
1 PROBLEM DEFINITION

Model-based collaborative work is a widely known,
well-defined area, tightly associated with coordina-
tion and cooperation in design teamwork. Amongst
the most challenging problems within this area is the
consistency of shared model data. It can be subdi-
vided into two inter-related tasks: (1) ensuring inter-
operability to enable loss-free data exchange, and
(2) efficient data management to control parallel
data changes, while warranting consistent design
states.

1.1 Interoperability problems in collaborative work
Interoperability can be treated on several levels. The
relevant aspects here are systemic and semantic inter-
operability (Katranuschkov 2001). The first focuses
on the technical process of accessing/exchanging the
data, whereas the second focuses on the meaning of
the exchanged data, i.e. how to understand and use
the data in the context of collaborative work.

Solutions for systemic interoperability are mainly
seen in providing syntactically standardised low
level access to the data using an API like SDAI, or
protocols like SOAP or CORBA. This allows to re-

place file based data exchange, which is commonly
seen as a bottleneck for efficient cooperation, but
does not solve problems related to semantic “misun-
derstandings” of the data, and does not provide
answers how changes done in parallel can be man-
aged.

Semantic interoperability, on the other side, ad-
dresses the definition of the used data. It is dealing
with product modelling as well as with methods
enabling the mapping of data between different
product model schemas. Today, it is widely accepted
that both techniques are needed in data exchange,
but their appropriate combination is still in discus-
sion. The basis of product modelling is commonly
provided by a unified meta model which is used to
formalise domain knowledge. Additionally, a map-
ping language is used to define interdependencies
between different model schemas, thereby allowing
to combine the knowledge of the used product mod-
el instances (see Figure 1).

In this context a product model instance is de-
fined as a set of object instances related to a specific
product data model which themselves comprise a set
of attribute values. Typically, a product model in-
stance will be a subset of the shared building infor-
mation model (BIM).

Supporting State-based Transactions in Collaborative Product Modelling
Environments

M. Weise & P. Katranuschkov
Institute for Construction Informatics, Technical University of Dresden, Germany

ABSTRACT: The up to date state and the consistency of shared building model data are of utmost impor-
tance for the achievement of efficient model-based collaborative work. However, in engineering design these
are not easy tasks. Design activities are typically carried out in long transactions that are characterized by the
following three subtasks: check-out of the needed design data into a private workspace, making design
changes within the private workspace, and check-in of a new model state into the shared model repository to
make changes and decisions visible to the other designers. As a result of various existing semantic interopera-
bility problems, in the new model state both actual design changes and data loss have to be considered that
cannot be easily distinguished. To help tackle these problems we suggest a delta-based versioning approach
whose essence is in storing design changes instead of complete design states. This approach is then used as
basis to support the three data processing stages of a design step within a collaborative work environment,
namely (1) creation of the needed and manageable model subset by removing all irrelevant design data,
(2) storing the design changes, and (3) restoring the removed data by an “undo” operation of the first step. In
the paper we present the used semantics for describing design changes, their transformation to deltas and the
scope and limits of the suggested undo operation. At the end we provide an example of the use of the sug-
gested approach with the industry standard IFC model and discuss its potential and needed further research.

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

Meta model

Product model Product model

mapping
rules

data mapping

Productinstance
Product model

instance

mapping language

Productinstance
Product model

instance

Meta model

Product model Product model

mapping
rules

data mapping

Productinstance
Product model

instance

mapping language

Productinstance
Product model

instance

Figure 1. High level concept of semantic interoperability.

1.2 Data management problems
Appropriate management of the shared model data is
necessary to provide up to date design information
and to ensure consistency.

From the viewpoint of database technology, a de-
sign activity in collaborative design is typically car-
ried out as a long transaction which is characterised
by a sequence of three subtasks: (1) check-out of the
needed design data into a private workspace,
(2) making design changes within the private work-
space, and (3) check-in of a new model state into the
shared workspace to make the data changes and de-
sign decisions visible to the other designers. How-
ever, due to time constraints such design activities
are typically carried out in parallel. Consequently,
there is a need to synchronize data access. This can
either be achieved by restrictive, counter-productive
data locks, or else, methods have to be developed to
merge the diverging design data at certain coordina-
tion time points. In the latter case, beside controlling
data access the most challenging task is to regain the
consistency of the model data at the coordination
points. For the solution of such problems various
knowledge-based approaches have been suggested
that are capable to partially evaluate consistency or
to support certain design decisions. However, in
spite of all efforts, these problems are still open.

