighting simulation package RADIANCE 
(Ward 1994) is used to evaluate the effects of con-
trol decisions regarding shading devices and light 
fixtures through a thin service “wrapper” that han-
dles JavaSpace communications. Multiple instances 
of this service are started to achieve transparent 
processing load distribution. However, the granular-
ity of this scheme is limited to one full simulation 
run: distributing the load of one simulation over 
multiple computers is only possible if the simulation 
package itself supports this. 

A visualisation module based on Java3D is used 
to show the model’s current geometric configuration 
as a three-dimensional rendering. It is implemented 
as an agent that uses the event registration facility to 
update itself as soon as geometry changes in the 
monitored objects are registered. 

The model service, the relational database (Post-
greSQL 8.0) and the JavaSpaces (GigaSpaces) are 
executed on a dedicated server equipped with an 
AMD Athlon MP 2000 processor and 1 GB of 
RAM.  

The lighting controller is implemented as an 
agent that periodically evaluates the current lighting 
situation, selects a fixed number of possible control 
scenarios (i.e. changes of shading and electric lights) 
and commissions one simulation for each scenario. 
Simulation results are then ranked according to a 

utility function to select and execute the control de-
cision. The lighting control algorithm is outlined in 
more detail in (Mahdavi et al. 2005).   
 
4.2 Results 
The full model of our experimental space is repre-
sented by about 80 objects during runtime. On aver-
age, about 30 sensor readings are arriving per second 
(with occasional peaks of up to 100), resulting in the 
same number of changes to various object attributes 
and database write operations.  

Latency (the interval between the instant of read-
ing a measurement from the sensor by e.g. LabView 
and the instant it becomes available in the model 
service for client applications) has been consistently 
below 500 milliseconds, including network commu-
nication overheads. CPU load on the model service 
host (defined as the percentage of processor time 
available to an idle priority process) remained below 
15 percent on average. The model service has cumu-
lated sensor data over the course of months reliably, 
resulting in close to 8 Gigabytes of database records. 
History queries on single objects (retrieving the state 
of an object at a given point in the past) take about 1 
second on this database. 

On our available hardware, lighting simulations 
take between 10 to 20 seconds each, depending on 
the level of input detail and simulation parameters. 
Batch lighting simulation requests of 16 simulations 
each were processed by up to 4 connected machines 
with RADIANCE installations. The load distribution 
has worked well, cutting total simulation times in di-
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rect proportion with the number of participating ma-
chines. 

5 FURTHER WORK  

Our building model service and applications are still 
a work in progress. While small-scale tests have 
been successful, performance and reliability tests us-
ing an actual or simulated large building are desir-
able to further evaluate and refine the chosen design. 
We are planning to build a framework for profiling 
and simulating varying loads in order to derive a 
formal performance model of the system and its key 
components. 

The model service currently lacks a spatial index-
ing mechanism and offers only rudimentary spatial 
queries on the model. We are investigating suitable 
spatial indexing methods and the use of a spatial 
function library to add these important features. 
Work on the reconstruction of space boundaries 
from location information supplied as “tag” loca-
tions is to be integrated into the model service (Suter 
et al. 2005).  

Retrieving snapshots of model subtrees with 
many frequently changing objects (according to the 
procedure outlined in 3.6.2) can be inefficient, as 
many database accesses to retrieve just recently 
changed objects may be necessary. We are working 
on a cache layer between the current model and the 
database that keeps recently changed object versions 
in memory for fast access. 

The current design does not address any security 
aspects, relying on existing network infrastructure 
for access control: any system able to connect to the 
JavaSpace can submit an agent to the model service 
and change model data. In a real-world scenario, 
various access restrictions on the model service 
(such as object ownership and capabilities) would be 
necessary.  

6 CONCLUSION 

We have outlined the requirements for a dynamic 
building model service, and have described a proto-
type design and implementation. An experimental 
application running simulation-based lighting con-
trol for an office space has been implemented. Our 
preliminary evaluation has shown that the chosen 
design is feasible and has the potential for being 
tested in larger-scale configurations. 

While originally driven by the requirements for 
simulation-based control, we expect dynamic build-
ing model services to be a valuable foundation for a 
wide range of different applications in building op-
eration and management. 
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