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ABSTRACT 

Quality schedule network diagrams are characterized by containing the entire time and logic 
information of the schedule in a highly legible format. This working paper presents an 
algorithm with which schedulers can improve the clarity of the graphical representations of 
schedule networks that they create. The algorithm has been designed to emulate the approach 
that a human scheduler takes when being asked to prepare a manually drawn activity-on-the-
node diagram. Activities are automatically placed into a grid so that closely dependent 
activities are located near each other and the number of logic link crossings within the 
schedule network is kept low. An illustrated step-by-step example assists with using the 
algorithm, which itself is written in intuitive pseudo-code. Various considerations for good 
graphics design of schedule are provided. Under ongoing research into schedule network 
analysis and optimization it is planned to investigate more powerful arranging algorithms and 
to develop a software implementation. 
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INTRODUCTION 
In past decades, most experienced schedulers learned their trade in the old-fashioned way 
with paper and pencil to create activity lists for projects, draw bar charts, activity-on-the-
arrow (AOA) and activity-on-the-node (AON, also called precedence diagramming method, 
PDM) diagrams – which do not require “dummy” links to correctly display the logic and 
have gained much popularity over AOA – and to perform the forward pass, backward pass, 
and float calculations as per the widely known Critical Path Method (CPM). Drafting skills 
for manually drawn diagrams were included in their education and equipped these 
professionals with a sense of the visual clarity needed to achieve quality drawings. 

Nowadays, schedulers have powerful tools at their disposal in form of commercial 
scheduling software packages that are used to store and analyze the vast amounts of 
information describing the time, logic, and resource-related aspects of construction projects. 
Scheduling software is routinely used both during the planning and during the execution 
stages to ensure the smooth flow of operations by developing an optimum sequence of 
activities, coordinating among their required resources, and reacting to any changes that 
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might be encountered. Since schedule diagrams that are used in practice are not carefully 
drawn by hand anymore but rather are generated by a machine, this paper examines their 
graphical quality with a particular focus on displaying the schedule logic. 

SOFTWARE-GENERATED SCHEDULES 

Any graphical representation of a schedule includes two basic elements, time information 
and logic information (Lucko 2005). Schedules are composed of discrete activities of a 
specified duration which are connected by logic links that represent the dependency structure 
and sequence over time of said activities. Users enter this input in software packages such as 
Microsoft® Project, Primavera Project Planner® (P3®), or Primavera SureTrak® Project 
Manager. The software automatically generates bar charts and AON diagrams from the 
activity list. Some scheduling software packages use a different terminology, such as e.g. 
referring to AON diagrams as PERT, which actually denotes the Program Evaluation and 
Review Technique, a form of scheduling calculations developed by the U.S. Navy that uses 
probabilistic duration estimates rather than fixed durations for each activity. The following 
sections discuss the basic diagram types generated by scheduling software. 

BAR-CHARTS 
Bar charts, also known as Gantt charts after their 1917 inventor Henry L. Gantt, are the most 
widely known form of graphical schedule representation. They feature a horizontal time axis 
and a vertical activity list. Each activity is shown in the diagram area as a bar whose width is 
directly proportional to its duration, making them fully time-scaled. Despite their widespread 
use bar charts suffer from the severe setback that they focus almost exclusively on activities 
and only imply the logic indirectly, whether through consecutive naming and numbering or 
by the “stepped-down” arrangement of the bars that may indicate a dependency. In other 
words, whether an activity further down the list and further over to the right of the time axis 
is dependent on the activities before it on the list and on the time axis remains unknown. 
Such information may be derived with experience and knowledge of the actual construction 
process that is captured in the schedule, yet uncertainty remains. 

Fenced bar charts as introduced by Melin and Whiteaker (1981) in their seminal paper 
curiously have never caught on in the scheduling community and among the software 
developers as strongly as their intuitive display of logic might suggest. Fenced bar charts 
augment the traditional plain bar (or Gantt) charts with vertical solid “fences” and horizontal 
flexible “links” that together capture the entire logic information. Lucko (2005) has argued to 
revive this mechanistic view and its intuitive understanding. Basu (1990) has described how 
a physical model of a schedule can be built for teaching purposes on an abacus-like calendar 
board where wooden blocks represent activities that can “push” subsequent activities further 
down in time if a delay occurs and where the logic is captured by wire fences with fixed 
intermissions (e.g. for curing concrete) or with springs (Lucko 2005) showing free float. 

