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ABSTRACT 
Optimal choices for new bridge designs and existing bridge maintenance strategies 
necessitate understanding how bridge attributes and their interactions affect the performance 
of bridges in different environments.  Analysis of a bridge inventory database will make it 
possible to recognize patterns of performance and how these patterns relate to different 
bridge attributes.  One major challenge in performing this analysis is to determine a set of 
bridge performance features with minimum uncertainties and consistent records in the 
database. This paper describes the analytical investigations performed in searching for bridge 
performance features and their patterns as observed from the bridge inventory database of the 
State of New Mexico, USA. The use of hierarchical clustering made it possible to classify the 
data while also creating a rule-base scheme to come to findings.  This analysis showed 
certain material structural types to be prevalent in high or low performing groups.   
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INTRODUCTION  
Management of infrastructure is a complex and multi-criteria based problem. Worldwide 

reports are reporting on an upcoming wave of limited infrastructure efficiency and limited 
available resources. Moreover, infrastructure systems have to surpass their design service 
lives and performance expectations (Flintsch and Chen 2004).  As such, there is an increasing 
need to employ means of artificial intelligence for modeling such complex information 
environments. Therefore, there is an increasing need for developing a comprehensive 
strategy for efficient infrastructure maintenance and for efficient decision-making. 
Meanwhile, many researchers demonstrated the value in using of soft-computing methods to 
handle data mining and inference for infrastructure management (Hsieh and Liu 2004, 
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Flintsch and Chen 2004, Romão et al. 2004).  The advantage of soft computating methods 
over classical methods is their ability to effectively address issues in data mining and such as 
imprecision, uncertainty of subjective values and in being capable of establishing 
sophisticated inference rule-bases that handle large number of data sets.   

Different types of soft computing methods have been used in the literature to deal with 
the above issues in infrastructure management research.  Such methods included artificial 
neural networks (ANN), fuzzy logic (FL) and genetic algorithms (GA), for example, were 
used effectively to recognize data patterns and detect relationships between bridge condition 
rating data and bridge parameters (Cattan and Muhammadi 1997).  ANN were capable of 
predicting the subjective ratings based on given bridge parameters.  A major drawback with 
ANN is its functionality as a “black box” and therefore is not useful for system inference. 
Fuzzy logic and fuzzy set theory were applied to numerous infrastructure research projects 
but has been predominant in pavement infrastructure research (Wang and Liu 1997).  In 
particular, membership functions were used due to their ability to deal with subjectivity and 
partial truth.  The use of fuzzy sets allowed incorporating subjective descriptors such as 
“poor”, “good”, and “excellent” (Elton and Juang 1988). Fuzzy systems were used to create a 
universal pavement distress evaluator (Shoukry et al. 1997) and a comprehensive index for 
flexible pavements (Zhang et al. 1993). Finally, in a slightly different approach, fuzzy 
systems were used to help interpreting image processing techniques for pavement distress 
evaluation (Chou et al. 1995). 

The objective of this research was to establish an intelligent rule-base that can classify 
and pattern bridges based on their structural performance and identify what characteristics 
most dictate their level of performance.  A case study using the New Mexico bridge 
inventory database is demonstrated.  The subjectivity of existing performance parameters and 
indicators and the high dimensionality of the database made this research further challenging. 
We employed fuzzy set theory to establish a comprehensive structural performance index.  
We then demonstrate the possible use of statistical methods and hierarchical clustering 
methods to identify bridge performance patterns. The rest of the paper is structured as 
follows. First we describe the methods used to establish a sensitive performance index and 
the methods used for extracting the bridge performance patterns. We then demonstrate the 
bridge performance patterns identified.  We provide representative findings and discuss how 
these findings can be used in future decision-making to improve overall bridge performance. 

METHODS  

Here we present the hierarchical clustering technique employed to identify the bridge 
performance patterns.  We start by discussing some of the fundamental processes that were 
necessary prior to clustering the datasets.  

DATA PRE-PROCESSING 
The New Mexico National Bridge Inventory (NBI) database includes data describing 

approximately 4,000 bridges and culverts in New Mexico.  Each bridge or culvert is 
described using 132 different parameters/attributes in addition to performance indices. 
Exemplar bridge attributes include bridge identification values, average daily traffic, detour 
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length, structure kind, structure type, clearance measurements, structure length and many 
more. Data preprocessing was essential to enable computational development.  The pre-
processing of the data incorporated removing un-coded parameters, conversion of non-
numeric data to numerical values, and data normalization.  The normalization process 
reformatted the data to range between 0 and 1 to prevent parameter distortion that can result 
from numerical weights (Sutton and Reggia 1994).  

