
1 INTRODUCTION

The paper focuses on the operations that are needed
to carry out on the IFC model in order to introduce
product data from an external source to the model.
An important objective of the undergoing research
work is to supply the IFC model with information
about construction products; not only life cycle in-
formation but also information allover the lifecycle
of the product. Another objective is to enable carry-
ing out operations needed to modify and keep the
IFC model up-to-date. Among these operations are
the instantiation of new property sets, property defi-
nitions, and classifications of construction products.
Moreover, it is more often than not required to carry
out changes to the model like changing the values of
the above-mentioned aspects or even deleting them.
This is envisaged to respond to the changes that a
construction project undergoes in the design, speci-
fication and value engineering stages and hence can
be used for procurement aspects like conduction of
parametric searches in electronic product catalogs.
Furthermore, this is considered to be the means by
which the construction product's life cycle properties
could be mapped to the IFC model all over the life
cycle of the product itself. An important goal in this
process is not to cram the IFC model with all the
available life cycle information for each product in
the construction project. However, the goal is to
supply and support the model with up-to-date infor-
mation from a continually updated data source (Nour
et al, 2004). This implies that only needed informa-

tion is mapped and instantiated in the model. In this
way, the size of the IFC model and its exchange
format (STEP ISO 10303-P21) can be minimized i.e.
a fat free communication model can be reached. This
model exists in parallel to its life cycle information
and can reference and import any of its contents ac-
cording to the user's (client's) need.

Figure 1.1 An Overall view of the operations on the IFC model

Figure 1.1 shows a map view of this research
work, where the whole system consists of distributed
platforms represented in a source of dynamic con-
struction product data and a user (client) side repre-
sented in the CAD software and other multidiscipli-
nary applications. The core of this system is the
operations undergone on the IFC model. This in-

Manipulating IFC model data in conjunction with CAD

M. Nour & K. Beucke
Chair of Construction Informatics, Bauhaus University, Weimar, Germany.

ABSTRACT: The IFC model is used as a means of information exchange between AEC software applica-
tions. Currently, workflow aspects based upon IFC models still reside in a gray area between applications.
This paper reports ongoing research work on a new approach that uses an online dynamic continually updated
construction product data source for IFC based Building Information Models (BIMs). It focuses on different
algorithms for parsing, interpreting and writing STEP ISO 10303 P-21 files. In between these stages various
instantiation, deletion and updating process on the IFC model take place. The paper also investigates the abil-
ity of current software applications to work on the IFC model in a sequential order and points out some work-
flow management problems that were encountered during this process.

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

cludes importing the model to a space where new
data can be instantiated, and old data can be updated
or deleted. At the end the model can be exported to
an arbitrary number of multidisciplinary applica-
tions. In other words, this means that construction
product data can be mapped -from a relational
model- to the IFC object oriented model and newly
instantiated or merged to it. The latter is done in two
main scenarios. First is when the user or specifier
needs to define the search parameters of the product
and second is later during the whole life cycle of the
product whenever a need for product data or updates
arises. The paper begins with a brief description of
the STEP ISO 10303-P21 parser, then moves to the
IFC2x Interpreter, where various alternatives for the
interpretation process are discussed. It shows how
various modifications and updating operations that
are performed on the model in addition to exporting
the model in the form of a STEP ISO 10303 P-21
file and finally some workflow management aspects
that were encountered.

2 STEP ISO 10303-P21 PARSER

A major problem facing the implementation of IFC
in university research projects is the process of pars-
ing STEP files and the instantiation of the IFC
Model, which is defined in EXPRESS ISO-10303-
P11. In industry contexts, there are several EX-
PRESS based object oriented databases that are ca-
pable of reading, updating, writing and mapping
STEP files. However, the costs of such relatively
new technologies, at the time of writing this paper,
are extremely high.

