
1 INTRODUCTION

This paper presents a software design for dynamic
building model services. As such, it represents a
component of ongoing work on a larger research
project toward realization of sentient buildings
(Mahdavi 2004). Sentient buildings possess an inter-
nal, dynamic, and self-updating representation
(model) of themselves. They use this model to sup-
port various services and operations. The research
project focuses on the application of such internal
models toward supporting indoor-environmental
control systems of buildings (e.g. heating, cooling,
ventilation, and illumination systems). Specifically,
we have been investigating the potential of dynamic
building models to enable simulation-based building
control strategies (Mahdavi 1997, 2001, Clarke et al.
2001). To identify a desirable state for a building
control device, the simulation-based control method
projects a number of alternative device states into
the future, predicts the implications of these alterna-
tive states via simulation, compares the simulation
results in view of pertinent objective functions, iden-
tifies the most preferable device state, and informs
the user (or instructs a relevant actuator) toward the
realization of this state. As compared with tradi-
tional control algorithms, simulation-based strategies
have been shown to be highly effective in the con-
text of built environment. This is primarily due to
two circumstances: i) building control operation in-
volves a large number of environmental sub-systems

and a multitude of devices and networks; ii) build-
ings are subject to both dynamic contextual forces
(e.g. weather conditions) and internal fluctuations
(e.g. occupancy presence and actions) that are diffi-
cult to predict.

Whilst simulation-based control strategies have a
number of advantages, they are not easy to imple-
ment. First, they require a fairly detailed model of
the building, its systems, its context, and its occu-
pancy. Second, given the dynamic nature of build-
ing-related processes, such a model must be con-
tinuously updated to be reliable. Advances in
computer hardware and simulation algorithms have
brought simulation times to a level that is useable for
BEMS (Building Energy Management Systems) ap-
plications. However, creating simulation models is
still, to varying extent, manual labour. The transition
from initial CAD (computer-aided design) building
documents to simulation models is hardly seamless
and often requires additional domain-specific infor-
mation and extensive post-processing. Moreover,
any significant change in the building must also be
reflected in the simulation models, if they are going
to be of any use in the context of building systems
control. Ideally, simulation-based control requires a
model of the building’s status that is updated with-
out human intervention. This evidently requires an
extensive sensor infrastructure in the building gener-
ating a huge amount of raw data – and consequently,
software that processes these data, collating and or-
ganizing them contextually for access by other soft-

The software design of a dynamic building model service

K. A. Brunner & A. Mahdavi
Department of Building Physics and Building Ecology, Vienna University of Technology, Austria

ABSTRACT: We present the software architecture and a prototypical implementation of a dynamic building
model service system. The primary purpose of this model service is to support (simulation-assisted) indoor-
environmental control operations in buildings. However, as a comprehensive, structured, sensor-based, and
self-updating information resource, the model can support other building tasks such as those concerned with
building logistics and management. At the core of our model service design, an object tree continuously up-
dated from sensor data reflects the current state of the building, concurrently accessible to multiple clients and
backed by persistent storage. The service is embedded in a distributed infrastructure based on tuple spaces for
transparent object-based communication between system components. The preliminary evaluation of the
model service system suggests that the proposed design is feasible and appropriate for further testing in realis-
tic (large-scale) settings.

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

ware. We believe that such a dynamic building
model would be useful for many other purposes be-
sides simulation-based building systems control, of-
fering a level of abstraction and a common interface
that has not been available so far.

Today, modern office buildings are often
equipped with considerable networks of sensors and
actuators. However, there is generally a lack of
meaningful integration and open access to make full
use of these available data. We therefore propose a
dynamic building model service to address this need,
outlining requirements and a prototype software de-
sign, and report our experiences with an actual im-
plementation.

2 BACKGROUND

Considerable work has been done in the field of
building product modelling (Eastman 1999,
Mahdavi et al. 1999). Product model specifications
formally describe structures and notations and thus
serve as a conceptual basis for building models;
however, they do not address the architecture and
run-time behaviour of a building model service.