1.3 Observations from design practice
In the last years advanced model-based work started
to penetrate design practice. However, even though a
number of the above discussed concepts have since
been adopted, there are still many short-comings that
handicap the realisation of the outlined data sharing
approach for collaborative work.

For integration and interoperability issues the ISO
10303 standard (STEP) has been widely acknowl-
edged. Its basic methodology specified in the parts
ISO 10303-11 to 21 is being used to define specific
product model standards such as CIS/2, IFC,
OKSTRA and STEP AP 225. However, these stan-
dards are developed with little harmonisation with
regard to each other. Their use is currently limited to
neutral data exchange between design applications

within pre-defined use scenarios. Furthermore, the
quality of semantic interoperability heavily depends
on the used applications, i.e. their import/export
functionality allowing to interact with the shared
model data. Consequently, the roundtrip of design
data has to deal both with data loss and altered ob-
ject structures.

Due to many recognised short-comings of file-
based data exchange, shared product data environ-
ments are starting to be introduced. However, since
there is no commonly accepted API to data man-
agement environments, design applications are still
limited to file-based data exchange. Fine-grained
data access as suggested by the SABLE project
(Houboux et al. 2005) is constrained by technical
aspects such as network traffic and, more impor-
tantly, the requirement from design practice to allow
off-line modifications. Thus, the concept of applica-
tion scenarios, i.e. defining model subsets for well
defined business cases, is currently the most detailed
data access level for practical use. Concurrency con-
trol of design changes is mainly realised by simple
locking mechanisms or “first come – first served”
strategies which consequently reduces the flexibility
of the design process. Finally, the problem of data
consistency is currently limited to check rather sim-
ple constraints defined by the underlying data struc-
ture which cannot guarantee the semantic integrity
of design changes.

It can be concluded that, even though on theoreti-
cal level the concepts for interoperability and data
management comprising model definitions, mapping
rules and consistency checking seem to be clear and
reasonable, they are still not achieved in practice.
The reasons for that are multifarious and thoroughly
discussed in a number of papers (cf. Turk 2001,
Amor & Faraj 2001, Bazjanac 2002, Weise et al.
2004). Thus, in practice we have to deal with only
partially integrated data, and this does not seem to
be only a temporary handicap. Methods to overcome
such practical short-comings are no less important
than good product models or sophisticated database
and communication tools.

2 SUGGESTED APPROACH

The baseline of our approach is that collaboration
must be traceable for the involved designers and that
design changes are among the most important data
in the iterative design process. The essence is that,
instead of continuously tracing all design changes
(which could only be done on application level and
is therefore hardly realistic), we consider only the
new model states which include all changes done by
the designer within a full design step. To do that, we
suggest a set of methods allowing to shift change
analysis from the actual new data states to the data
changes (deltas) that have caused these new data C

o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

states. As additional benefit, the suggested methods
provide also a basis to reduce data loss in practice.

2.1 Capturing design steps
From data management viewpoint a design step can
be characterized by (1) the used design data, i.e. the
data needed to carry out the design step, and (2) the
design changes, i.e. the result of the design step.
This reduces the design step to its input and output,
the least common denominator for supporting design
applications as black-box systems. Figure 2 below
shows an example design step of designer DA who is
using three objects for his design changes. Instead of
storing a new design state, the changes are stored by
using a minimal change vocabulary. Hence, we pro-
pose version management of design data by using
deltas.

Object A

Object B

Object C

B.ry

B.rx Design step
using

the data set
{ A, B, C }

Changes:
- object C deleted
- reference B.ry

deleted
- attribute B.a of

object B changed
- object D created

Object D

Designer DA

used data changed data

Object A

Object B

Object C

B.ry

B.rx Design step
using

the data set
{ A, B, C }

Changes:
- object C deleted
- reference B.ry

deleted
- attribute B.a of

object B changed
- object D created

Object D

Designer DA

used data changed data

Figure 2. Example of a design step characterized by the used
and the changed design data.