Figure 2.1 Constituents of a STEP file, Nour 2004

For many researchers, IFC is considered to be not
more than a means for data exchange between com-
mercial software applications. It was found that one
of the biggest barriers standing between researchers
and the IFC model is how to push the model itself
from the theory in the IAI1 documentation to the
practice of implementation. In the meantime, the
tools that can facilitate the instantiation of the model
and manipulating its elements are extremely expen-

1 IAI International Alliance for Interoperability, www.iai-international.org/iai_international/

sive. Since the research work is entirely independent
of any commercial software application, it presents
therefore a simple approach to parsing (STEP ISO-
10303-P21 2004) files using available parser genera-
tor technologies.

Figure 2.2 The Analsis of the STEP file, Nour 2004

The first step in developing the parser is identify-
ing the structure of the STEP file, then defining the
grammar. The first step was determined as a result
of the analysis process of the STEP physical file’s
main constituents that are shown in figure 2.1, start-
ing with the HEAD section and moving to the body
or DATA section and ending with the
END_ISO_STEP statement. The second step is done
by writing down a grammar of the step file. The if-
cElement starts with a line number identifier and the
'=' sign, the name of the Element 'IFCxxxxx', open
bracket, the argument list, a closing bracket, then an
EOC (End Of Line Command) symbol which is the
';' symbol as shown in figure 2.2.

At the end of the parsing process a three dimen-
sional array is obtained, as shown in figures 2.3 and
2.4. The first dimension of the array contains all the

1 **1Array1, (Elements) Array2, (Attributes) Array3, (Container)1 **1Array1, (Elements) Array2, (Attributes) Array3, (Container)

Figure 2.3 The instantiated three arrays from
the parsing process

Figure 2.4 UML for the output 3D Array, Nour 2004

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

IfcElements (1st array), each IFC element points to
an array containing its arguments (2nd array) and fi-
nally some argument values are references to con-
tainer classes or other elements by them selves, i.e.
They are represented through the third optional di-
mension (3rd array). Now the code should have al-
ready been parsed and is ready for interpretation by
Java.

3 IFC2X INTERPRETER

The interpreter tries to map the IFC2x model entities
to Java classes. The fact that STEP is a kind of seri-
alization of objects defined in EXPRESS cannot be
ignored. This more often than not results in many
problems like the absence of some attributes in the
STEP file, e.g. the optional, derived and inverse
EXPRESS attributes. Moreover, Java is a program-
ming and modeling language, whereas EXPRESS IS
NOT a programming language. There are lots of dif-
ferences that can be pointed out between the two
languages.

Among these differences are the support for mul-
tiple inheritance, different types of container classes,
logical, optional and Inverse attributes. STEP physi-
cal files are tightly bound to the EXPRESS schema
they were written against. Because the ordering of
attribute values is determined from the EXPRESS
schema, changes to the schema may cause problems
with files written against the original version. In the
context of this paper only important issues that are
encountered through the process of creating the in-
terpreter are very briefly discussed.

A first step in mapping EXPRESS entities to Java
classes is building an SDAI (Standard Data Access
Interface). The SDAI is a STEP API for EXPRESS
defined data. The SDAI protocols contain a descrip-
tion of the operations and functionalities that should
be satisfied by the mapped entities. The SDAI is de-
scribed by several ISO standards documents. STEP
Part 22 (ISO 10303-22 SDAI, 1995) contains a func-
tional description of the SDAI operations, while
Parts 23 (ISO 10303-P23, 1995) and 24 (ISO 10303-
P24, 1995) describe how these operations are made
available in the C++ and C language environments.
Bindings for CORBA/IDL and Java are also avail-
able. As a general rule, all mapped EXPRESS enti-
ties should implement the SDAI interface. The only
purpose of this interface is the definition of rules that
the generated Java classes must implement to get ac-
cess to the inner attributes (Loffredo, 2004). There
are two main types of bindings available:

SDAI Late Binding — In this approach, no gener-
ated data structures are used. Only one data structure
is used for all of the definitions in an EXPRESS
model. The Inner attributes are usually collected in a
container class, e.g. Vector or List. Moreover, access
to the objects is provided at runtime (ibid).