Software-generated bar charts show logic links – if they are displayed whatsoever – as 
arrows without distinguishing “soft” and “hard” links as fenced bar charts do. Their layout is 
oriented toward the activity bars and the arrows are squeezed in between, in some cases 
overlapping so that exact dependencies are no longer recognizable, and even running in a 

 

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 753



zigzag between directly succeeding activities due to a lack of space for drawing the head of 
the arrow. Lucko (2005) has provided vivid examples of a bar chart and of an AON diagram 
that were generated with a scheduling software package in its normal printout resolution to 
illustrate how poor default layout can falsely imply incorrect definitions of start and finish 
dates, multiple non-existing dependencies, and even negative float. 

ACTIVITY-ON-THE-NODE DIAGRAMS 

As mentioned earlier, AON diagrams have become the predominant form of schedule 
network diagrams that are used in practice. The activities are represented by rectangles or 
circles and the logic links are arrows between the activities showing their dependencies. 
Activities all have the same size regardless of their actual duration. In some software 
applications a calendar bar is provided along the horizontal axis that indicates what range of 
dates an activity falls into. While AON diagrams thus are not fully time-scaled, they still 
show the sequence of activities over time from left to right. 

In AON diagrams generated by scheduling software the activities typically are arranged 
on a tight grid where few positions are left empty. Arrows are drawn in the narrow spaces 
between activities and can be customized to be either straight, shared, or separate, yet may 
still overlap each other so that the actual dependency structure is hidden or hard to decipher 
(Lucko 2005). The layout further depends on the number of activities that are displayed in 
the rows and columns fitting onto one printout page as chosen by the user. 

Compare this with hand-drawn AON diagrams, where the scheduler can arrange activities 
based on the CPM calculations such that e.g. activities that directly succeed each other in 
time and dependency are placed in succeeding grid columns, the critical path may be one 
central axis of activities around which auxiliary ones are grouped, and where the diagram 
displays the entire time and logic information with such graphical clarity that it is indeed a 
helpful visualization of the numerical CPM results. It is the purpose of this paper to provide 
an account of such best practices and to capture the graphical intuition of professional 
schedulers in a simple algorithms that assists with creating quality schedule diagrams. The 
following section gives graphics design guidelines to be considered when drawing a schedule 
diagram with its time and logic elements and annotations. 

FONT AND COLOR IN SCHEDULE DIAGRAMS 
Serif type fonts, e.g. Times New Roman, generally are more legible than sans-serif type 
fonts, e.g. Arial. Mixed capital and lower case letters are easier to read than all capitals or all 
lower case text. The reason for this lies in the former ones having more distinctive 
characteristics for the human eye than the latter ones. Common use in business applications 
has established the 12-point font size as the standard size and it is strongly recommended to 
not use any fonts smaller than 8-point in printed matters. It depends on the actual use and 
printout size of a schedule diagram which font sizes are appropriate, whether being e.g. for a 
folded letter-size printout that is part of a submittal or e.g. for a wall-sized chart on which the 
planning team places note stickers to develop an optimum sequence and resource allocations. 
While it is common practice to abbreviate activity descriptions in scheduling software 
applications, the shortened names should still be sufficiently long to be self-explanatory to a 
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user unfamiliar with the project without requiring the use of a legend. On the other hand, 
annotations in the body of the diagram or in the activity list should remain short and 
unobtrusive enough to not distract from the main information of the schedule – time and 
logic – in its graphical form. 

Color can enhance schedules to mark important activities or logic links. Its most common 
application is to highlight the critical path in red and to distinguish different types of 
activities or the resources that they require. Whichever its use, conscious choice of a color 
scheme will contribute to creating schedules that quickly and easily provide their user with 
rich information. Color itself has the aspects of hue (color), saturation (intensity), and value 
(darkness). Tufte (1989 and 2001), discussing maps, recommends using color schemes 
derived from nature, i.e. shades of pastel tones rather than glaring neon colors that drown any 
non-highlighted pieces of information in their vicinity. Contrasting or dark colors, possibly 
combined with negative fonts (light letters on dark background), are often found in the 
calendar bar of scheduling software applications. They distract the eye from the body of the 
diagram and its actual information-loaded elements unless used with care and restraint. 

SPACE AND SYMBOLS IN SCHEDULE DIAGRAMS 
One of the most important considerations for any diagram is how much of its space is 
dedicated to actual information. Since schedules have to communicate two basic types of 
information, time and logic, the scheduler needs to decide how much of the available 
diagram area is allocated to each one of them. Lucko (2005) has shown that for a typical 
software-generated AON diagram there exists a discrepancy by one order of magnitude 
between showing time and logic. In other words, the area dedicated to the time information 
(containing an identifier, the duration, and the early and late start and finish dates) is 10 times 
the area dedicated to the logic information (linking predecessors with successors). 