PARAMETER CLASSIFICATION 
The second step was to classify all bridge attributes to a few intuitive parametric 

categories that might help in understanding the complex relationship that relate all these 
parameters to bridge performance. Five parametric categories are identified:  
1) Bridge Parameters: This category includes all physical attributes of the bridge such as 
geometry, materials and other characteristics used which may affect the bridge performance. 
2) Loading Parameters: This category includes all parameters describing the nature, type, 
and intensity of loading on the bridge. Such parameters include Average Daily Traffic (ADT) 
and percentage of Trucks in Average Daily Traffic. 
3) Identification Parameters: This category includes all parameters used to index the bridge 
by number or location. These parameters are very important for the database operation but 
might have less significance on the bridge performance.  
4) Indirect Parameters: This category includes miscellaneous parameters that might have 
indirect effect on the bridge performance. Such parameters include relative humidity 
exposure from nearby waterways, bridge elevations (weather patterns), and other issues that 
do not directly relate with bridge characteristics or loading, but might have an affect on the 
bridge performance. 

 
Figure 1: Schematic representation of parameter categories and bridge knowledge rule-base. 

 
5) Performance Parameters: We consider this category of parameters that represents the 
bridge performance or in modeling terms what is known as the knowledge rule-base that 
relates all bridge attributes to bridge performance. The performance parameters category 
includes all condition ratings of bridge deck, super and sub structures, appraisal rating and 
sufficiency rating as well. Condition ratings are defined by the US Federal Highway 
Administration (FHWA) (1995). Figure 1 illustrates the proposed relationship between the 
five parametric categories.   
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ESTABLISHING A NEW PERFORMANCE INDEX 
It is evident that the system shown in Figure 1 cannot be established unless a 

comprehensive performance metric that can accurately represent the bridge performance 
exists. While the FHWA uses the sufficiency rating (SR) for decision making, the SR does 
not accurately represent structural performance but represents a decision making index. This 
is because the SR does not only depend on structural performance, but on other parameters 
such as serviceability and functional obsolescence, level of importance and essentiality for 
public use. Therefore, SR might not be a good performance metric to understand the 
relationship between bridge performance and bridge attributes. Another alternative is to use 
the structural adequacy (SA), which is defined by FHWA (1995) as a satisfactory structural 
performance metric. However, the drawback of SA for being a structural performance metric 
is its lack of representation of bridge deck condition. It is well known that bridge deck 
conditions usually represent critical elements in bridge deck performance and therefore 
bridge deck conditions shall be included in any comprehensive metric for bridge 
performance.  

Therefore, we suggest developing a comprehensive performance index denoted (PI) and 
is designed to represent the combined effect of the structural adequacy, the bridge deck 
condition and the structural evaluation. The new performance index was developed using 
fuzzy-set theory to incorporate the uncertainty in the bridge evaluation process for its human 
dependence and to account for the vagueness and ambiguity in the definitions describing 
many of the modeling parameters. The new PI is modeled to integrate three parameters from 
the inventory database including the structural adequacy (SA), the deck condition rating, and 
the structural evaluation. A group of fuzzy sets were first defined over the modeling domains 
of these three parameters. A rule-base that relates the three modeling parameters to the 
proposed performance index (PI) was then established using Mamdani inference. A centroid 
defuzzification process was used thereafter to aggregate the output of the fuzzy rules.  

 

 
Figure 2: Comparison between SA and the new performance metric (PI) 

 
The new performance metric (PI) ranges between zero and 100 with zero indicating poor 
performance and 100 indicating excellent performance. Similar metrics have been developed 
in the area of infrastructure management for providing a meaningful solution to complex 
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modeling of pavement damage assessment (Shoukry et al, 1997). A pictorial comparison 
between the new performance metric and the structural adequacy for a few bridges from the 
database is shown in Figure 2. It is evident from Figure 2 that the fuzzy-based performance 
index agrees with the structural adequacy metric defined in the bridge inventory database. 