SDAI Early Binding — An early binding ap-
proach makes the EXPRES S information model
available as specific programming language data
structures for each different definition in the EX-
PRESS model (Schwarz, 2004). For example, an
early binding such as the Java SDAI would contain
specific Java classes for each definition in the IFC2x
Schema. One major advantage to this approach is
that the compiler can do extensive type checking on
the application and detect conflicts at compile time.
Special semantics or operations can also be captured
as operations tied to a particular data structure. Early
bindings are usually produced by an EXPRESS
compiler. The compiler will parse, resolve, and
check the EXPRESS model, then passes control to a
code generator to produce data structures for that
model. EXPRESS entity definitions are usually con-
verted to Java or C++ classes where type definitions
are converted to either classes or typedefs, and the
EXPRESS inheritance structure is mapped onto the
Java / C++ classes. Each class should have access
and update methods for the stored attributes, possi-
bly access methods for simple derived attributes, and
constructors to initialize new instances. It should be
also noticed that Java does not support multiple in-
heritance. At any rate, this problem is not encoun-
tered in this work due to the fact the EXPRESS
definition of the IFC model does not use any multi-
ple inheritance.

Another Approaches — The early and late bind-
ings are not the only possible approaches. In the
scope of this work a mixed approach is imple-
mented. This approach provides the advantages of
an early binding (compile-time type checking and
semantics as functions in a class) without the com-
plexity introduced by modelling a huge number of
classes in the IFC model (there are more than three
hundred and seventy leaf classes, in addition to
eighty nine defined types, twenty three select types
and one hundred and seventeen enumerations). It
should be mentioned that in the the early binding
approach there is a restriction to predefined classes.
This means that if we need to interpret Ifc2x compli-
ant STEP files, we have to model all the elements of
the IFC2x model to Java classes. At the meantime, if
we need to change to IFC2x2, then we have to do
the same again with the whole model to produce
new Java binding classes. A mixed binding takes
advantage of the observation that applications rarely
use all of the structures defined by the IFC2x EX-
PRESS Schema. The subset of structures that are
used, called the working set, can be early-bound,
while the rest of the Schema is late-bound (idem,
2004). All data is still available, but the application
development process is simplified. The number of
classes and files that are needed are reduced dra-
matically, resulting in quicker compiles, simpler
source control, and more rapid development.

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

In the scope of this work the mixed approach is
implemented, in the early binding parts (working
classes) a more labour-intensive approach has been
used to hand-generate an early binding for the IFC2x
model. Such a binding is not 100% compliant to the
IFC EXPRESS model, due to the fact that there are
EXPRESS data types that can not be mapped 1:1 to
Java data types in addition to the strong rules that
are imposed by the EXPRESS language.

Although this approach might provide a simpli-
fied programming interface, there are some draw-
backs to be aware of. Aside from the increased la-
bour involved in defining and implementing the
binding, this method requires that the user should
understand the EXPRESS schema API completely,
and be able to predict how it will be used. (Loffredo,
2004).

3.1 Mapping Express Data Types
The EXPRESS language includes TYPE and EN-
TITY declarations, CONSTANT declarations, con-
straint specifications and algorithm descriptions.
Only EXPRESS primitive data types, TYPE, EN-
TITY and aggregations declarations, are mapped to
the exchange structure (STEP-P21). Other elements
of the language are not mapped to the exchange
structure and consequently are not mapped to Java
types. Table 3.1 shows the mapping from EXPRESS
to STEP and Java types. The first two columns in the
table are taken from the ISO 10303-21 Specifica-
tions. The third column is developed by the author.

Table 3.1 Mapping EXPRESS to STEP & Java

EXPRESS element mapped in to STEP-
P21:

Mapped into Java

ARRAY list List

BAG list List

BOOLEAN boolean boolean

BINARY binary binary

CONSTANT NO INSTANTIA-
TION

NO INSTANTIA-
TION

DERIVED AT-
TRIBUTE

NO INSTANTIA-
TION

NO INSTANTIA-
TION

ENTITY entity instance Class

ENTITY AS AT-
TRIBUTE

entity instance name Reference to ob-
ject

ENUMERATION enumeration Class

FUNCTION NO INSTANTIA-
TION

NO INSTANTIA-
TION

INTEGER integer integer

INVERSE NO INSTANTIA-
TION

NO INSTANTIA-
TION

LIST list LIST

EXPRESS element mapped in to STEP-
P21:

Mapped into Java

LOGICAL enumeration Class

NUMBER real double

PROCEDURE NO INSTANTIA-
TION

NO INSTANTIA-
TION

REAL real double

REMARKS NO Inst. NO Inst.

