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ABSTRACT 
Available construction optimization models are capable generating optimal trade-offs 

between construction time and cost, however their application is still limited due to their high 
computational time requirements. In order to overcome this limitation, the present paper 
presents the development of a robust multi-deme parallel computing model for optimizing 
large-scale construction projects. The model implements an advanced multi-objective genetic 
algorithm that is capable of generating optimal trade-offs between construction duration and 
cost. The model also implements a multi-deme parallel computing framework to enable the 
optimization of large-scale construction projects. In this framework a number of genetic 
algorithm populations, called demes, are evolved in isolation on a number of parallel 
processors. These demes exchange good solutions occasionally through the process of 
migration, in order to collaborate in finding optimal/near optimal solutions. The model is 
implemented using a cluster of 50 Intel Xeon processors, and a number of experiments are 
performed in order to evaluate its efficiency and effectiveness in optimizing a number of 
large-scale construction projects. The results of these experiments demonstrate that the 
present model is capable of significantly reducing the computational time requirements for 
optimizing large-scale projects, and maintaining the quality of the solutions obtained.  

KEY WORDS 
Optimization, Distributed computing, Decision making, Information technology, 
Construction. 

INTRODUCTION 
The vast number of new construction technologies that have emerged in the past two decades 
led to creation of many alternative methods for performing construction activities. These new 
methods and technologies reduce construction project durations but they often also increase 
project costs. Examples of such technologies include tilt-up and lift slab construction 
methods that allow project acceleration but at the same time lead to an increase in 
construction costs (Allen and Iano 2004). A major challenge that faces construction planners 
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and decision makers is the need to measure and optimize the consequences of adopting these 
new methods and technologies in order to maintain their competitive edge. This challenge is 
further complicated with the emergence of a number of innovative contracting methods that 
consider both the project duration and cost in their evaluation of project bids (Jaraiedi et al. 
1995, El-Rayes 2001).  

In order to address this increase in complexity of construction project planning, a number 
of construction optimization and decision support models were developed to assist 
construction planners in selecting optimal construction plans from the vast number of 
available alternatives. These models addressed a number of important construction project 
objectives including: (1) construction cost minimization (Karim and Adeli 1999, Hegazy and 
Wassif 2001); (2) construction duration minimization (Hegazy 1999, Gomar et al. 2002); and 
(3) the simultaneous minimization of construction cost and duration (Burns et al. 1996, Feng 
et al. 2000). Although these models have been successful in addressing these challenging 
construction project objectives, their application was limited to small and medium size 
construction projects due to their high computational time requirements.  

Parallel and distributed computing was successfully utilized to reduce the computational 
time requirements of decision support systems in a number of civil and environmental 
engineering disciplines, including: (1) transportation engineering (Agrawal and Mathew 
2004, Girianna 2002); (2) structural engineering (De Santiago and Law 2000, Sziveri and 
Topping 2000); (3) water resources and hydrological engineering (Balla and Lingireddy 
2000, Alonso et al. 2000); and (4) construction engineering and project management (El-
Rayes and Kandil 2005, Kandil 2005). Although, these studies have demonstrated the ability 
of parallel and distributed computing frameworks to reduce the computational time 
requirements of decision support systems when applied to large-scale problems, further 
computational time reductions may be possible with the application of more efficient parallel 
computing paradigms (De Santiago and Law 2000). Therefore, the main objective of this 
paper is to develop an efficient parallel computing framework that follows the multi-deme 
parallel computing paradigm for optimizing the planning of large-scale construction projects. 
The model is developed in three main phases that: (1) formulate a multi-objective 
optimization algorithm capable of simultaneously minimizing construction duration and cost; 
(2) implement a multi-deme parallel computing framework that reduces the computational 
time requirements for optimizing large-scale construction projects; and (3) measure the 
performance of the developed model to determine both its effectiveness and efficiency. 