PRELIMINARY STATISTICAL ANALYSIS 
Once the comprehensive performance metric (PI) was established, a preliminary 

statistical analysis was performed to explore the database.  The statistical analysis was 
conducted on random datasets of the ten different material types, and the thirteen different 
structure types. Each random set of data was randomly selected using the bootstrapping 
technique that is based on Monte Carlo simulation (Martinez and Martinez 2002). 
Preliminary statistical analysis helped gaining insight into the composition of the database. 
The preliminary analysis was followed by performing hierarchical clustering, which serves as 
a multidimensional classification system to group similar datasets based on a multitude of 
attributes. The statistical analysis was performed on datasets considering two performance 
criteria: the structural adequacy (SA) and the fuzzy-based performance index (PI). To reveal 
deterioration rates for several material types, we studied the change in structural adequacy 
over time by quantifying the loss in structural adequacy (LSA) for different types of 
materials. LSA is defined as 
 

SASALSA max −=          (1) 
 
where SA is the structural adequacy defined by FHWA (1995) that has a maximum value 

of SAmax reported by FHWA (1995) to be 55 and LSA is the loss in structural adequacy. 
Based on Equation (1), LSA ranges between 0 and 55 with zero representing a very adequate 
bridge and 55 representing a very poor bridge.   

HIERARCHICAL CLUSTERING 
Clustering techniques are used for performance pattern recognition (Duda et al. 2001). As 

an unsupervised method, clustering can provide an efficient and computationally inexpensive 
technique for feature extraction with the advantage of being reversible for inference. 
Moreover, hierarchical clustering furthers this analysis by sub-clustering each cluster to 
create a tree-like structure that summarizes the hierarchy format.  This classification process 
not only classifies data in steps, but also creates a path that can be followed to establish a 
knowledge rule-base that describes the complex relationships between bridge attributes and 
bridge performance patterns. The objective of the hierarchical clustering was to find the 
commonalities between the different bridges. Common datasets were sub-clustered into sub-
sets with common attributes and so on. This allowed inferring which bridge attributes helped 
to enhance bridge performance and which attributes might have resulted in a reduced bridge 
performance. Thus the hierarchical clustering established a hierarchical tree structure that 
allowed establishing a knowledge rule-base that relates bridge attributes to bridge 
performance patterns. Figure 3, shows an example case of the hierarchical clustering to infer 
bridge performance patterns.  
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K-means clustering method was used to provide the main and sub clusters in each cycle 
of analysis. K-means clustering has the advantage of quick convergence and being 
computationally inexpensive (Duda et al. 2001). This method is also referred to as nearest 
neighborhood clustering. For a sample set of n data samples with m features such that 
 

{ }n4321 xx,x,x,xX L=         (2) 
 

{ }im4i3i2i1ii xx,x,x,xx L=         (3) 

 
Figure 3: Tree structure based on hierarchical clustering 

 
 The K-means technique creates k clusters such that 2 < k < n by minimizing an objective 

function J based on the Euclidean distance between the data samples xi in the cluster and 
clusters centers vj. The objective function is thus defined as 
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Where dij is the Euclidean distance measure of m dimensional feature space between the 
jth data sample xij and the ith cluster and χAi(xj) is a characteristic function deciding on the 
belonging of the data sample xj to the ith cluster Ai as 
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RESULTS AND DISCUSSION 
While both the statistical analysis and the hierarchal clustering were performed on datasets 
considering two performance criteria: the structural adequacy (SA) and the fuzzy-based 
performance index (PI), results considering SA are only shown here for space limitations.   
The preliminary statistical analysis showed that the rate of performance deteriorations is 
much dependent on the material type. Figure 4 shows an exemplar case for young bridges 
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(younger than 35 years of age). Figure 4 presents the observation that concrete bridges tend 
to have high performance (low LSA) and its performance is steady for long period of time 
while steel bridges tend to have performances lower than that of concrete (relatively high 
LSA) and tend to observe abrupt changes in performance.  It was usually observed that steel 
bridges seemed to start showing minor deficiency after 15-20 year of service life.  
 

 
[a] [b] 

Figure 4: Age versus loss in structural adequacy (LSA) for young bridges (younger than 
35 years of age) [a] concrete [b] steel. Legend identifies bridge numbers 

 

 
[a] 

 
[b] 

Figure 5: Age versus loss in structural adequacy (LSA) for old bridges (older than 35 
years of age) [a] concrete [b] steel. Legend identifies bridge numbers 

  
The previous observation is also evident for old bridges (35 years of age and older). 