RULE NO INSTANTIA-
TION

NO INSTANTIA-
TION

SCHEMA NO INSTANTIA-
TION

Package (early
binding)

SELECT As an entity Class (early bind-
ing)

SET list Set

STRING String String

TYPE As an entity Class (early bind-
ing)

UNIQUE rules NO INSTANTIA-
TION

NO INSTANTIA-
TION

WHERE RULES NO INSTANTIA-
TION

NO INSTANTIA-
TION

The EXPRESS Type, Enumeration and logical val-
ues are mapped to Java classes that try to immitate
the behaviour of the EXPRESS entities. However,
there is a drawback that modelling the rules and
ristrictions imposed by the EXPRESS modelling
language is not fully achievable.

3.2 Interpreting STEP ISO 10303 P-21
After parsing the STEP file, a three dimensional ar-
ray - described earlier – is obtained. The following
algorithm describes the process of interpreting the
parsed code to IFC2x Java classes, where a mixed
early and late binding approaches are used together.
The author did not build an EXPRESS compiler that
automatically does the mapping between EXPRESS
entities and Java classes but depended on a good un-
derstanding of the IFC2x model in manually creating
the mapping.

Step One — is the building of Java classes that
are mapped from the IFC2x EXPRESS Schemas' en-
tities i.e. an early binding approach. This is done for
about more than seventy seven working classes and
more than three hundred and twenty abstract and su-
per classes. Each IFC EXPRESS Schema is mapped
to a Java package and each mapped class imple-
ments the SDAI interface that provides the function-
alities that insure reaching the inner attributes of the
class.

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

In the early binding approach the EXPRESS enti-
ties are mapped to Java classes with no implementa-
tion, only as attributes. The implementation is then
determined by a subclass that takes the name of the
superclass preceded by a “_” as shown in the UML
diagram in figure 3.1 This keeps the Java Ifc2x
model pure and away from the influence of any im-
plementation. This is envisaged to enable other re-
searchers to use the model and provide their own
implementation without any limitation to the au-
thor's use of the model. The figure also shows the
use of both early and late binding approaches at the
same time. Both approaches implement the SDAI in-
terface.

In the late binding approach, one class is used for
all EXPRESS entities. This class contains an attrib-
ute that is an array that contains all the attributes of
the EXPRESS entity. This approach does not per-
form any attribute type checking on the countrary to
the early binding approach that performs a type
checking at run time and throws a class cast excep-
tion, whenever an incompatibility is encountered.

Step Two — Sorting the parsed array in an as-
cending order according to each element’s identifier
number is done by changing the array to an Array-
List and building a comparator class that is capable
of sorting the list. The interpreter iterates over the
parsed array of elements. If the element iterated
upon already exists in the IFC2x model (early bind-
ing), then a new instance is created with the given
parameters. If not, it will be instantiated as a late
binding class. In both cases, before the instantiation
takes place, the interpreter iterates over the argu-
ments and makes an argument checking for each
element in the 2nd dimension of the array i.e. the at-
tributes of the IFC STEP entity. If it is a “$”, then it
is substituted by a null value. If it is a “#nn”, then
the identified element is sought from an identifiers
HashMap that keeps references to the interpreted
IFC2x Java objects and uses the STEP numerical