Compared to other application areas of version man-
agement, such as software and mechanical engineer-
ing, we see important differences for design proc-
esses in building construction, which hinders the use
of available solutions like CVS or Subversion. Addi-
tionally, there is lack of methods enabling efficient
version management. Therefore, before detailing the
suggested delta approach, we discuss requirements
for representing design changes and their integration
into the overall design process.

2.2 Requirements to represent design changes
In order to support different phases of the design
process we have to deal with significant changes of
the shared product model instance. Such changes are
caused both by the nature of design, i.e. the progress
from sketch to detailing, and supporting IT proc-
esses such as mapping, matching and merging. Thus,
the model data cannot be treated as a static object
structure, changed only by the values of attributes.
We have to deal with a kind of object evolution,
where objects are sometimes split into other objects,
sometimes unified to a single object, or changed to
instances of another object type.

To tackle such changes in the object structure we
need to extend the change vocabulary. Conceptually,
we are dealing with the following types of change
information: basic changes (creation, deletion,
changing of objects and attributes), and complex
structural changes (splitting, unification and type
evolution of objects). Figure 3 shows schematically
these types of change information. Additionally, we
have to consider design changes carried out in paral-
lel, thereby creating alternative design states, as well
as merging of alternatives to regain a unified design
solution.

{ B, C, D,
E, V, F }

Design
step

{ A, C‘, D1,
D2, EV, W }

a) A : Column

B : Window

Thickness = 24

C : Wall

Thickness = 36

C‘ : Wall

D : Space
D1 : Space

D2 : Space

EV : Beam
E : Beam

V : Beam

b)

c)

d)

e)

f)
W : WallF : Column

create

delete

change

type change

split

unify

{ B, C, D,
E, V, F }

Design
step

{ A, C‘, D1,
D2, EV, W }

a) A : Column

B : Window

Thickness = 24

C : Wall

Thickness = 24

C : Wall

Thickness = 36

C‘ : Wall

Thickness = 36

C‘ : Wall

D : Space
D1 : Space

D2 : Space

D1 : Space

D2 : Space

EV : Beam
E : Beam

V : Beam

b)

c)

d)

e)

f)
W : WallF : Column

create

delete

change

type change

split

unify

Figure 3. Information concepts needed to represent the data
changes in a design step.

2.3 Integration of change information into the
design process

In our approach, instead of continuous tracking of
the changed design data, we only deal with discrete
new design states. This requires additional services
to identify the data changes. Moreover, a design step
is carried out using a subset of the shared product
model instance which is constrained by the capabili-
ties of the used design application(s) to correctly
import and interpret the provided data. This state-
based way of working with model subsets results in
additional risk for data loss which has to be reduced
by the data management approach.

To be able to differentiate data changes from data
loss, we divide a design step into three data process-
ing stages: (1) selection of the needed data subset,
(2) modification of the data, and (3) re-integration of
the changed data into the full shared model instance.
Each of these stages will be represented by data
changes that can then be evaluated by the other de-C

o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

signers, thereby providing them with as much in-
formation as possible to recognise the intended
changes of the design step. Consequently, the selec-
tion of a model subset will be provided by removing
all irrelevant design data so that a new design state is
created that contains only the requested data. How-
ever, with this approach to the creation of a model
subset we have to restore the removed data at the

final stage. This is done by using a specific ‘undo’
operation. Thus, we differentiate between changes
applied to the model subset and additional ‘adjust-
ments’ needed to update the shared product model
instance.

These three generalised stages of a design step
are illustrated on Figure 4, together with the creation
of new sets of model changes at each stage.

P1= { ... } create
model subset PT.1= { ... } modify data PT.2= { ... } re-integrate P2= { ... }

Designer DA

Stage 1
Shared product data environment:

creating a subset of P1 defined
by the Generalised Model Subset

Definition schema (GMSD)
(see: Weise et al. 2003)

Stage 3
Shared product data environment:

using an ‘undo’ operation to
re-integrate the model subset
and re-generate removed data

Stage 2
Design application:

internal data mappings -
modification of design data -

internal data mappings

Black box: beyond the control of the
shared product data environment

P1= { ... } create
model subset PT.1= { ... } modify data PT.2= { ... } re-integrate P2= { ... }

Designer DA

Stage 1
Shared product data environment:

creating a subset of P1 defined
by the Generalised Model Subset

Definition schema (GMSD)
(see: Weise et al. 2003)

Stage 3
Shared product data environment:

using an ‘undo’ operation to
re-integrate the model subset
and re-generate removed data

Stage 2
Design application:

internal data mappings -
modification of design data -

internal data mappings

Black box: beyond the control of the
shared product data environment

Figure 4. Break down of a design step into three stages with distinct types of data changes at each stage.