Work on communications infrastructure for sen-
sors and actuators within buildings has resulted in
many specifications and products, e.g. BACnet,
LonWorks, LUXMATE and others (Bushby 1997,
Sharples et al. 1999, Luxmate 2005). A building
model service naturally relies on some form of
communications infrastructure and should be easily
adaptable to specific variants.

Recently, the integration of various control do-
mains has become a focus of research in building
energy management systems (BEMS). The EDIFI-
CIO project (Guillemin & Morel 2001) has shown
the use of soft computing techniques applied to con-
current control of heating, ventilation, and lighting.
Simulation-based control has been argued for and
demonstrated successfully by Mahdavi (2001) and
Clarke et al. (2001). The models used in these in-
stances were specialised to the given experimental
setups and control tasks and not designed to be scal-
able or usable for multiple applications concurrently.

The S2 project (Mahdavi et al. 1999) demon-
strated automated derivation of domain-specific
models for simulation from a general building
model, in a distributed environment. However, it
was geared toward the design phase only and did not
support simulation-based control or dynamic build-
ing model updating during its operational phase.

3 DESIGN AND IMPLEMENTATION

In this section, we outline the design of the model
service and discuss its key elements. Functional and
non-functional requirements for a dynamic building

model service are stated in section 3.1 and previous
work (Brunner & Mahdavi 2005). The most impor-
tant non-functional requirements are scalability and
versatility. Scalability relates to the need to handle
large buildings with great numbers of spaces, sen-
sors, actuators, and other elements efficiently. Ver-
satility (or flexibility) means that the model service
must be able to accommodate a wide range of differ-
ent uses and application software: this suggests a
lean core application that can be extended during
run-time with additional data and behaviours as
needed.

3.1 Concepts
An integrated building model comprises information
on all elements of a building to a level of detail that
is sufficient to support a wide range of applications,
such as photorealistic rendering, occupancy monitor-
ing, and thermal simulation. Contrary to domain-
specific, parametric models such as those used in
model-based control (Pargfrieder and Jörgl 2002), it
must be designed to hold multi-aspect, multi-
purpose data and to be openly accessible for any ap-
plication through a well-defined interface.

Unlike a simple database of raw values, data are
organized in the form of a well-defined object-
oriented product model providing context and se-
mantics.

A dynamic building model service is updated
regularly, e.g. through sensor readings, to reflect the
current state of the building as accurately as possible
at all times. As it does not merely store the received
data, but can also apply some processing to them or
reconfigure itself if necessary, it can be seen as
“self-updating”. Thus, the model is not merely a de-
scription used for reference and off-line analysis; it
is a live object tree to be used by any number of ap-
plications during the building’s operation, process-
ing data updates and application requests concur-
rently. Input data may come from a range of
different sources and must be correctly placed in
model context. Such data updates can happen con-
tinuously (e.g. a stream of measurement values from
an illuminance sensor) and must be processed within
a short timeframe to meet the requirements of con-
trol applications. Additionally, it is desirable that not
just the current, but all historic states of the model
are stored persistently to be easily retrieved.

3.2 Centralised vs. decentralised architecture
Some types of applications (e.g. thermal simulation)
span the entire building, while others (e.g. lighting
control for a windowless room) may be focused on
just a small portion. This determines their usage pat-
terns for building data and suggests different de-
signs: an all-encompassing central model service al-
lowing random access to any portion of the building, C

o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

or multiple, loosely connected or even independent
sub-model services focused on different parts of the
building (Sharples et al. 1999).

The burden of model-keeping for a centralised
model in terms of memory and CPU usage may be
huge. A central model has to receive data from all
sources in the building, essentially forming a bottle-
neck in the data flow. Decentralised model services
could be distributed to different computers for work-
load distribution and shorter data paths.

Decentralisation means that it must be decided
from the outset how the entire model is broken into
parts. However, it is hard to find an optimal division
scheme for all possible applications. While many
applications lend themselves easily to a division
along units such as “floor”, “apartment”, “room”,
some building systems work across these lines, such
as elevators or HVAC piping. Applications monitor-
ing these systems would have to be in constant
communication with multiple sub-models, increas-
ing network traffic and CPU loads.

