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ABSTRACT 
The dynamics of rework related transactions in construction projects become very 
complicated because of various influencing factors such as multiple stakeholder interactions 
and overlapping interfaces.  In order to understand the significance of rework based impacts 
on different performance related aspects in construction projects (e.g. cost overrun, time 
overrun, contractual claims), a pilot study was recently launched in Hong Kong. The 
knowledge-mining exercise aimed to consolidate the rework experiences from various 
recently completed construction projects, and this mainly included (i) a set of exploratory 
interviews and (ii) a questionnaire survey.  It was considered that artificial neural network 
modeling approaches can be developed for mapping rework related impacts on different 
aspects of project performance. Applications of advanced neural network architectures such 
as General Regression Neural Networks (GRNN) have been explored for modeling rework 
based cost overrun and contractual claims in construction projects. A consolidated summary 
of initial findings from the neural network modeling for rework related cost overrun and 
contractual claims is presented in this paper.  
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INTRODUCTION  
Construction projects are usually complicated for example, the needs to manage several 
intricate interfaces and segregated design and construction tasks. In poorly managed 
construction projects, rework could significantly impact on the time, cost and quality aspects. 
Rework transactions often arise from the unnecessary redoing/ rectifying efforts of 
incorrectly implemented processes or activities (Love, 2002). Earlier studies indicated that 
the costs of rework in poorly managed projects can be as high as 25% of contract value and 
10% of the total project costs (e.g. Barber et al, 2000, Love and Li, 2000). In the US, for 
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example, the Construction Industry Institute has estimated that the annual loss due to rework 
could be as high as US$ 15 billion for industrial construction projects (CII, 2001a). Rework 
is a significant contributor to time wastage and time/ schedule overruns (Kumaraswamy and 
Chan, 1998; CII, 2001b), which will eventually impact on costs (e.g. indirect costs such as 
overheads), resources and quality  as well (Love et al 2004). Rework also triggers claims for 
extra costs and time wasted in redoing or repairing, given that contractors for example, would 
seek compensation from those they may consider responsible, wherever possible. 

Artificial Neural Networks (ANNs) have high capacities to learn and model process 
behaviors using a set of relevant observed parameters. In general, ANNs are mainly used for 
prediction/ forecasting and classification problems. A multilayer perception type neural 
network trained with the back propagation algorithm (Rumelhart et al., 1986), which belongs 
to the category of error correction learning rules, is the most widely used network paradigm 
in prediction.  The increasing trend of neural network applications in various domains 
including construction industry is due to various inherent advantages such as (a) potentials 
for implicitly detecting simple linear relationships as well as complex nonlinear relationships 
between dependent and independent variables, (b) comprehensive mapping of almost all 
possible interactions between input variables used for predictions or classifications, and (c) 
rapid simulations and convenient interpretations from modeling complex relationships 
between observed parameters.  However, the disadvantages include over-fitting dangers and 
lack of credibility due to black box/ empirical nature of modeling. Different neural network 
architectures and wide-range of training algorithms are available.  This paper describes the 
application of two specific networks in particular, i.e. Back Propagation Neural Network 
(BPNN) and General Regression Neural Network (GRNN) for mapping the project 
performance parameters from a set of rework related data from recently completed 
construction projects in Hong Kong. 

OVERVIEW OF NEURAL NETWORK ARCHITECTURE  

BACK PROPAGATION NEURAL NETWORK (BPNN) 
The architecture of 3-layer Back Propagation Neural Network (BPNN) is shown in Figure 1.   

 

Figure 1: Architecture of standard Back Propagation Neural Networks 
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This popular form of BPNN has 3 layers such as one input layer, one hidden layer and one 
output layer. The training procedure in the BPNN architecture is mainly based on back 
propagation of errors using a supervised training mode.   In the traditional 3-layer BPNN, the 
input function performs a specific weighted summing, the activation function is mostly a 
sigmoid or logistic function and the output function is a linear function deriving from an 
activation function (Peretto, 1992, Haykin, 1994, Arbib, 2003). 