To support the described three stages we have de-
veloped generic methods for defining and creating
model subsets (Weise et al. 2003) as well as for
identifying data changes (Weise et al. 2004). Based
on these services we are capable to support state-
based transactions using a subset of the shared prod-
uct model instance.

For the principal design step shown on Figure 4
the following high-level operations can be formally
defined: (a) create model subset PT.1 ⊆ P1 , (b) com-
pare PT.1 and PT.2 , leading to the eq. PT.1 + ∆P = PT.2
that is solved by our comparison algorithm, and
(c) undo (re-integrate), applying identified changes
to the design state P1 so that the updated product
model instance P2 can be derived by P1 + ∆P = P2.

However, in the realisation of these operations
there are several practical problems that need to be
dealt with. In the comparison of design states, due to
the problem of missing object identifiers e.g. in IFC,
we cannot ensure that the changed design state is de-
scribed only by true changes, i.e. the changes made
by the user are not always equal to the detected
changes (∆Puser ≠ ∆Pcompare). Another problem with
IFC is that unique identifier are by definition invari-
ant with regard to the object state which is in con-
flict with the change types d) and e) on Figure 3.
Also, by using the suggested undo operation incor-
rect change results can lead to inconsistencies of the
updated product model instance P2. Moreover, the
data changes in a new design state may not corre-
spond to the semantic changes intended by the user.
For example, if a design application is changing a
globally used length unit from m to mm, it means no

semantic change but results in a problem to update
the shared product model instance. Consequently,
the undo operation creating an updated shared prod-
uct model instance has to be supervised by the de-
signers to correct eventual inconsistencies.

3 VERSION MODEL

In order to capture data changes correctly, we have
to deal with change-based versioning which has to
satisfy the requirements of the defined change vo-
cabulary. However, whilst there are many version
management methods existing to date, they are all
developed and used in more tightly integrated do-
mains and cannot be readily adopted in an ICT envi-
ronment for building design due to several critical
differences in technical and organisational aspects.

Westfechtel and Conradi (1998) compare soft-
ware configuration management with engineering
data management and outline basic differences and
similarities. They identify as a major difference the
complexity of engineering data managed in product
data models instead of text files. They mention also
the problem of integrating different engineering de-
sign tools but anticipate standardized data represen-
tations solving the problem of semantic interopera-
bility. However, even if a common shared model is
agreed, as e.g. IFC, design tools will still be using
their own dedicated data models that will not (and
cannot) be fully harmonized with the shared model.
Shifting the interoperability problems to their re-
sponsibility is neither practical nor realistic.

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

3.1 Objectives of the version management
In our version model we are dealing with well de-
fined configurations of data objects, each describing
a product model instance created in the design proc-
ess. Beside the known advantages of version man-
agement for collaborative work, a specific aspect of
the suggested version model is to compensate data
loss caused by the existing interoperability problem.
The objectives are:
− to enable error-free and consistent design steps,

including the 3 subtasks: (1) check-out, (2) local
data changes via design tools treated as black
boxes from the viewpoint of data management,
and (3) check-in / re-integration of the data into
the common shared model instance;

− to inform the design team about identified
changes;

− to provide access to earlier model versions
thereby facilitating the management of conflicts
via collaborative decisions.

We are not dealing with problems such as configura-
tion management or dynamic composition of object
versions to create new design solutions. Since design
solutions are always created within the outlined
design steps, such issues are not of interest.

3.2 From objects to object versions
Each design state can be handled as a product model
instance defined by a set of objects, each consisting
of a set of attributes. This abstraction provides the
basis for the concept of the suggested version model.