As versatility is a key requirement of our specifi-
cation, we have opted for a centralised model de-
sign. The full current state of the model is kept in
working memory of a single process on one com-
puter. However, it is possible to extract copies of
parts or the entire object tree for off-line analysis.
This way, an application working repeatedly on a
relatively static portion of the model can be fully de-
coupled from the model service.

The Java language system was chosen as our im-
plementation platform mainly for reasons of operat-
ing system independence, good availability of third-
party class libraries and mature facilities for distrib-
uted computing.

3.3 Interconnection of system components
In our project, the model service is part of a distrib-
uted infrastructure that comprises a number of other
services that depend on or assist the model’s opera-
tion (Brunner & Mahdavi 2005). As a design guide-
line, we identify two types of runtime behaviour in
terms of model access patterns:

a) Batch behaviour: a module collects some input
data, performs intensive processing on it, and returns
some output data. One example is model-based
lighting simulation (by ray tracing or radiosity), an-
other is spatial reasoning (e.g. to generate space
boundaries from tag locations). Modules of this kind
are essentially services operating on a request-
response basis.

b) Interactive behaviour: a module keeps access-
ing a number of objects repeatedly, possibly reacting
to events and changing the objects. It requires little
processing power, but low-latency object access.
One example is a lighting controller task that moni-
tors workplaces and registers any relevant events

that may occur, e.g. changes in occupancy or day-
light.

Modules with batch behaviour benefit from dis-
tribution to keep high CPU workloads off the com-
puter hosting the model service. To achieve this dis-
tribution, we are using a tuple spaces system based
on JavaSpaces (Freeman et al. 1999). For instance, a
client’s request for lighting simulation can be posted
to the service space and subsequently picked up and
processed by any connected machine running an in-
stance of such a service. Once completed, the results
are placed back into the space to be picked up by the
client. This allows a simple and transparent load dis-
tribution that decouples modules in time and space
as much as desirable. Neither clients nor servers
need to know anything about each other except how
to access the common space and the signature of the
relevant request and response objects. Clients can
choose a synchronous or asynchronous mode of op-
eration: either posting requests and waiting for re-
sponses sequentially, or posting a batch of requests
at once and coming back later to pick up the results.
The latter scenario is particularly suited for simula-
tion-based control programs, which frequently need
to commission a set of simulations to select the best
control decision.

The characteristics of modules with interactive
behaviour suggest a different approach. It is desir-
able to keep these modules’ code close to the data
during runtime without losing the flexibility and
loose coupling of the system by hard-wiring their
code into the model service. One way to achieve this
goal is to design an elaborate query language for the
model: the main advantage of this approach is that
modules are not bound to any specific programming
language, as long as they can submit well-formed
query strings to the model service and process the
results. However, the developer effort of translating
query or program logic into an intermediary is con-
siderable, and there would be significant communi-
cations overhead incurred by repeated queries and
responses. Ideally, modules should be able to access
the model just like any other Java object.

 This is achieved by implementing them as
agents, which might also be called “mobile plug-
ins”. Agents are thread objects that may be submit-
ted to the model service over the JavaSpace, where
they are started inside the service process. They can
directly access the object tree and use all public op-
erations on the objects as well as a number of utility
methods for traversing the object tree, retrieving his-
toric versions, and communicating with other mod-
ules via the JavaSpace. Moreover, agents can regis-
ter for events on specific objects to be notified of
data updates.

As an example, the core of a heating control ap-
plication can be sent to the JavaSpace, where it can
examine the relevant objects, derive a number of
possible control decisions and send a batch of simu-C

o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

lation requests (containing relevant model data) to
the JavaSpace. Using the results provided by one or
more simulation services connected to the JavaS-
pace, the controller can take appropriate action (e.g.
opening a valve). Further control cycles can either
be triggered in time intervals or based on update
events (e.g. when a temperature sensor reading rises
above a threshold).

For both batch and interactive access patterns, the
proposed design ensures modularity and flexibility
while the specific runtime characteristics are taken
into account.

