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ABSTRACT 

This paper presents an application for the development of stochastic models to predict the 

deterioration of infrastructure facilities. The main objective is to demonstrate the capabilities 

and limitations of two types of models, namely state-based and time-based models, which 

will guide decision makers in selecting the most appropriate model type according to 

management needs and data availability. Concrete bridge decks are selected for this 

application because they are considered one of the most deteriorating infrastructure 

components. Inventory and condition data required for developing the stochastic 

deterioration models are obtained from the database of the Ministére des Transports du 

Québec (MTQ). Markov-chain models, as an example of state-based models, and non-

parametric time-based models are developed for bridge decks when no maintenance actions 

are taken. Although this application demonstrates the development of stochastic deterioration 

models for concrete bridge decks, these models can be developed to predict the performance 

of other infrastructure facilities for network level analysis. 
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INTRODUCTION 

Infrastructure Management Systems (IMSs) have been developed to assist asset managers in 

maximizing the safety and serviceability of infrastructure facilities within the available 

budget by making cost-effective maintenance, rehabilitation, and replacement decisions 

(Hudson et al. 1997). The quality of these decisions depends significantly on the accuracy 

and efficiency of the deterioration models used to predict the time-dependent performance 

and remaining service life of infrastructure facilities (Madanat et al. 1997). A deterioration 

model is defined as a link between measures of facility condition that assess the extent and 
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severity of material damages, and vectors of explanatory variables that represent the factors 

affecting facility deterioration, such as age, material properties, applied loads, environmental 

conditions, etc. (Ben-Akiva and Gopinath 1995). Several deterministic and stochastic 

approaches have been developed to model infrastructure deterioration (Morcous et al. 2002). 

Deterministic approaches, such as straight-line extrapolation, S-shaped curves, and multiple 

regression, have the advantages of being simple to develop and easy to use. However, the 

existence of deterioration parameters that are not typically observed or measured, subjectivity 

and inaccuracy of infrastructure inspection, and stochastic nature of the deterioration process 

led to the wide spread of stochastic models. These models are able to capture the physical 

and inherent uncertainty, model uncertainty, and statistical uncertainty while predicting the 

future performance of infrastructure facilities (Lounis and Mirza 2001).     

Although the deterioration of infrastructure facilities is a continuous and gradual process 

that may span over several decades, discrete ratings or states are commonly used to represent 

facility conditions. This is because discrete rating systems simplify facility inspection, 

deterioration modeling, and maintenance optimization (Madanat and Wan Ibrahim 1995). 

Examples are: the discrete condition rating scale from 0 to 9 adopted by the Federal Highway 

Administration (FHWA) to evaluate the substructure, superstructure, and deck of highway 

bridges (FHWA 1995); and the condition rating scale introduced in 1995 within Pontis, the 

most popular bridge management system in US, using a 5-state scale to evaluate the 

condition of about 140 standardized bridge elements (Pontis 2005). 

Stochastic models used to predict the deterioration of infrastructure facilities can be 

grouped into two main categories: state-based models and time-based models (Mauch and 

Madanat 2001). State-based models predict the probability that a facility will have a change 

in its condition state during a fixed time interval and accumulate this probability over 

multiple intervals. Markov chain models and semi-Markov models are the most common 

example of state-based models. Time-based models predict the probability distribution of the 

time taken by an infrastructure facility to change its current condition state to the next lower 

condition state. Parametric, semi-parametric, and non-parametric models have been proposed 

to represent the probability distribution of the transition time.  

This paper demonstrates the development of state-based and time-based stochastic 

deterioration models for reinforced concrete (RC) bridge decks. RC decks were selected 

because they are one of the most deteriorated infrastructure components due to their direct 

exposure to traffic loads, environmental degradation factors, frequent freezing and thawing 

cycles, and using de-icing chemicals in winter. The first section presents the data used in 

model development. The second and third sections present, respectively, the development of 

Markov-chain models and non-parametric time-based models for RC decks. The last section 

discusses the capabilities and limitations of each category of stochastic models as well as 

recommendations for their applicability in IMSs. 