identifier(#nnn) as a key. If it already exists i.e. al-
ready interpreted, then a reference to it replaces the
identifier and if not, then it is added to a remainings
list, where it will be later referenced to the correct
element at the end of the interpretation process. In
case where the argument is a container class (a Set
or a List and so forth), the interpreter iterates over its
elements (in this case as the 3rd dimension of the Ar-
ray) and treats them as normal arguments. In gen-
eral, if the argument is not an identifier, a “$” or a
container class, then the value of the argument is
taken as a parameter for the construction of the new
instance of the Ifc2x Java class, bearing in mind the
mapping rules between EXPRESS data types and
Java data types. At the end of the interpretation
process, the elements in the remainings list are re-
instantiated, where any identifier reference should be
replaced with a reference to an element (IFC2x Java
Object) obtained from the identifiers Hash Map. In
this way, any violation to referencing conventions is
rectified. In other words, the instantiation of such
argument is postponed till the end, where the refer-
ences to the elements already exist in the identifiers
HashMap. At the end of the interpretaion process we
should already have an array of Ifc2X Java objects.

4 VISUALISATION OF THE IFC MODEL

After interpreting the parsed STEP file it is visual-
ised in the form of a tree that represents the project
hierarchy of the IFC model. This enables the naviga-

tion through the model and exploring its entities.

Figure 4.1 The Project hierarchy in the IFC model,
IFC2x Model Implementation Guide (IAI, 2002).

Figure 3.1 UML Diagram showning the implementation
of the SDAI interface for early & late bindings and the
separation between the IFC model and its implementation

Early
Binding

Late
Binding

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

This also facilitates the selection of construction
products in the IFC model and carrying out various
processes on the model such as any instantiation,
modification or deletion of the products’ properties
and so forth.

Figure 4.1 shows the hierarchical structure and
spatial arrangement of the IFC model. The root of
this tree is the Project entity, where it is a single
unique object that contains zero or more sites. Each
project contains one or more buildings and each
building contains one or more stories. The manda-
tory and optional levels of such a tree structure are
shown in the same figure. Whereas the IfcProject,
IfcBuilding and IfcBuildingStorey are mandatory
levels for the exchange of complex project data, the
IfcSite and IfcSpace represent optional levels (which
may be provided, if they contain necessary data).

Figure 4.2 shows the navigation tree in the software
application, starting from the project instance mov-
ing down to the construction product instance. The
project tree is extended to include other aspects such
as the product’s attributes like the dimensions of a
door or a window, the construction materials in-
cluded in such elements and so forth. In other words,
the attributes that contribute to the construction of
parametric searches in electronic product catalogs
are included. It could be navigated through these pa-
rameters as desired by just expanding the product's
tree node. And hence enables carrying out informa-
tion queries and updates on the selected elements in
the information model.

5 OPERATIONS ON THE IFC MODEL

In the scope of the research work the operations
needed to be done on the IFC model are limited to

the instantiation, updates and deletion of construc-
tion product properties in addition to exporting the
modified model in the form of a STEP ISO 10303 P-
21 file.

5.1 Instantiation of new property sets and
classifications

In general and as shown in figure 5.1, before carry-
ing out any instantiation process to a property set,
property definition, a classification or even a new
construction material, we should find first the ele-
ments (IfcBuildingElement) in the IFC model to
which the new instance is related. In the scope of
this research work, this is envisaged to be done by
selecting a product from the project's tree view.
Once we have a selected product, then we can query
the model to find the objectified relationship classes
instances (IfcRelxxx) that link the product with other
parts of the model – like a cross reference table in a
relational database- and consequently add to the

product an arbitrary number of new properties clas-
sifications or materials. Furthermore, this enables
carrying out any required update or delete operations
on the model.

The instantiation process is done in this way due
to the fact that the IfcPropertySet and IfcBuildingE-
lement EXPRESS entities are both linked to the IFC
relation by inverse attributes – as shown in figure
5.1 - that are absent in the STEP file. Thus, search-
ing the relations is the only means through which the
property set and the construction product could be
matched together.

The process of adding a new property to a prod-
uct begins by searching the model and examining if
the product is already linked to a property set that
this property belongs to or not e.g. PsetDoorCom-
mon which is one of the many published property
sets in the documentation of the IFC2x model. In
case this property set is found, the property is simply
added to the property set. If the property set does not
exist then a new property set and a new relation in-
stance are instantiated from scratch, linked to the
product and the property is added to the property set.