3.4 SOM objects
We have chosen the Shared Object Model SOM
(Mahdavi et al. 1999) as basis for our model. SOM
defines only a core set of general attributes (mainly
geometry and surface properties, and a few others
depending on the object type) for the various ele-
ments of a building, as it was not designed to be a
model for all conceivable building applications.
Domain-specific data (e.g. the photometric charac-
teristics of a light fixture) can be associated as sepa-
rate objects if necessary.

Figure 1. A generic SOM object and some of its most impor-
tant associations, methods, and attributes (simplified).

Each SOM object can be associated at run-time
with a number of tags. Tag objects represent keys
for the given object: for instance, a light fixture’s
address in the LUXMATE device control network is
one kind of tag; the ID of a physical location sensing
tag attached to the same light fixture is another. In
both cases, the tag object serves as a key for the
model service to route incoming sensor data to the

proper object. SOM objects may have child and par-
ent objects (Figure 1).

Note that, while we use SOM as the underlying
building model, the proposed software design does
not preclude the use of other models (such as IFC).
As our past research has shown, SOM classes can be
effectively mapped to IFC classes, thus ensuring the
interoperability of our developments with IFC-
compliant applications (Lam et al. 2003).

3.5 Sensor and actuator communications
As input data may come from a variety of source at
the same time, multiple threads can be working on
reading data and routing it to the proper objects,
based on their tags. For our experimental setup, we
use a separate JavaSpace that holds data from differ-
ent sources, such as illuminance sensors and an in-
door location sensing system (Icoglu et al. 2004,
Brunner & Mahdavi 2005). Distributed sensors push
data objects to the space which are picked up by the
model service.

The primary task of the input worker threads is to
find the relevant SOM objects (based on their asso-
ciated Tags) and call their processData() method.
This method decides if and how incoming data is
processed, which may result in updates on the ob-
ject’s data or the creation and deletion of new child
objects. With the help of location sensing data, new
objects can, to some extent, be automatically in-
cluded in the building model: a temperature sensor
that is marked with a location sensing tag will be
represented by a new SOM object and attached to
the proper space as soon as both location sensing
and sensor reading data are available. We plan to
reach a further degree of automation through spatial
reasoning to automatically discover the boundaries
of spaces (Suter et al. 2005).

To handle new sensor data types, data handler ob-
jects can be dynamically registered with the model
service at runtime. These are used if a SOM object
signals that it is unable to process the received data.

For actuators, SOM objects also serve as inter-
faces to initiate physical change. For instance, an
agent can change the dimming level of a light fixture
by calling the commandDimmingLevel() method on
the appropriate LightFixture object. This method
sends the appropriate commands to an output worker
thread, which in turn passes them on to the physical
device.

3.6 Persistent storage and retrieval
The model service is backed by a relational database
for persistent storage, handled by an ObjectStor-
ageManager component. Each SOM object carries a
unique object ID and a ticket obtained from a global,
strictly monotonously increasing counter.

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

3.6.1 Storing and retrieving single objects
When an object’s data are modified through a set()
operation, a new ticket value v is obtained from the
counter and set in the object. A new table row is
then inserted into the database, containing a copy of
the object as a byte array created by the Java object
serialization mechanism, and the object ID and
ticket value as key attributes for later retrieval. As-
sociations to parent and child objects (which are
normal Java references) are converted to object IDs
before storage. To reduce delays, database storage is
executed by a separate background thread. A map-
ping of tickets to clock time is kept for later queries.

If the state of an object at a given clock time t is
requested, first the corresponding ticket value v is re-
trieved. Due to the limited resolution of clock time-
keeping (milliseconds), multiple ticket values may
exist for each point in time – in this case, the highest
value will be chosen. The database is then queried
for the row with the given ID and the highest ticket
value that is less than or equal v, and the object ver-
sion is retrieved from the database und unserialized.
As opposed to the latest, in-memory version of an
object, older versions are immutable and cannot be
changed or used to send actuator commands.