BRIDGE DECK DATA 

The condition data used in developing state-based and time-based stochastic deterioration 

models were obtained from the Ministére des Transports du Québec (MTQ) database, which 

is a part of a comprehensive system for managing 57 different types of highway structures in 

Québec, Canada. Reinforced concrete (RC) decks in beam bridges are selected for the model 
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development because beam bridges are considered the most dominant type of structures, 

since it represents about 60% of the 9678 provincially-owned highway structures. The 

condition data of RC decks represent the results of the detailed visual inspections carried out 

approximately every three years. These data comprise two condition ratings (MTQ 1995): (i) 

Material condition rating (MCR), which represents the condition of a deck based on the 

severity and extent of observed defects, and (ii) Performance condition rating (PCR), which 

describes the condition of a deck based on its ability to perform the intended function in the 

structure. Both the MCR and PCR are represented in an ordinal rating scale that ranges from 

1 to 6, where 6 represents the condition of a new and undamaged deck. Because MCR is the 

governing parameter in most of MTQ maintenance decisions, deterioration models will be 

developed for MCR only. Figure 1 shows how the MCR of any element is determined given 

the type of element (i.e., primary, secondary, or auxiliary), percentage of the material defects 

in the element cross-section, surface area, or length, and the severity of these defects (i.e. 

very low, low, medium, severe, and very severe).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To obtain a consistent, complete, and adequate data set for the development of stochastic 

models, the MTQ databases of years 1997, 1998, 1999, and 2000 were accumulated into one 

database, which contain inspection records since 1993. This database was screened by 

filtering out duplicate records and the records with incomplete inspection data (i.e. missing 

inspection date, or MCR), which resulted in 9181 RC decks (i.e. decks of different spans are 

considered separately). Each deck consists of seven elements that are evaluated in every 

inspection: wearing surface, drainage system, two exterior faces, two end portions, and the 

middle portion. The overall condition of the bridge deck (MCR) is calculated as the 

aggregation of the MCRs of the seven elements using the balancing factors defined by bridge 

experts in the MTQ bridge management system (MTQ 1997). RC decks with AC overlay as a 

wearing surface are selected because they represent 93% of the RC decks in Québec. Other 

Figure 1: Material condition rating system used by MTQ (MTQ 1995) 
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deterioration parameters that affect the performance of RC decks, such as climatic region, 

highway class, average daily traffic, and percentage of trucks, were overlooked in this study 

to simplify the development of state-based/time-based stochastic deterioration models. For 

more information on the effect of these parameters, please refer to Morcous et al. (2003). 

STATE-BASED STOCHASTIC DETERIORATION MODELS 

State-based models are those used to predict and accumulate the probability of transition 

from one condition state to another over multiple discrete time intervals (Bogdanoff 1978). 

These models (sometimes called Markovian cumulative damage models) predict the 

performance of a network, facility, or component in terms of discrete condition rating using 

transition probability matrices (TPMs). A TPM (P) of order (n x n), where (n) is the number 

of condition ratings, consists of transition probabilities for all possible condition changes 

over a specific time period given the values of governing deterioration parameters and 

maintenance actions taken. For the “do-nothing” maintenance action and a short transition 

period (i.e. one or two years), the elements of a TPM can be assumed to be zeros except for 

the diagonal line and the line above it., which means that the facility condition will either 

remain unchanged or drop at most one point in the rating scale. Using the MTQ condition 

rating system, bridge decks with initial condition vector P(0) will have a future condition 

vector P(t) after (t) number of transition periods calculated as follows (Collins 1972): 

 

P(t) = P(0) * P 
t
     (1) 

p 66 1 - p 66 0 0 0 0

0 p 55 1 - p 55 0 0 0

where,     P = 0 0 p 44 1 - p 44 0 0

0 0 0 p 33 1 - p 33 0

0 0 0 0 p 22 1 - p 22

0 0 0 0 0 1
 

 