{ }

⎭
⎬
⎫

⎩
⎨
⎧ ⊆=

⊂=
⎭
⎬
⎫

⎩
⎨
⎧=

objects ofset a
by defined instance modelproduct a is|:

attributes ofset a by definedobject an is|:
 referenceobjector

data valueany ngrepresenti attribute, an is|:

pOpP

oAoO

aaA

If a new product model instance must be derived
from an existing product model instance, a new set
of objects has to be created. This new object set is
defined so that changed objects are replaced by the
new object versions. To identify the changed objects
we use a version relationship between new and re-
placed object versions. However, in contrast to other
approaches we do not differentiate between objects
and object versions. Thus, we define the version re-
lationship as follows:

(){ }
() yxyxR

OOyxR

VN

VN

by replacediswhereiprelationshversion,

 ,:

−

×∈=

Consequently, we are able to differentiate between
the outlined change types by using basic set rela-
tional operations as shown on Figure 5. Furthermore,
combinations of these change types are possible to
represent more complex changes. For example, an
object version can be changed by unification and
type evolution at the same time.

{ }
(){ }

()

),(),(:

:bydefinedisobjectsofchange typeThen

iprelationshtype'-instance' anbe,

,:

definitiona type is|:

:Let

.determinedbecanchangetypebycausedchangesdataall
 below,shownasdefinedistypeobjecttheIf changes.type

identify topossiblealsoisittypeobjecttheanalysingBy

),(),(::objects unified

),(),(: :objectssplit

),(: :objects deleted

),(: :objects changed

),(::objectscreated

:Then. ofr predecessodirect a is where,Let

,,,

,,)(

,,)(

)(

)(

)(

byRaxRx

koR

KOkoR

kkK

xzRxyRx

zxRyxRx

yxRx

xyRx

xyRx

qpPqp

OKOK
baKbapyqx

OK

OK

VNVN
zypzypqx

VNVN
zyqzyqpx

VN
qyqpx

VN
pypqx

VN
pypqx

∧⇔

×∈=

=

∧⇔

∧⇔

¬⇔

⇔

¬⇔

∈

∃∀

∃∀

∃∀

∃∀

∃∀

∃∀

≠∈∈∈

≠∈−∈

≠∈−∈

∈−∈

∈−∈

∈−∈

Figure 5. Representation of the different change types by
means of set relational operations.

3.3 From object versions to deltas
Generally, replacement of objects is needed if (1) ob-
jects were changed by at least one attribute or split,
unified or changed in type, or (2) a change is forced
by consistency constraints of the version model to en-
sure integrity of the object states. In all other cases no
replacement of objects is required.

As outlined before an object is treated as a set of
attributes defining an object state. However, since
changed objects are connected to replaced objects
via version relationships, they can be represented
only by the changed attributes. Whenever unchanged
attributes are needed, they have to be determined
from the replaced objects by traversal of the object
history. The goal of this approach is to manage as
few as possible changed objects and attributes en-
forced by integrity constraints of the underlying ver-
sion model. Consequently, we try to omit an update
of references unless it is not possible to unambigu-
ously resolve referenced objects. The rationale is to
avoid propagation of object updates to a huge num-
ber of unchanged objects. This proliferation problem
is illustrated on Figure 6 which shows how the crea-
tion of artificially changed objects would be en-
forced if updates of references are performed in the
version model. C

o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

Object A

Object B

Object C

changed A
⇒ update B

Object A‘

Object B‘

Object C‘

updated B
⇒ update C

update of
reference to A‘

update of
reference to B‘

Object A

Object B

Object C

changed A
⇒ update B

Object A‘

Object B‘

Object C‘

updated B
⇒ update C

update of
reference to A‘

update of
reference to B‘

Figure 6. Proliferation of reference updates, as required by the
version model.

To ensure consistency of the identified deltas, cer-
tain integrity constraints of the underlying version
model have to be checked. If a version relationship
between objects represents a one-to-one connection,
integrity is not violated. Otherwise, the integrity of
attribute values and object references that were addi-
tionally updated to avoid inconsistencies needs to be
verified. Two examples of such cases are shown on
Figure 7, where an update of references is only
needed for the split Object A.

Object A

Object B Object B‘

update of
reference required

Object A1

Object A2

split

{ A1, A2 } undo { A1, A2, B‘}

Reference update:

Thickness = 0.24

C1 : Wall

Width = 5.00

C2 : Wall

Thickness = 0.24
Width = 5.00

C3 : WallC0 : Wall

Attribute update:

merging of
alternative

objects

Object A

Object B Object B‘

update of
reference required

Object A1

Object A2

split

{ A1, A2 } undo { A1, A2, B‘}

Reference update:

Thickness = 0.24

C1 : Wall

Thickness = 0.24

C1 : Wall

Width = 5.00

C2 : Wall

Width = 5.00

C2 : Wall

Thickness = 0.24
Width = 5.00

C3 : WallC0 : Wall

Attribute update:

merging of
alternative

objects

Figure 7. Update of object references and attribute values re-
quired by integrity constraints.