At the same time, space should not be wasted in a schedule diagram. Tufte’s (2001) data 
density, defined as the “number of entries in data matrix” divided by “area of data graphic” 
should be maximized so that much information is communicated in the given diagram area. 
To avoid clutter and focusing too much on activities and too little on the arrows that connect 
them, this author recommends that the data density be chosen approximately equal for time 
and logic, i.e. the overall area is balanced between them. The scheduler should particularly 
ensure that sufficient space is available to funnel the arrows between the activities. It is 
further recommended that only essential information be provided in the body of the diagram. 
Extra lines or borders in the activity rectangles can be omitted if the layout of the information 
itself is intuitive. The duration is placed horizontally between the early and late start and 
finish dates to represent their difference when read from the left to the right. The total float is 
placed vertically between the early and the late dates to represent their difference when read 
from the top to the bottom. Tufte’s (2001, p96 and p162) data-ink ratio, defined as the ink 
used to display the data divided by the “total ink used to print the graphic” should be 
maximized for the schedule diagram. In other words, any superfluous lines and extra 
decorations of the kind that he has elaborately termed chartjunk should be avoided so that 
they do not distract from the key message. 

Arrows are used to display start-to-start, start-to-finish, finish-to-start, and finish-to-finish 
relationships between activities. Intermediate stages are possible when the percentage of 
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completion is displayed along the width of an activity rectangle. An arrow originating at the 
half width of an activity thus means that 50% completion has to be achieved for the successor 
activity to be able to start. Arrows should follow a clear path and pattern through the 
schedule diagram that is as short and as straight as possible, should have the same angle at 
bends, and should be drawn equidistantly when several arrows run parallel. They should 
connect predecessor and successor activities as directly as possible while being visible along 
their entire path and without interfering with each other or with activities. 

Choosing a good format and arrangement for numeric and textual information, giving 
sufficient space to both time and logic information, providing a good legend, and keeping the 
symbols used for activities and arrows simple should already result in easily accessible 
schedule diagrams. An arrangement of activities and logic links that further improves the 
diagram is provided by using the arranging algorithm described in the following section. The 
algorithm has been derived from observing the nature and sequence of steps taken by a 
trained human scheduler who is asked to prepare a clear diagram with paper and pencil. 

ARRANGING ALGORITHM 
Activities and arrows are situated on an invisible grid. The grid allows activities to be 
arranged in rows and columns. Arrows usually connect the finishes and starts of subsequent 
activities, i.e. their right and left edges. While activities can theoretically be placed onto any 
free grid location it is highly desirable that activities that come later in time are found further 
on the right. Through this relative positioning of activities the AON diagram receives some 
time direction but will not become truly time-scaled along its horizontal axis. 

Three arrangements are possible for the activities in such AON diagrams. In the 
“stepped-down” form the overall project start lies in the top left corner of the diagram and the 
activities are generally arranged around a diagonal until they reach the overall project finish 
in the bottom right corner. In the “full tree” form the overall project start and finish both lie 
on a horizontal line at approximately the middle of the list axis and other activities are drawn 
both above and below this spine to resemble a tree lying on its side. The spine is composed 
entirely of the activities of the critical path. In a “half tree” form the spine is situated 
horizontally along the top (or bottom) of the diagram and all non-critical activities are drawn 
below (or above) it. Note that the differences between these arrangements are entirely 
determined by the rows in which activities are placed, while their columns remain the same. 
Comparing “full tree” and “half tree” diagrams of the same schedule network shows that the 
former ones are less congested and less prone to having a large number of crossing arrows 
than the latter ones. 

To create a schedule diagram based on the results from the CPM calculations it is first 
necessary to determine the column in the grid to which each activity should be assigned. For 
each activity its column number is calculated using Equation 1: 

Cj = 1 + maximum P1 to i Equation 1 

where Ci is the column number of activity j, P is the number of activities comprising a 
single piece of path reaching through the schedule from including activity 1 to including 
activity i, and activity i is a direct predecessor to activity j. Equation 1 is equivalent to 
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determining the sequence steps used in the resource leveling procedure that Callahan et al. 
(1992) describe without deriving the formula of Equation 1. 