Figure 5.1 An EXPRESS-G diagram showing the relation
between properties & construction products through the
definition relationship

Figure 4.2 The IFC Project Tree hierarchy

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

In both cases of instantiation of the property sets and
the constituent properties, new instances of the
properties themselves are created with the necessary
parameters, added to the property set and then added
at the end of the instantiation process to the array
(ArrayList) of IFC elements. It should be mentioned
that figure 5.1 is an EXPRESS-G diagram that rep-
resents an abstraction by the author that ignores in-
heritance of the EXPRESS entities and some of the
attributes. This is done for clarification reasons and
to make the diagram as simple as possible.

5.2 Updates
The updates to the model are carried out in the same
manner like the instantiation. During the navigation
in the project tree, a product is selected, a query in
the model is executed to find its attributes and prop-
erties. Once the values are changed from the user in-
terface as shown in figure 5.2, the new values re-
place the old ones.

Figure 5.2 The GUI used for the updates

5.3 Deletion
Deletion is done either by blanking the text filed in
the GUI or deleting the property explicitly. It is im-
portant here to mention that it is not only necessary
to delete the references to and from the deleted ob-
ject, but it also important to delete the object itself.
This is done by changing the array of elements to an
ArrayList, removing the deleted element and then
returning the array back again.

5.4 EXPORTING STEP ISO 10303-P21 files
Exporting the model in the form of a STEP ISO
1030-P21 is easily done once the model is converted
to a tree structure according to its relationship refer-
ences and not according to its project hierarchy as it
was done earlier in the visualization process. To
build this tree the Java JTree and DefaultMutable-
TreeNode classes were used. At the root of the tree
are always the aggregation relationships that have
references to different parts of the model and acts as
the aggregation elements. On the other hand, ele-
ments that have no references to other elements are
situated at the leaf ends of the tree. The more the

element has references, the more it is nearer to the
root of the tree.

Figure 5.3 presents a simple example that shows
the way to build such a tree. The STEP writer iter-
ates over the array of elements and each of the ele-
ment’s arguments, where the Java Types are mapped
to STEP. All elements are allocated new identifier
numbers according to their position in the tree. From
figure 5.3 we can notice that elements with an iden-
tifier #xx references another element with an identi-
fier #yy, where xx > yy. The STEP writer iterates on
the IFC model elements and their arguments and re-
places the null attributes by a “$” and the references
to other elements by their newly allocated identifi-
ers. Furthermore, the same procedure is done with
elements residing inside collections or container
classes together with adding extra parenthesis as
shown in #77 and its reference to #28 in figure 5.3.

One major problem during the building of the tree
was the mutation of the nodes. In the IFC model tree
a node can be referenced from more than one parent
node, thus the node jumps from the old position to
the new position. However, the nodes should keep
their position where they are first referenced, i.e the
old position. Hence, the major task to overcome this
problem was to prevent the referencing of nodes that
have already been referenced before. This was done
by keeping a record of the referencing in a hash map
and to allow referencing only in cases where the
node has never been referenced before.

After building the tree structure, the HEADER
part of the STEP file is instantiated, and the tree is
traversed in a post order recurring manner, where the
leafs of the tree are iterated upon before the parents
and hence given a smaller identifier number and
written first to the STEP file.

Figure 5.3 Writing STEP ISO 10303-P21

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

6 WORKFLOW MANAGEMENT ASPECTS

The IFC model is mostly used for the transfer of in-
formation from one software to another. There is al-
ways a gray area between software applications that
enables the information to be mapped from one
software application to another. However, there are
more often than not functionalities that are supported
by one software and not by the others. This often re-
sults in inevitable information loss; when the model
is saved by an application that imports an IFC model
and does not support the functionalities of the soft-
ware that originally produced it. Further more, some
times it has nothing to do with functionalities, the
software serializes the model to IFC according to the
information content of its objects and ignores the in-
formation that was originally imported within the
model. This is exactly the case that the author en-
countered when the IFC model was instantiated by
product data and re-imported by CAD software (Ar-
chiCAD 7.0, Students version and ADT 3.3) the
software could show the newly instantiated informa-
tion as in figure 6.1, but when asked to re-export the
model, the software serialized its objects to a STEP
file and took no care of the extra information in the
model. Hence, the IFC model loosed its advantage
as an independent non proprietary building informa-
tion model that is capable of transmitting multidis-
ciplinary AEC information.