GENERAL REGRESSION NEURAL NETWORK (GRNN) 
The General Regression Neural Network (GRNN) is a kernel regression based feed-forward 
type of network using supervised training (Specht, 1991, Rutkowski, 2004). A basic 
architecture of GRNN is portrayed in Figure 2. According to this architecture, GRNN has 
different layers such as input layer, patter layer, summation layer and output layer.  Also, 
there are ‘j’ input nodes, ‘k’ pattern nodes, ‘m+1’ summation nodes and ‘m’ output nodes in 
the GRNN architecture.  For single output problems, the summation layer consists of one 
numerator node and one denominator node.  For every additional output unit, one numerator 
is included additionally, while the denominator remains the same. GRNN is capable of quick 
training, even with sparse data sets.  GRNN is a type of supervised network that can handle 
multidimensional inputs. The main advantages of GRNN include faster training times and 
capability to handle both linear and non-linear models. Unlike BPNN which requires training 
parameters such as learning rate and momentum, GRNN operates with a smoothing factor 
applied after the network is trained.   

 

Figure 2: Architecture of General Regression Neural Networks 

NEURAL NETWORK MODELS FOR PREDICTING PROJECT PERFORMANCE  

DATASETS FOR MODELING PROJECT PERFORMANCE FROM REWORK SYMPTOMS  
In this research, a triangulation approach is adopted. This mainly includes (i) knowledge 
networking with domain experts and experienced practitioners in the construction industry 
through exploratory correspondence and semi-structured interviews, (ii) targeted 
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questionnaire surveying, (iii) knowledge mining from relevant literature and forensic case-
studies on recently completed projects. The questionnaire used in this study was mainly 
derived from a recent Australia-based study (Love et al, 2004) and pilot tested in Hong Kong 
before distributing to the targeted respondents in the local construction industry.  The 
questionnaire included  a set of questions to be answered against a 5-point scale, for 87 
rework related variables and a cluster of questions regarding 18 other information sets such 
as time and cost related datasets, project parameters and respondent details. All the targeted 
respondents were asked to relate their responses to any one of the recently completed projects 
that they were involved with and they were encouraged to submit multiple responses if they 
have been involved in more projects recently.  In this neural network modeling, 112 such 
datasets were used (of which 75 were derived from building projects and 37 are from other 
civil engineering/ infrastructure projects).   
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Figure 3: A snapshot of multivariate statistical checkings 

The qualitative checking of validity and reliability were performed through meaningful 
questionnaire designs as well as careful data collection measures such as pilot testing, 
selecting appropriate experienced/ knowledgeable respondents and filtering. For example, 
there was a conscientious selection of the respondents. They were well-experienced persons 
from the Hong Kong construction industry, with a majority being senior executives and 
project managers (from several contractor organizations) who have more than 10 years 
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experience. In addition, some multivariate statistical tests were conducted for quantitative 
checking, e.g. item reliability through Croanbach’s Alpha (α) and outliner analysis through 
Mahalanobis distance measures. Figure 1 portrays a snapshot of some statistical checking. 

NEURAL NETWORKS FOR PREDICTING PROJECT PERFORMANCE FROM REWORK SYMPTOMS  

ANN 1: Predicting cost overrun from 15 cost attributes 
In this neural network model, the datasets regarding 15 cost attributes were used as inputs for 
predicting the cost overrun. Both inputs and output were gauged on a 5 point scale. The 
inputs include a set of design and construction related sources as follows:   

• 6 design-related sources such as (i) changes made at the request of the contractor 
during construction (DCS1), (ii) changes made at the request of the client (DCS2), 
(iii) changes initiated by an end-user/ regulatory bodies (DCS3), (iv) revisions/ 
modifications/ improvements of the design initiated by the contractor or 
subcontractor (DCS4), (v) errors made in the contract documentation (DCS5), and 
(vi) omissions of items from the contract documentation (DCS6) 