This storage scheme is based on the principles of
multiversion databases (Easton 1986).

Figure 2. Four objects changing over time. At the time instant
corresponding to ticket value 8, object 1 is changed. At the
same point in time, the most recent versions of objects 2, 3, and
4 had the tickets 6, 7, and 5, respectively.

3.6.2 Storing and retrieving multiple objects
Certain operations must be grouped atomically to
avoid inconsistent tree states. E.g. if a SOM object is
moved from one space to another, it must be de-
tached from the original parent object and attached
to the new one, creating an intermediate step when
the object is either not attached to any space, or at-
tached to both spaces at the same time. To avoid this
situation, a sequence of operations can be grouped in
one ticket.

Obtaining a consistent view of a sub-tree from an
object tree that is concurrently changed by other
tasks (updating object data or adding or removing
new objects) usually requires special measures. One
way of ensuring that the object tree does not change

while a client operation is traversing it is locking:
entire parts of the tree are temporarily blocked from
changes until the reading task has finished, resulting
in frequent delays when many tasks are accessing
regularly changed subtrees.

The storage and retrieval method outlined above
offers an alternative approach that follows naturally
from the single-object retrieval procedure, in the pat-
tern of an overlapping tree (Burton et al. 1990). As-
sume that an application wants to traverse a subtree
beginning with the root object O1, iterating through
its child objects recursively. To obtain the state of
the subtree at a given time instant, it must select a
ticket value vmax that serves as the upper bound of all
ticket values in the subtree. To obtain the most re-
cent version of the subtree (at the time of beginning
the traversal), it can query the ticket counter for its
current value. From then on, it recursively queries
O1 and its child objects based on the condition that
the ticket value of each object must not be greater
than vmax. If an in-memory object does not fulfil this
condition (because it has changed in the meantime,
resulting in a new version), the latest version with a
ticket value less than or equal vmax is restored from
the database. An example is illustrated in Figure 2.

4 EVALUATION

The aim is to test i) whether the chosen design and
implementation work correctly so that the general
requirements for a dynamic building model are ful-
filled and ii) to test the performance of the system in
a small-scale setup to estimate its scalability poten-
tial to larger setups. An overview of the system and
some of the main modules used in our project is
given in Figure 3.

4.1 Experimental setup
We are monitoring and controlling lighting in an of-
fice space with two workspaces, equipped with two
dimmable uplights and two motorised Venetian
blinds.

Indoor and outdoor sensor data are collected by
LabView applications; actuator commands and
status information pertaining to light fixtures and the
motorised shading are communicated via the LUX-
MATE bus. A location sensing system tracks the po-
sitions of furniture and light fixtures with attached
optical markers (Icoglu et al. 2004) and supplies its
data over a TCP/IP connection. Additionally, the sky
luminance distribution is measured through the use
of a digital camera (Mahdavi and Spasojević 2004).
All these data are collected and communicated as
objects through a data space that decouples data
producers and consumers.

 C

o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

Figure 3. Overview of the building model service and its context within the experimental setup (simplified).

A commercial JavaSpaces implementation (Gi-
gaSpaces) is used for the data space and service
space. The runtime locations of modules communi-
cating over the spaces are fully transparent: any
module can be run on any connected computer with-
out configuration or code changes.

The lighting simulation package RADIANCE
(Ward 1994) is used to evaluate the effects of con-
trol decisions regarding shading devices and light
fixtures through a thin service “wrapper” that han-
dles JavaSpace communications. Multiple instances
of this service are started to achieve transparent
processing load distribution. However, the granular-
ity of this scheme is limited to one full simulation
run: distributing the load of one simulation over
multiple computers is only possible if the simulation
package itself supports this.

A visualisation module based on Java3D is used
to show the model’s current geometric configuration
as a three-dimensional rendering. It is implemented
as an agent that uses the event registration facility to
update itself as soon as geometry changes in the
monitored objects are registered.

The model service, the relational database (Post-
greSQL 8.0) and the JavaSpaces (GigaSpaces) are
executed on a dedicated server equipped with an
AMD Athlon MP 2000 processor and 1 GB of
RAM.