As we subsume that integrity of references has to be
guaranteed for the changed model set by the used
design applications, an update of references needs to
be checked only for the undo operation. Such a
check fails, if the design changes identified by the
comparison algorithm are not compatible to the re-
maining product model data. Hence, the integrity
constraints for references are directly related to re-
quired design changes.

In contrast to reference updates, adding of attrib-
utes is caused by unified (or merged) objects. Since
changed attributes are stored in the object, we have
to ensure that missing attributes can be calculated

independently from the used version path. Thus,
delta attributes contained in a unified object are not
directly linked to changes, so that they have to be
derived by traversing the whole relevant object
branch from the beginning. For example, to deter-
mine the design changes between objects C3 and C1
on Figure 7, all deltas between C1 and the object
branch beginning at C0 have to be compared with the
deltas from C3. From the deltas stored in C3 we can
then determine the change to the Width attribute.

Because of these consistency constraints, the del-
tas managed by the underlying version model are in
general a superset of the data changes. However, the
difference between deltas and actual changes is sig-
nificantly reduced by the suggested structure of the
version model. The changes that are an important in-
formation for the users can be easily derived from
the deltas stored in the object history.

3.4 Undo operation on deltas
An attribute value replaced at the stage of creating
the used model subset is set to the string ‘replaced’
or, in the case of an attribute defining a set of values,
to a subset of the replaced information. Figure 8
shows the replacement of the attribute Width enforc-
ing the creation of a new object version C1. The idea
of the suggested undo operation is to invert this pro-
cess by replacing all attribute values used to define
Stage 1 by their former values. Thus, in the updated
object version C3 the value of the Width attribute of
C1/C2 will be replaced by the value of the Width
attribute of C0. As long as these ‘replaced’ attributes
are not changed in the modifications within Stage 2,
they can be automatically replaced for all changed
and unchanged objects. However, if replaced attrib-
utes are defining references to other objects, their
integrity is also checked.

Width =
‘replaced’

C1: Wall

used
data subset

Width = 5.0

C0 : Wall

Object B

Thickness = 0.36

C2: Wall

Width = 5.0

C3: Wall

{ B, C0 } { C1 } { C2 } { B, C3 }

change of
attrib. ‘Thickness’

updated
data

replacement of the value of the ‘Width‘ attribute by its former value

Stage 1 Stage 2 Stage 3

Width =
‘replaced’

C1: Wall

Width =
‘replaced’

C1: Wall

used
data subset

Width = 5.0

C0 : Wall

Width = 5.0

C0 : Wall

Object B

Thickness = 0.36

C2: Wall

Thickness = 0.36

C2: Wall

Width = 5.0

C3: Wall

Width = 5.0

C3: Wall

{ B, C0 } { C1 } { C2 } { B, C3 }

change of
attrib. ‘Thickness’

updated
data

replacement of the value of the ‘Width‘ attribute by its former value

Stage 1 Stage 2 Stage 3

Figure 8. Re-creation of attributes by inverting their replace-
ment.

The correct outcome of Stage 3 strongly depends on
the correct identification of the changes done by the
user. However, the suggested undo operation can
warrant only the identification of low-level data con-
flicts caused by changes in the data structure, C

o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

whereas data conflicts caused deliberately by the
user or resulting from some external operation such
as the mapping to/from an external model schema
may or may not be correctly recognised. Therefore
we subsume that Stage 3 will always be performed
interactively. The user has to be aware of his respon-
sibility to consistently update the shared product
model instance. The developed delta approach sup-
ports the process but cannot perform it fully auto-
matically.

4 EXAMPLE FROM IFC

By the time of this writing the suggested approach
has been specifically tested for scenarios using the
IFC Project Model (Wix & Liebich 2001). The goal
of IFC is to integrate data of different domains and
therefore it has to deal with model subsets. Such
subsets are officially defined by the IAI to support
different data exchange scenarios such as the coor-
dination of building design, the transition from ar-
chitectural to structural design etc (IAI-ISG 2003).