Figure 5 shows the change in the LSA with age for old concrete and steel bridges. While only 
one deteriorating bridge can be observed in the concrete sample, a few deteriorating steel 
bridges can be observed. Similar observations were recorded during the analysis of most 
randomized datasets. Another interesting observation was the existence of 45 years of age 
mark for many concrete bridges where its deterioration rates start to increase. While Figures 
4 and 5 show good examples for the effect of age on deterioration rates, they also serve as 
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randomized samples to illustrate the effect of coding subjectivity in the database. Reverse 
slopes represent repair effects and subjective evaluation effects as well. While the 
information presented represents a general idea on bridge deterioration rates, they also prove 
the existence of a considerable level of uncertainty in the database records that might not be 
possible to handle using classical methods. An example of hierarchical clustering is 
presented in Figure 6. We demonstrate an example of the hierarchical path that can be 
followed to isolate bridge clusters with similar characteristics. This path allows establishing a 
knowledge rule-base that relates bridge performance indices to bridge attributes. The 
hierarchical path can be better understood with the aid of Figure 3 as cluster being divided 
into k sub-clusters in the m dimensional feature space. Figure 6 [a] presents the three major 
clusters that can be found in a set of bridges randomly selected from the inventory database. 
The major clustering feature here is age.  

 

 
[a] 

 
[b] 

 
[c] 

Figure 6: Hierarchical k-means clustering plots for a group of randomly selected bridges  
[a] Cluster C1, C2 and C3, [b] Sub-clusters C11, C12 and C13  

[c] Sub-clusters C111, C112 and C113   
 

The next step in the hierarchical process is to isolate cluster 1, denoted C1, which in this 
case represents old bridges with good performance (bridges older than 40 years of age and 
with high structural adequacy). The data samples in cluster 1 are then sub-clustered with 
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respect to the second feature space being the average daily traffic (ADT). Figure 6 [b] shows 
three new sub-clusters: C11, C12 and C13. By observing sub-cluster C11, this sub-cluster 
represents a group of bridges that are characterized by having a high structural adequacy, 
older than 40 years of age, and with low ADT. We go one step further and sub-cluster this 
group of bridges with respect to maximum span length. Figure 6 [c] shows three more 
clusters with the sub-cluster C111 representing bridges that are have high structural 
adequacy, older than 40 years of age, low ADT and short spans.  

Analysis of these clusters and sub-clusters can reveal the fundamental bridge 
characteristics that might have helped in such performance. For example, analysis of material 
type distributions within the major clusters and sub clusters can allow us to understand if 
specific types of materials dictated low or high performances of bridges. Figure 7 illustrates 
the material type distribution within cluster C1 and sub-cluster C111. It is evident that 
concrete and continuous concrete bridges represent the majority of bridges in the randomized 
set. This was found to be true for all randomized sets in the analysis. This fact is represented 
in the composition of cluster C1 (Figure 7[a]) with concrete bridge forming (52%) of the 
bridges in the random set. Observing the sub-cluster C111, concrete bridges 80% of this sub-
cluster. This means other types of materials have dropped from this cluster. Considering the 
fact that C111 represents relatively old bridges with high structural adequacy, low ADT and 
short span bridges, it becomes evident that concrete contributes to the structural performance 
of this class of bridges. The analysis was repeated for six times on randomized datasets to 
guarantee coming to general conclusions.  

 

 
[a] 

 
[b] 

Figure 7: Material type distribution [a] Cluster C1  [b] Sub-cluster C111 

CONCLUSIONS  
We demonstrated here the possible use of soft computing and clustering techniques to 

analyze a high dimensional bridge inventory database to reveal bridge performance patterns. 
A new comprehensive bridge performance index is developed and is capable of representing 
all the bridge performance criteria. K-means clustering was employed in a hierarchical 
scheme to identify the major bridge performance patterns and establish a tree-structure that 
allows building a knowledge rule-base that can relate the different bridge attributes to the 
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performance criteria and their patterns. We demonstrated an exemplar case showing the 
identification of bridge attributes and their relation to performance using the hierarchical 
clustering technique. The hierarchical clustering process was performed on six randomized 
sets for both the structural adequacy and the fuzzy-based performance index (PI). The 
investigations found that material and structural types have significant influences on bridge 
performance. While concrete bridges showed better performance than steel ones, multi-girder 
bridges typically showed poor performance especially with high average daily traffic.   
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