• 9 construction related sources such as (i) changes made to the method of construction 
to improve constructability (CONCS1), (ii) changes in construction methods due to 
site conditions (CONCS2), (iii) changes initiated by the client or an occupier after 
some work has been undertaken on-site (CONCS3), (iv) changes initiated by the 
client or an occupier when a product or process had been completed (CONCS4), (v) 
changes made during the manufacture of a product (CONCS5), (vi) changes initiated 
by a contractor to improve quality (CONCS6), (vii) errors due to inappropriate 
construction methods (CONCS7), (viii) omissions of some activity or task 
(CONCS8), and (ix) damages caused by a subcontractor (CONCS9). 
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Figure 4: A neural network model for predicting some project performance parameters 
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Figure 4 portrays a sample neural network model for predicting project performance 
parameters such as cost overrun, time overrun and contractual claims from 15 rework related 
cost attributes. A comparison of network results from BPNN and GRNN for the ‘ANN 1’ 
predictions is provided in Table 1.  The parameters used for comparing the network results 
are (i) coefficient of multiple determination (R squared), (ii) coefficient of determination (r 
squared), (iii) mean squared error (i.e. the mean of squares of the difference between actual 
and predicted values), (iv) mean absolute error (i.e. the mean of absolute values of ‘actual 
minus predicted’ for the corresponding data), (v) correlation coefficient (r), and (vi)  a set of 
actual versus predicted comparisons expressed in percent ranges (i.e. the percent of network 
predictions that are within the specified percentage of the actual values). 

Table 1: Comparison of results for ANN 1 

GRNN BPNN 
Buildings Civil Works Buildings Civil Works 

 

Training Testing Training Testing Training Testing Training Testing
R squared 0.8290 0.5592 0.9411 0.7375 0.1875 0.2294 0.8833 0.5566 
r squared 0.8308 0.5862 0.9435 0.8121 0.2186 0.2464 0.8893 0.8706 
Mean 
squared 
error 

0.265 0.972 0.081 0.429 1.351 0.808 0.161 0.284 

Mean 
absolute 
error 

0.205 0.621 0.081 0.429 0.982 0.688 0.260 0.454 

Correlation 
coefficient 

0.9115 0.7656 0.9713 0.9012 0.4676 0.4964 0.9430 0.9330 

Percent 
within 5% 

78.667 57.143 91.892 57.143 8.333 26.667 45.946 0 

Percent 
within 5% 
to 10% 

1.333 0 0 0 5.000 6.667 27.027 20.000 

Percent 
within 10% 
to 20% 

8.000 0 0 0 11.667 20.000 13.514 60.000 

Percent 
within 20% 
to 30% 

0 0 2.703 14.286 18.333 6.667 0 0 

Percent 
over 30% 

12.000 42.857 5.405 28.571 56.667 40.000 13.514 20.000 

Among the two groups (i.e. buildings and civil works), the genetic adaptive GRNN results 
are generally better than the BPNN outcomes. However, the BPNN results are basically 
better for the civil/ infrastructure category than the corresponding values of the buildings 
datasets.   

ANN 2: Predicting contractual claims from 15 cost attributes 

This neural network model is similar to the previous one (i.e. ANN 1) in which the same set 
of inputs were used for predicting contractual claims gauged on a 5 point scale. Similarly, a 
comparison of results is captured in Table 2.  