Conventional first-order Markov-chain models use constant transition probabilities assuming 

that the future condition of a facility depends only on its initial condition and not on the past 

condition (i.e. state independence assumption) or even the time elapsed in the initial 

condition (i.e. stationary process) for simplicity purposes. More realistic models have been 

developed to account for the effect of the time spent in the initial condition on transition 

probabilities (i.e. semi-Markov or non-stationary process) and to release the state 

independence assumption by accounting for the past condition among other explanatory 

variables (DeStefano and Grivas 1998; Madanat, et al. 1997).  Also, several methods have 

been adopted to estimate transition probabilities, such as percentage prediction method, 

expected-value method, Poisson regression, negative binomial regression, ordered probit 

model, and random-effects model (Mauch and Madanat 2001). 
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Stationary Markov-chain models are developed as an application example of state-based 

stochastic deterioration models using the expected-value method. In this method, the bridge 

deck data are plotted on a two dimensional chart, where the horizontal axis represents the age 

in years, and the vertical axis represents the MCR. The regression model Y(t) that best fits the 

data points is obtained as shown in Figure 2. 

 

 

  
Transition probabilities are then estimated by solving the non-linear optimization problem 

that minimizes the sum of absolute differences between the regression model Y(t) and the 

expected value E(t) predicted using the Markov-chain model as the product of the condition 

vector P(t) and the vector of condition states (Madanat et al. 1995). The objective function 

and the constraints of this optimization problem can be formulated as follows: 

       

                   (2)

       

 

 

 

 

By solving the above optimization problem, the elements of the one-year TPM shown in Equ. 

(1) are estimated. This matrix is then raised to the power three to calculate a three-year 

period TPM as shown below to be used in the condition prediction of MTQ bridge decks. 

 
             

(3) 

Figure 2: The regression model that best fits bridge deck data 
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IME-BASED STOCHASTIC DETERIORATION MODELS 

Time-based models (sometimes called duration models) are those used to predict probability 

distributions of facility transition times given the values of governing deterioration 

parameters, such as design and construction attributes, environmental and operation 

conditions, and maintenance practice. Transition time is defined as the time needed for a 

facility to change from an initial condition state to the next lower state in the condition rating 

scale. The length of the transition time varies significantly from one facility to another due to 

inherent stochastic nature of the deterioration process and the existence of unobserved/ 

unmeasured explanatory variables. State transition events recorded in the IMS database are 

used to perform the life data analysis required to study facility deterioration characteristics 

and develop cumulative distribution functions of transition time for different condition states.  

Examples of time-based deterioration models developed using life data analysis are the 

model developed for deck system using New York State Thruway Authority database 

(DeStefano and Grivas 1998), and that developed for bridge decks using Indiana Bridge 

Inventory database (Mauch and Madanat 2001). 

The information required for developing time-based stochastic models consists of 

condition state transition events and the corresponding time data, which will be obtained 

from the MTQ database. Condition state transition events are identified using sequential 

changes in MCR of RC decks. Actual time of these changes cannot be easily identified 

because visual inspections are performed only every three years, in addition, the condition 

data available to the authors cover only the period from 1993 to 2000. Therefore, adequate 

sequential condition data can be obtained for only the most common condition states (state 5 

and state 4), and their related time data are considered “multiply censored”. Censored data 

means that the observed event (state transition in this study) does not take place during the 

observation period, however, it is known that the event takes place after a specific time (right 

censored), before specific time (left censored), or both (interval censored) (Nelson 1982). If 

this specific time is constant for all data records, it is referred to as “singly censored”, 

otherwise it is referred to as “multiply censored”, which is the case of MTQ data.  