The lighting controller is implemented as an
agent that periodically evaluates the current lighting
situation, selects a fixed number of possible control
scenarios (i.e. changes of shading and electric lights)
and commissions one simulation for each scenario.
Simulation results are then ranked according to a

utility function to select and execute the control de-
cision. The lighting control algorithm is outlined in
more detail in (Mahdavi et al. 2005).

4.2 Results
The full model of our experimental space is repre-
sented by about 80 objects during runtime. On aver-
age, about 30 sensor readings are arriving per second
(with occasional peaks of up to 100), resulting in the
same number of changes to various object attributes
and database write operations.

Latency (the interval between the instant of read-
ing a measurement from the sensor by e.g. LabView
and the instant it becomes available in the model
service for client applications) has been consistently
below 500 milliseconds, including network commu-
nication overheads. CPU load on the model service
host (defined as the percentage of processor time
available to an idle priority process) remained below
15 percent on average. The model service has cumu-
lated sensor data over the course of months reliably,
resulting in close to 8 Gigabytes of database records.
History queries on single objects (retrieving the state
of an object at a given point in the past) take about 1
second on this database.

On our available hardware, lighting simulations
take between 10 to 20 seconds each, depending on
the level of input detail and simulation parameters.
Batch lighting simulation requests of 16 simulations
each were processed by up to 4 connected machines
with RADIANCE installations. The load distribution
has worked well, cutting total simulation times in di-

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

rect proportion with the number of participating ma-
chines.

5 FURTHER WORK

Our building model service and applications are still
a work in progress. While small-scale tests have
been successful, performance and reliability tests us-
ing an actual or simulated large building are desir-
able to further evaluate and refine the chosen design.
We are planning to build a framework for profiling
and simulating varying loads in order to derive a
formal performance model of the system and its key
components.

The model service currently lacks a spatial index-
ing mechanism and offers only rudimentary spatial
queries on the model. We are investigating suitable
spatial indexing methods and the use of a spatial
function library to add these important features.
Work on the reconstruction of space boundaries
from location information supplied as “tag” loca-
tions is to be integrated into the model service (Suter
et al. 2005).

Retrieving snapshots of model subtrees with
many frequently changing objects (according to the
procedure outlined in 3.6.2) can be inefficient, as
many database accesses to retrieve just recently
changed objects may be necessary. We are working
on a cache layer between the current model and the
database that keeps recently changed object versions
in memory for fast access.

The current design does not address any security
aspects, relying on existing network infrastructure
for access control: any system able to connect to the
JavaSpace can submit an agent to the model service
and change model data. In a real-world scenario,
various access restrictions on the model service
(such as object ownership and capabilities) would be
necessary.

6 CONCLUSION

We have outlined the requirements for a dynamic
building model service, and have described a proto-
type design and implementation. An experimental
application running simulation-based lighting con-
trol for an office space has been implemented. Our
preliminary evaluation has shown that the chosen
design is feasible and has the potential for being
tested in larger-scale configurations.

While originally driven by the requirements for
simulation-based control, we expect dynamic build-
ing model services to be a valuable foundation for a
wide range of different applications in building op-
eration and management.

ACKNOWLEDGEMENT

The research presented in this paper is supported by
a grant from FWF (Austrian Science Foundation),
project number P15998-N07. The research team in-
cludes, in addition to the authors, G. Suter, O.
İçoğlu, B. Spasojević, and J. Lechleitner. The au-
thors gratefully acknowledge comments and sugges-
tions from G. Suter.

REFERENCES

Brunner, K.A. & Mahdavi, A. 2005. A software architecture
for self-updating life-cycle building models. In press: Pro-
ceedings of CAADfutures 2005, Vienna, Austria.

Burton, F.W., Kollias, J.G., Matsakis, D.G. & Kollias, V.G.
1990. Implementation of overlapping B-trees for time and
space efficient representation of collections of similar files
Comput. J. 33(3): 279-280.

Bushby, S.T. 1997. BACnet - a standard communication infra-
structure for intelligent buildings. Automation in Construc-
tion 6(5-6):529-540.