 

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 1398



Table 2: Comparison of results for ANN 2 

GRNN BPNN 
Buildings Civil Works Buildings Civil Works 

 

Training Testing Training Testing Training Testing Training Testing
R squared 0.8990 0.7359 0.9377 0.8359 0.2846 0.2829 0.7198 0.3378 
r squared 0.9005 0.7680 0.9408 0.9462 0.3394 0.3083 0.7319 0.9008 
Mean 
squared 
error 

0.104 0.333 0.066 0.289 0.694 0.905 0.516 0.441 

Mean 
absolute 
error 

0.093 0.203 0.072 0.333 0.698 0.783 0.654 0.613 

Correlation 
coefficient 

0.9490 0.8764 0.9700 0.9727 0.5826 0.5552 0.8555 0.9491 

Percent 
within 5% 

88.000 86.667 91.892 60.000 10.000 6.667 0 0 

Percent 
within 5% 
to 10% 

1.333 0 0 0 10.000 26.667 0 33.333 

Percent 
within 10% 
to 20% 

4.000 0 0 0 25.000 13.333 60.000 33.333 

Percent 
within 20% 
to 30% 

4.000 6.667 5.405 20.000 25.000 6.667 40.000 33.333 

Percent 
over 30% 

2.667 6.667 2.703 20.000 30.000 46.667 0 0 

The comparisons portrayed in Table 2 indicate some generic similarity between ‘ANN 1’ and 
‘ANN 2’ and the distributions are slightly different. 

ANN 3: Predicting cost overrun from 28 rework factors 
In this neural network model, the datasets regarding 28 rework factors were used as inputs 
for predicting cost overrun. The inputs include a set of client-related, design-related, site 
management-related and subcontractor-related factors as detailed below:   

• 6 client-related factors such as (i) lack of experience and knowledge of design and 
construction process (CR1), (ii) lack of funding allocated for site investigations 
(CR2), (iii) lack of client involvement in the project (CR3), (iv) inadequate time and 
money spent on the briefing process (CR4), (v) poor communication with design 
consultants (CR5), and (vi) payment of low fees for preparing contract 
documentation (CR6) 

• 10 design-related factors such as (i) ineffective use of quality management practices 
(DR1), (ii) ineffective use of information technologies (DR2), (iii) poor coordination 
between different design team members (DR3), (iv) time boxing/ fixed time for a 
task (DR4), (v) poor planning of workload (DR5), (vi) lack of manpower to complete 
the required tasks (DR6), (vii) staff turnover/ re-allocation to other projects (DR7), 
(viii) incomplete design at the time of tender (DR8), (ix) insufficient time to prepare 
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contract documentation (DR9), and (x) inadequate client brief to prepare detailed 
contract documentation (DR10) 

• 6 site management-related factors such as (i) ineffective use of quality management 
practices (SMR1), (ii) ineffective use of information technologies (SMR2), (iii) 
setting-out errors (SMR3), (iv) poor planning and coordination of resources (SMR4), 
(v) staff turnover/ re-allocation to other projects (SMR5), and (vi) failure to provide 
protection to construction works (SMR6) 

• 6 subcontractor-related factors such as (i) ineffective use of quality management 
practices (SCR1), (ii) damage to other trades work due to carelessness (SCR2), (iii) 
inadequate managerial and supervisory skills (SCR3), (iv) low labour skill level 
(SCR4), (v) use of poor quality materials (SCR5), (vi) multi-layered subcontracting 
(SCR6)  

A comparison of network results from BPNN and GRNN for the ‘ANN 3’ predictions is 
provided in Table 3.  Basically, the comparisons indicate a similar pattern as mentioned 
before. However, the network predictions from 15 cost attributes seems to be slightly better 
than using 28 rework factors in the BPNN modeling for buildings category.   