We have already tested several sub-cases of the men-
tioned scenarios with quite satisfactory results. To
illustrate the developed approach, in this section we
present a simple data roundtrip example for one
building storey, downsized in accordance with the
page limitations of the paper.

sto
rey

 D

sto
rey

 E

column P

beam L

column K

building C

building
site B

project A

sto
rey

 D

sto
rey

 E

column P

beam L

column K

building C

building
site B

project A

Figure 9. Example building structure.

Figure 9 presents the example building structure and
Figure 10 shows a part of the data structures and the
respective modifications in the three stages of the
example design step. The depicted IFC elements are
named and indicated by darker colour on Figure 9.

support

support

B: IfcSite

C:IfcBuilding

D:IfcBuilding
Storey

E:IfcBuilding
Storey

K:IfcColumn

L:IfcBeam

P:IfcColumn

C‘

K‘

A: IfcProject

L1

L2

N:IfcColumn

K‘‘

C‘‘

D‘

N‘

{ A, B, C, D,
E, L, K, P, ... }

{ A, B, C‘,
D, L, K‘ }

{ A, B, C‘, D‘,
L1, L2, K‘‘, N }

{ A, B, C‘‘, D‘, E,
L1, L2, K‘‘, N‘, P }

P P
K‘‘L2L K L K‘ L1 N

K‘L2L1 N‘

create
subset

modify re-
integrate

Storey D
Storey E

object sets for
each stage of
the design step

sketch of the
represented
data

object versions
and their
interrelations
defined by:

version
relationship

containment
reference

support
reference

wrong RVN

wrongly ‚replaced‘‚ support

Stage 1 Stage 2 Stage 3

corrected
by user

support relation corrected by user

support

support

B: IfcSite

C:IfcBuilding

D:IfcBuilding
Storey

E:IfcBuilding
Storey

K:IfcColumn

L:IfcBeam

P:IfcColumn

C‘

K‘

A: IfcProject

L1

L2

N:IfcColumn

K‘‘

C‘‘

D‘

N‘

{ A, B, C, D,
E, L, K, P, ... }

{ A, B, C‘,
D, L, K‘ }

{ A, B, C‘, D‘,
L1, L2, K‘‘, N }

{ A, B, C‘‘, D‘, E,
L1, L2, K‘‘, N‘, P }

P P
K‘‘L2L K L K‘ L1 N

K‘L2L1 N‘

create
subset

modify re-
integrate

Storey D
Storey E

object sets for
each stage of
the design step

sketch of the
represented
data

object versions
and their
interrelations
defined by:

version
relationship

containment
reference

support
reference

wrong RVN

wrongly ‚replaced‘‚ support

Stage 1 Stage 2 Stage 3

corrected
by user

support relation corrected by user

Figure 10. Schematic presentation of part of the IFC data structure, the changes in objects and relations and the respective delta-
based object versions for the example from Figure 9.

Using a single storey of an IFC instance means to
remove all other storeys from the existing project hi-
erarchy, defined by spatial containers comprised of
instances of the object types IfcProject, IfcSite,
and IfcBuilding. Design coordination requires to
handle various ‘contained’ element types such as
floors, columns, walls, opening etc, whereas other
elements like e.g. furniture or plumbing may not be
needed. Therefore, in Stage 1 not all objects refer-
enced from the IfcBuildingStorey instance D will be
included in the partial model subset. To reflect these

changes in the data structure, new delta versions for
C and K are created, namely C’ and K’. However, in
accordance with the suggested approach, no new
versions for A, B, D and L are needed.

The next Stage 2 of the shown scenario comprises
the modifications done by the designer, which in-
cludes the creation of a new column instance N and
the ‘splitting’ of the beam instance L into two new
instances L1 and L2, and the identification of these
changes by the data management system. In this par-
ticular example, L1 and L2 will be correctly recog-C

o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

nised by the comparison algorithm whereas N may
be wrongly identified as a change to K’, and K’’ as
the new column object. D’ is correctly created to re-
flect the design change to beam L.