Clarke, J.A., Cockroft, J., Conner, S., Hand, J.W., Kelly, N.J.,
Moore, R., O'Brien, T. & Strachan, P. 2001. Control in
building energy management systems: the role of simula-
tion. In Proceedings of the Seventh International IBPSA
Conference, Rio de Janeiro: 99-106.

Eastman, C.M. 1999. Building Product Models: Computer En-
vironments Supporting Design and Construction. Boca
Raton: CRC Press.

Easton, M.C. 1986. Key-sequence data sets on indelible stor-
age. IBM J. Res. Dev. 30(3): 230-241

Freeman, E., Hupfer, S. & Arnold, K. 1999. JavaSpaces Prin-
ciples, Patterns, and Practice. Boston, Mass.: Addison-
Wesley.

Guillemin A. & Morel N. 2001. An innovative lighting control-
ler integrated in a self-adaptive building control system.
Energy and Buildings 33(5):477-487.

Icoglu, O., Brunner, K.A., Mahdavi, A. & Suter, G. 2004. A
distributed location sensing platform for dynamic building
models. In Markopoulos, N. et al. (eds.) Ambient Intelli-
gence: Proceedings of the Second European Symposium,
Eindhoven (Lecture Notes in Computer Science 3295): 124-
135. Berlin: Springer-Verlag.

Lam, K. P., Wong, N. H., Shen, L. J., Mahdavi, A., Leong, E.,
Solihin, W., Au, K. S. & Kang, Z. J. 2003. Mapping of in-
dustry building product model for thermal simulation and
analysis. In Proceedings of the Eighth International IBPSA
Conference, Eindhoven Vol. 2: 697-704.

Luxmate Controls GmbH. 2005. Internet resource URL
http://www.luxmate.com (accessed 25 April 2005).

Mahdavi, A. 1997. Toward a simulation-assisted dynamic
building control strategy. In Proceedings of the Fifth Inter-
national IBPSA Conference. Vol. I: 291-294.

Mahdavi, A. 2001. Simulation-based control of building sys-

tems operation. Building and Environment. 36(6): 789-796.
Mahdavi, A. 2004. Self-organizing models for sentient build-

ings. In: Malkawi, A. M. & Augenbroe, G. (eds.) Advanced
Building Simulation: 159 – 188. London: Spon Press.

Mahdavi, A. & Spasojević, B. 2004. Sky luminance mapping
for daylight-responsive illumination systems control in
buildings. In Proceedings of the 35th Congress on
HVAC&R, Belgrade, Serbia and Montenegro: 93 – 102.

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

Mahdavi, A., Ilal, M.E., Mathew, P., Ries, R., Suter, G. &
Brahme, R. 1999. The architecture of S2. In: Proceedings
of Building Simulation 1999, Sixth International IBPSA
Conference Kyoto, Japan, Volume 3: 1219-1226

Mahdavi, A., Spasojević, B. & Brunner, K.A. 2005. Elements
of a simulation-assisted daylight-responsive illumination
systems control in buildings. In press: Proceedings of the
Ninth International IBPSA Conference, Montréal, Canada.

Pargfrieder, J. and Jörgl, H.P. 2002. An integrated control sys-
tem for optimizing the energy consumption and user com-
fort in buildings. In Proceedings of the 2002 IEEE Interna-
tional Symposium on Computer Aided Control System
Design: 127-132.

Sharples, S., Callaghan, V. & Clarke, G. 1999. A multi-agent
architecture for intelligent building sensing and control. In-
ternational Sensor Review Journal, 19(2): 135-140.

Suter, G., Brunner, K. & Mahdavi, A. 2005. Spatial reasoning
for building model reconstruction based on sensed object
location information. In press: Proceedings of CAADfutures
2005, Vienna, Austria.

Ward, G.J. 1994. The RADIANCE lighting simulation and
rendering system. In SIGGRAPH '94: Proceedings of the
21st annual conference on Computer graphics and interac-
tive techniques: 459-472.

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