Table 3: Comparison of results for ANN 3 

GRNN BPNN 
Buildings Civil Works Buildings Civil Works 

 

Training Testing Training Testing Training Testing Training Testing
R squared 0.6732 0.4592 0.9208 0.9137 0.2103 0.1808 0.8594 0.8478 
r squared 0.6984 0.5311 0.9299 0.9241 0.3167 0.2403 0.8611 0.8969 
Mean 
squared 
error 

0.499 0.880 0.109 0.132 1.206 1.270 0.194 0.075 

Mean 
absolute 
error 

0.515 0.740 0.211 0.243 0.941 0.968 0.359 0.251 

Correlation 
coefficient 

0.8357 0.7288 0.9643 0.9613 0.5627 0.4902 0.9279 0.9471 

Percent 
within 5% 

16.667 13.333 62.162 60.000 5.000 4.000 13.514 14.286 

Percent 
within 5% 
to 10% 

18.333 6.667 10.811 6.667 3.333 4.000 45.946 71.429 

Percent 
within 10% 
to 20% 

33.333 20.000 10.811 13.333 21.667 20.000 18.919 14.286 

Percent 
within 20% 
to 30% 

5.000 20.000 5.405 6.667 23.333 22.667 13.514 0 

Percent 
over 30% 

26.667 40.000 10.811 13.333 46.667 49.333 8.108 0 
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ANN 4: Predicting contractual claims from 28 rework factors 

This neural network model is similar to the previous one (i.e. ANN 1) in which the same set 
of inputs were used for predicting contractual claims. Similarly, a comparison of results is 
captured in Table 4.  

Table 4: Comparison of results for ANN 4 

GRNN BPNN 
Buildings Civil Works Buildings Civil Works 

 

Training Testing Training Testing Training Testing Training Testing
R squared 0.8485 0.7440 0.9148 0.8974 0.1956 0.2146 0.9345 0.6515 
r squared 0.8847 0.7553 0.9189 0.9099 0.2410 0.2198 0.9362 0.7240 
Mean 
squared 
error 

0.202 0.265 0.090 0.109 0.893 0.572 0.069 0.502 

Mean 
absolute 
error 

0.218 0.191 0.173 0.214 0.760 0.646 0.186 0.635 

Correlation 
coefficient 

0.9406 0.8691 0.9586 0.9539 0.4909 0.4688 0.9676 0.8509 

Percent 
within 5% 

80.000 68.000 70.270 62.162 13.333 13.333 62.162 20.000 

Percent 
within 5% 
to 10% 

0 17.333 13.514 18.919 5.000 6.667 18.919 0 

Percent 
within 10% 
to 20% 

0 6.667 10.811 8.108 25.000 26.667 13.514 20.000 

Percent 
within 20% 
to 30% 

0 2.667 0 5.405 21.667 20.000 2.703 20.000 

Percent 
over 30% 

20.000 5.333 5.405 5.405 35.000 33.333 2.703 40.000 

In this model also, the GRNN found to respond much better than the BPNN for the building 
projects. 

DISCUSSIONS AND CONCLUSIONS 
The observations in this study indicated that the mapping of rework symptoms could be 
useful for developing some useful neural network based predicting/ forecasting constructs on 
project performance parameters such as cost overrun, time overrun, contractual claims and 
client satisfaction.   For brevity, only the most notable findings related to modeling of cost 
overrun and contractual claims are presented in this paper.   

Two types of neural network architecture (i.e. BPNN and GRNN) were used for 
modeling the outputs (i.e. cost overrun and contractual claims) from various rework 
symptoms and related cost attributes. Several trials were conducted with various 
combinations of network design parameters (e.g. hidden neurons, number of epochs/ 
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generations) to arrive at a set of best combinations of training and testing sets by carefully 
avoiding/ minimizing the over-fitting problems.  

Through comparison, it has been observed that the genetic adaptive form of GRNN is 
more suitable to analyze the rework symptoms and their impacts in construction projects.  
However, the number of datasets (used for training and testing) and characteristics of input 
parameters (i.e. cost attributes, rework factors), as well as the number of input parameters 
might have some influence on the network results.  Further research is being carried out to 
study the impacts of these parameters e.g. by conducting multivariate statistical constructs 
(such as factor analysis) and using other modeling approaches (e.g. regression analysis, 
genetic programming). In addition, some longitudinal studies for mapping the rework 
impacts on various performance and productivity aspects are also planned. 
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