In Stage 3 the re-integration of the data into the
shared model instance takes place. Here, due to the
wrong assignment of column N as a change version
of K’, a wrong support connection for N to column P
on storey E will be suggested by the undo operation.
This has to be corrected by the designer, leading to
replacement of the version relationship Rvn (K’,N) by
Rvn (K’,K”), and the support reference supp (N,P) by
supp (K’’,P) respectively. The new version N’ of col-
umn N will be automatically created by the undo op-
eration to reflect the changed support reference. Of
course, the technical adequacy of the changed load-
bearing structure of the building must also be checked
and approved by the structural engineer. This cannot
be a task for the data management system.

This short example gives an impression of the
large potential of the suggested approach for goal-
oriented reduction of the data to what is really
needed for a particular design task, at the same time
ensuring consistency and coordination of the shared
model data. For real projects where a shared model
instance can easily grow to several gigabytes this is
a clear benefit in terms of space, time and efficiency
of the collaborative work.

5 CONCLUSIONS

The presented delta-based versioning approach pro-
vides a solid basis to manage the data changes cre-
ated during design tasks that are performed as long
transactions to a shared model database. Typical im-
plementations of such databases are seen in Web-
based model server environments (Eurostep 2003,
Houbaux et al. 2005).

In order to tackle existing interoperability prob-
lems the design step is subdivided into three stages,
namely (1) selection of needed design data, (2) mo-
dification of selected data and (3) re-integration of
the changed design data to update the shared product
model instance. Each of these stages is stored in
terms of the generated changes in a version model,
thereby allowing reviewing of each stage by the
other designers. Capturing of interdependencies be-
tween design states is provided via a basic change
vocabulary, which allows also to deal with design
refinements, such as type change, splitting and unifi-
cation of objects. This provides for higher flexibility
to capture design steps compared to the ID-based
concepts of more traditional object oriented ap-
proaches. The changes themselves are managed by a
set of deltas which represent a data change and
thereby reduce the amount of needed data for ver-
sioning significantly.

Based on the suggested approach, the manage-
ment of design data allows to:
− get access to every design states created in the de-

sign process,
− be aware of data changes between different de-

sign states, and
− support the roundtrip of model subsets.

The approach enables active user involvement in
the management of shared product data in a collabo-
rative work environments. It can be realised on
short-term to enhance current integration methods
and eliminate much of the existing deficiencies.

6 ACKNOWLEDGEMENTS

The authors wish to acknowledge the support of the
German Research Foundation (DFG) within the
framework programme SPP 1103.

REFERENCES

Amor, R. & Faraj, I. 2001. Misconceptions about Integrated
Project Databases. ITcon Vol. 6. http://itcon.org/2001/5/

Bazjanac, V. 2002. Early lessons from deployment of IFC com-
patible software. In: Proc. of the 4th ECPPM, Balkema.

Eurostep 2003. Eurostep Model Server. http://ems.eurostep.fi/
Houbaux, P., Hemio, T. & Karstila, K. 2005. SABLE - Simple

Access to the Building Lifecycle Exchange.
http://www.blis-project.org/~sable/.

IAI-ISG 2003. IFC 2x View Definitions, available from:
http://www.bauwesen.fh-muenchen.de/iai/iai_isg/doc/IAI-
ISG-88.htm

Katranuschkov, P. 2001. A Mapping Language for Concurrent
Engineering Processes. Ph. D. Thesis, TU Dresden, Ger-
many.

Turk, Z. 2001. Phenomenological Foundations of Conceptual
Product Modelling in AEC. International Journal of AI in
Engineering, Vol. 15, pages 83-92.

Weise, M., Katranuschkov, P. & Scherer, R. J. 2003. General-
ised Model Subset Definition Schema. In: Proc. of the CIB-
W78 Conference 2003, Auckland, New Zealand.

Weise, M., Katranuschkov, P. & Scherer, R. J. 2004. Generic
Services for the Support of Evolving Building Model Data.
In: Proc. of the Xth ICCCBE, Weimar, Germany.

Westfechtel, B. & Conradi, R. 1998. Software Configuration
Management and Engineering Data Management: Differ-
ences and Similarities. In: Proc. of the SCM-8 Symposium
on System Configuration Management, Springer.

Wix, J. & Liebich, T. 2001. Industry Foundation Classes IFC 2x,
© International Alliance for Interoperability.
http://www.iai-ev.de/spezifikation/IFC2x/index.htm.

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