7 CONCLUSION

The paper has discussed various steps necessary for
the implementation of the IFC model in scientific re-
search using simple programming techniques and
away from using relatively expensive commercial
software. The paper showed an algorithm for parsing
STEP ISO 10303-P21 files and its interpretation to
IFC2x Java classes, in addition to carrying out in-
stantiation, updates and deletion operations on the
model and finally exporting the model in the form of

a STEP physical file that can be used by AEC soft-
ware applications.

Some shortcomings of the CAD software applica-
tions were encountered in the process of exporting
the imported model. The shortcomings are repre-
sented in the loss of information that was originally
imported into the model, despite the fact that the
CAD software could read it and represent it in its
own environment. It is worth also mentioning that
the lost information does not relate to the functional-
ities of the importing CAD software. It is most
probably commercial information that is related to
construction products. In other words, only the in-
formation that is related to the imported software is
exported.

If the above mentioned shortcoming is rectified
by AEC software applications - which will happen
no doubt sooner or later – this would give a real
technical push to the use of Building Information
Models and its ability to be worked upon by multid-
isciplinary AEC software applications.

REFERENCES

Loffredo, D. T. 1998. Efficient Database Implementation of
EXPRESS Information Models, PhD Thesis, Rensselaer
Polytechnic Institute Troy, New York, USA.

IAI 2002, IFC2x Model Implementation Guide, V 1.4, Liebig,
T.(ed)International Alliance for Interoperability.

ISO 10303-11 EXPRESS 1994. Industrial automation systems
and integration – Product data representation and exchange
– part 11: Description methods: The EXPRESS language
reference manual.

ISO 10303-22 SDAI, 1995 Industrial Automation Systems and
Integration — Product Data Representation and Exchange
— Part 22: STEP Data Access Interface, ISO Document
TC184/SC4 WG7 N392, July 1995.

ISO 10303-23 C++ language binding 1995. Industrial Automa-
tion Systems and Integration — Product Data Representa-
tion and Exchange — Part 23: C++ Language Binding to
the Standard Data Access Interface Specification, ISO
Document TC184/SC4 WG7 N393, July 1995.

ISO 10303-24 c language late binding 1995. Industrial Auto-
mation Systems and Integration — Product Data Represen-
tation and Exchange — Part 24: Standard Data Access In-
terface — C Language Late Binding, ISO Document
TC184/SC4 WG7 N394, July 1995.

ISO 10303- 21 STEP 2002. Industrial automation systems and
integration – Product data representation and exchange –
part 21: Implementation methods : Clear text encoding for
exchange structure.

Nour, M. M. 2004. A STEP ISO-10303 Parser, 16th Forum
Bauinformatik . In Jan Zimmermann, Sebastian Geller
(eds), Braunschweig. Shaker Verlag, Aachen. October
2004, pp. 231 – 237. ISBN 3-8322-3233-4

Nour, M. & Beucke K. 2004 IFC supported distributed, dy-
namic & extensible construction products information
models. In: Dikbas A. and Scherer R. (eds) : Proceedings of
ECPPM 2004 – e-Work and e-Business in Architecture En-
gineering and Construction.8-10 Sept. Istanbul, Turkey.
2004 Taylor & Francis Group, London, ISBN 04 1535 9384

Schwarz, S. 2004. Java as a language for STEP-based product
and process modeling, University of the Federal Armed
Forces Munich, Germany.

Figure 6.1 A snap shot from ArchiCAD 7.0 showing the
Instantiation of the Property Set Pset_DoorCommercial

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