Life data analysis of the multiply censored data is performed using Kaplan and Meier 

methods to estimate non-parametric survival and hazard function of RC bridge decks. The 

survival function S(t), sometimes called reliability function R(t), represents the probability 

that a bridge deck remains in its condition state for at least time (t). This function can be 

expressed as follows: 

∫−=−=
t

dttftFtS
0

)(1)(1)(                                                  (4) 

where t is the random variable that represents the transition time (sometimes referred to as 

time-in-state), f(t) is the probability density function of the transition time (t), and F(t) is the 

corresponding cumulative distribution function. The hazard function h(t) represents the 

instantaneous risk that a bridge deck will change its condition state to the next lower 

condition state at time t. This function can be expressed as follows: 
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Survival and hazard functions developed in this study are considered non-parametric because 

they do not relate the random variable to any deterioration parameters. Figures 3 and 4 show 

the survival and hazard functions developed for time-in-state 5 and 4 using the MCR data of 

RC bridge decks in Quebec. These data contain the sequential condition states (past i, current 

j, and future k) needed to define transition events. Table 1 lists the different possible 

condition sequences for a given current condition state j and the corresponding method used 

to calculate the time-in-state (Tj). It should be noted that if the transition event is observed 

between two consecutive condition states, the transition event is assumed to occur at the 

middle of the inspection period for simplicity. The data type in this case only is considered 

complete (not censored), which represents 15% of the data used for estimating time-in-state 5 

and 20% of the data used to estimate time-in-state 4. The high percentage of multiply 

censored data (i.e. 85% and 80%) justifies the development of non-parametric models and 

the use of Kaplan-Meier Method (DeStefano and Grivas 1998).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Survival and hazard functions for time-in-state 5 
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Table 1: Sequential condition states and the corresponding time-in-state 

Time-in-state

i j k Tj

j+1 j j-1 D ij  / 2 + D jk  / 2 Complete

j+1 j j D ij  / 2 + D jk Censored

j j j-1 D ij  + D jk  / 2 Censored

j j j D ij  + D jk Censored

Condition States
Data Type
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DISCUSSION 
 

The state-based models and time-based models developed using the same data set, as 

presented in the previous section, are highly related (Mauch and Madanat 2001). The 

information obtained from a state-based model can be used to develop/validate the 

corresponding time-based model and vise versa. For example, if the probability distribution 

of the time-in-state is known, the transition probability from one condition state to another 

can be easily estimated for a given transition period. Also, if several transition probabilities 

between two specific condition states are available for different transition periods, the 

probability density function of the transition time can be estimated. These relationships can 

be verified by finding the probabilities from Figures 3 and 4 that correspond to a time-in-

state equals to the transition period of the developed state-based model (indicated by dotted 

lines). These probabilities were found to be approximately 96% and 88%, which are almost 

similar to the elements (p55) and (p44) in the transition probability matrix shown in Equ. (3), 

respectively. In addition, the time-based models can be used to release the stationary process 

assumption of the conventional Markov-chain models by estimating the transition 

probabilities as functions of the time elapsed in the initial condition. It should also be noted 

that the decision of which type of models is more appropriate for deterioration prediction is 

highly dependent on the nature of the available condition data (Mishalani and Madanat 

2002). Frequent inspections over a long observation period are required for developing time-

based models, while infrequent inspection over a relatively short observation period can be 

used for developing state-based models. 

Figure 4: Survival and hazard functions for time-in-state 4 
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SUMMARY 

This paper demonstrated the development of two different types of stochastic models for 

predicting the deterioration of concrete bridge decks. A Stationary Markov-chain model was 

developed as an example of state-based stochastic models. Bridge deck data, such as age and 

material condition rating (MCR), were obtained from the Ministére des Transports du 

Québec database. The expected-value method was used to generate transition probability 

matrix for the “do-nothing” maintenance action. Life data analysis was used to estimate non-

parametric survival and hazard functions required for developing time-based stochastic 

models. Kaplan-Meier method was adopted for this analysis because of the high percentage 

of multiply censored records in the available condition data. The probability distributions of 

time-in-state 5 and 4 were calculated using the developed functions. This application 

demonstrated the relationship between the two different types of stochastic models and the 

level of detail that can be obtained when each types is adopted. The decision of which type of 

models should be used in an IMS is highly dependent on the data availability and the degree 

of accuracy required by decision makers for network-level analysis.   
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