A crossing shall be defined as any single intersection between two arrows or between an 
arrow and an activity. Purchase (2002) provides the formula for the number of actual 
crossings created by k intersecting arrows as ½ ⋅ k ⋅ (k - 1). Under this definition three arrows 
intersecting in the same point do not create only one crossing but three, which becomes 
apparent when the three arrows are slightly pulled apart towards a triangle. While any 
crossings are undesirable, crossings of more than two arrows in the same point should 
specifically be avoided because of their larger potential for confusion. 

A bend along the length of an arrow shall be defined as any two consecutive segments 
that are at an angle with each other that is not equal to 180 degrees. Common angles found in 
bent logic links are 45º and 90º. It is recommended to use a layout convention that clearly 
determines whether an arrow originating from an activity shall run above or below activities 
that are located in the same row in columns to its right, when the arrow will run vertically 
from its originating row to its target row, and that arrows running parallel horizontally should 
be stacked according to their target rows. 

The following arranging algorithm has been designed to be applied to “full tree” AON 
diagrams that this author recommends over “half tree” diagrams. The arranging algorithm is 
written in intuitive pseudo-code so that it can be easily understood and manually applied by 
schedulers who wish to create non-entangled schedule diagrams and so that it can also be 
quickly transferred into a computer programming language. Under research carried out by 
this author at The Catholic University of America it is planned to develop a software module 
that will perform optimizations of schedule network arrangement as an add-on to an existing 
scheduling software package. 
 
Step 0: Apply schedule diagram layout convention. 
Step 1: Perform the CPM calculations to obtain the early start, early finish, late start, and late 

finish dates, and the total float and free float to determine the activities of the critical 
path. 

Step 2: For all activities calculate the column number as per Equation 1 based on their 
number of predecessors. 

Step 3: Sort all activities by early start date in ascending order. 
If two or more activities have the same early start date then sort these activities by their 
number of direct successors in ascending order; 
Else if two or more activities have the same number of direct successors then sort these 
activities by their duration in ascending order; 
Else if two or more activities have the same duration then sort these activities 
alphabetically by their name in ascending order. 

Step 4: Beginning with the first column on the left of the diagram, draw into it all activities 
with this column number, filling the grid positions vertically from top to bottom in the 
order established in Step 3. Connect each activity with all of its predecessors following 
the layout conventions for arrows. 

Step 5: Go to the next highest column number and repeat the procedure of Step 4 until all 
columns have been filled with their respective activities. 
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Step 6: Beginning with the second column on the left of the diagram, move each column with 
its activities vertically up or down until its activities on the critical path align horizontally 
in the same row (called the spine) as its neighbors in the columns on the left and right. 
[Note that this only stretches arrows but does not affect the number of crossings.] 

Step 7: Count the total number of crossings. 
Step 8: For each activity that is not part of the critical path generate its partial successor path 

in the order established in Step 3, ignoring activities on the critical path themselves. The 
partial successor path is written such that for each column all interconnected activities are 
listed with their name separated by commas. From the list of all possible partial successor 
paths, identify any non-overlapping paths that are mutually exclusive with respect to the 
activities that they contain. For each partial successor path in ascending order by the 
number of columns across which they stretch, check if moving that path to the other side 
of the spine reduced the total number of crossings; 

If the number of crossings is reduced then keep the move and update the total number 
of crossings; 
Else do not keep the move. 

Step 9: For each activity in the order established in Step 3, count its numbers of direct 
predecessors and direct successors on the same side of the spine (DPSS and DSSS) and 
its numbers of direct predecessors and direct successors on the different side of the spine 
(DPDS and DSDS) to achieve a balanced distribution, not counting activities on the 
critical path themselves. 
If the balance B equal to (DPDS+DSDS) - (DPSS+DSSS) ≥ 0 then check if moving that 
activity vertically in the same column to the other side of the spine reduces the total 
number of crossings; 

If the number of crossings is reduced then keep the move and update the total number 
of crossings; 
Else do not keep the move; 

Else go to the next activity. 

APPLICATION EXAMPLE 

A sample schedule with 15 activities is used to demonstrate how to apply the algorithm. 
Table 1 contains an activity list with durations and successors of each activity, the results 
from the CPM calculations, and the column allocation as per Equation 1. Figure 1 show the 
schedule network diagram after the activities have been placed initially into their columns at 
the end of Step 7 in the algorithm. A total number of crossings of 24 is counted. 

In Step 8 of the algorithm the new concept of partial successor paths is used to identify 
not only individual activities that could be shifted to the other side of the spine for a potential 
reduction in the total number of crossings, but a group of closely connected activities. For the 
sample schedule the partial successor paths are identified as -*A-_-D,J-_-* and *-E-G-_-
H,K-M-*, where an asterisk denotes the beginning and end of the path that ties back to the 
critical path. The partial path including activities A, D, and J contains three activities and is 
non-overlapping with the partial path containing the five activities, E, G, H, K, and M. It is 
found that shifting the former to the other side does reduce the number of crossings. 
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Table 1: Schedule Activity List with CPM Calculation Results 

Activity Dur. Succ. ES LS EF LF TF FF Col. 
Mob. 7…A, B, E 0 0 7 7 0 0 1 

A 19… D, I, J 7 13 26 32 6 0 2 
B 10… C 7 7 17 17 0 0 2 
C 6…D, F, J 17 17 23 23 0 0 3 
D 18… L 26 33 44 51 7 7 4 
E 15… F, G 7 8 22 23 1 0 2 
F 17…H, I, K 23 23 40 40 0 0 4 
G 16…H, I, K 22 24 38 40 2 2 3 
H 6… M 40 53 46 59 13 0 5 
I 11… L 40 40 51 51 0 0 5 
J 19… L 26 32 45 51 6 6 4 
K 15… T/O 40 54 55 69 14 14 5 
L 18… T/O 51 51 69 69 0 0 6 
M 10… T/O 46 59 56 69 13 13 6 

T/O 3… N/A 69 69 72 72 0 0 7 
Note: Boldface activities are on the critical path. 
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Figure 1: Initial Schedule Network Diagram 

In Step 9 an additional refinement is introduced by examining the balance in the number 
of activities on both sides. In Figure 1 there are two and six activities, respectively, indicating 
that examining moving activities may be beneficial in reducing the number of crossings. 
Note that this indirect approach is based on the assumption that activities on average have 
similar numbers of predecessors and successors. Table 2 contains the measures of schedule 
balance for two iterations of Step 9 that marked in boldface indicate that activities H and M 
should be examined for moving, which indeed reduces the total number of crossings. 
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Table 2: Schedule Balance 

Step 9 – Move H Step 9 – Move M  
DPDS DSDS DPSS DSSS B DPDS DSDS DPSS DSSS B 

A 0 0 0 2 -2 0 0 0 2 -2 
D 0 0 1 0 -1 0 0 1 0 -1 
E 0 0 0 1 -1 0 0 0 1 -1 
G 0 1 1 1 -1 0 1 1 1 -1 
H 1 0 0 1 -0 0 1 1 0 -0 
J 0 0 1 0 -1 0 0 1 0 -1 
K 0 0 1 0 -1 0 0 1 0 -1 
M 0 0 1 0 -1 1 0 0 0 -1 

Note: Do no count critical path activities for calculating the balance. 
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Figure 2: Improved Schedule Network Diagram 

Overall the procedure outlined here reduces the total number of crossings from 24 to nine 
crossings that, upon closer examination of Figure 2, could be reduced to six if the link from 
activity E to F would be routed differently and if a permutation between the location of 
activity K and H would be applied as a final refinement, which is planned to be included in a 
subsequent more powerful version of the arranging algorithm that will be developed under 
the ongoing research. 
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FUTURE RESEARCH AND CONCLUSIONS 

This working paper has presented an arranging algorithm for AON diagrams that assigns 
activities into specific columns in a grid in the schedule network diagram under consideration 
of the dependency structure and thereafter attempts to reduce the number of crossings among 
the logic links by strategically examining selected groups or individual activities for a 
potential move that would yield an improvement. To accomplish this, the new concepts of 
grid column allocation, partial successor path, and schedule diagram balance were introduced 
and used. At the same time, the paper has emphasized a number of graphics design issues 
that, if considered appropriately, will render a schedule diagram that is much clearer and 
readable than the average software-generated default printout. 

In attempting to create a workable initial version of the algorithm that can still be 
executed and checked manually it is possible that in some cases it will yield results that 
deviate slightly from the overall theoretical optimum in case of a complex dependency 
structure or large schedule networks with their exponentially growing number of possible 
permutations. Further research is necessary to develop a more powerful version of this 
algorithm that for such complex systems will capture the nature of the schedule network, 
generate the optimum column and row arrangement, route logic links, and address the 
number of crossings, bends, and length of arrows simultaneously. Such improved algorithms 
would fully disentangle schedule diagrams with adequate computational effort when 
implemented as an add-on module with a commercial scheduling software application. 
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