PHASE 1: MULTI-OBJECTIVE OPTIMIZATION ALGORITHM  
The first phase of the implementation of the model aims to develop a multi-objective 
optimization algorithm capable of simultaneously minimizing project cost and duration. The 
proposed algorithm is developed as an advanced multi-objective genetic algorithm in the 
three main stages that: (1) analyze and identify all relevant decision variables; (2) formulate 
the objective functions; and (3) implement the algorithm.  
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DECISION VARIABLES  
The developed multi-objective optimization algorithm is designed to identify the optimal 
construction resource utilization options for each activity in the analyzed construction 
project. Construction resource utilization options combine a number of planning decisions 
pertaining to the construction of each activity, including: (1) construction methods, which 
describe the materials and construction technology used in each activity; (2) construction 
crews, which includes both the type and amount of labor and equipment utilized in each 
activity; and (3) crew overtime policies, which determine the length and number of work 
shifts of the jobsite, and also determines whether or not nighttime construction is utilized. 
The different possible combinations of these planning decisions are enumerated for all the 
activities in the project, and then aggregated into a number of discrete resource utilization 
options for each activity. These construction resource utilization options are then modeled as 
virtual DNA chromosomes required for implementing the present model as a multi-objective 
genetic algorithm (Goldberg 1989). These chromosomes contain locations for virtual genes 
that are used in the present model to represent the resource utilization options for each 
activity in the analyzed project. Each of these genes is represented as a binary number with 
varying number of digits depending on the available resource utilization options for the 
activity modeled by the gene. 

OBJECTIVE FUNCTIONS 
The virtual chromosomes that model the aforementioned resource utilization options need to 
be evaluated to determine the relative merit of these options. In order to evaluate the relative 
merit of these resource utilization plans, the present model formulates the following two 
objective functions that measure project time and cost respectively.  
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Where, Mi
n = material cost of activity (i) using resource utilization (n); Di

n = duration of 
activity (i) using resource utilization (n); Ri

n = daily cost rate in $/day of resource utilization 
(n) in activity (i); Bi

n = subcontractor lump sum cost for resource utilization (n) in activity i, 
if any. 

These two objective functions are used to simultaneously minimize construction cost and 
duration and create an optimal tradeoff between these two objectives. In order to establish 
this trade-off, the following stage utilizes the above objective functions to implement an 
advanced multi-objective genetic algorithm.  

MULTI-OBJECTIVE GENETIC ALGORITHM 

In order to establish the trade-off between project time and cost, the present multi-objective 
genetic algorithm is designed to perform three main functions: (1) population initialization; 
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(2) fitness evaluation; and (3) generation evolution (Deb 2001). The population initialization 
function generates an initial population of virtual chromosomes that model a group of 
feasible plans for constructing the analyzed project. This initial population is generated based 
on a number of parameters that are input in this function, including: (1) population size, 
which specifies the number of feasible solutions simultaneously evaluated by the genetic 
algorithm; (2) number of generations, which determines the number of times the genetic 
algorithm will iterate in order to find the optimal solutions; (3) crossover rate, which sets the 
probability of two virtual chromosomes crossing at a random point and exchanging their 
genes; and (4) mutation rate, which establishes the probability of genes in the virtual 
chromosomes randomly changing their values. The values of these different parameters are 
determined using a set of parametric equations developed by Reed et al. (2002).  

The second function of the developed genetic algorithm establishes the relative merit of 
the different chromosomes in the genetic algorithm population. In order to perform this 
function each chromosome in the population is evaluated using the time and cost objective 
functions described above. These chromosomes are then ranked according to their non-
domination. A solution that is identified to be non-dominated (e.g. solution P1 in Figure 1) 
when it is found to be better than all the other solutions in the genetic algorithm population in 
at least one objective. The obtained set of non-dominated solutions is called the Pareto 
optimal set of solutions to the problem. Once this set is identified by the algorithm, it is given 
rank one and then it removed from the genetic algorithm population. The remaining solutions 
are then re-examined and a second front is identified and is given rank two. This process is 
repeated until all solutions in the population are ranked. The fitness evaluation stage also 
measures a parameter called the solution crowding distance. This parameter is calculated by 
measuring the distance of each solution in the population from its neighboring solutions. 
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Figure 1: Nondominated Solutions.  
Finally the population generation function produces new genetic algorithm populations 

using the selection, crossover, and mutation processes. The function starts with a parent 
population of solutions that has been evaluated in the fitness evaluation function. The 
selection process identifies the chromosomes that would be used to generate the new 
solutions in a child population based on both the non-dominated rank, and crowding distance. 
This process gives solutions with higher ranks and larger crowding distances a higher 
probability of selection to increase the number of non-dominated solutions and avoid the 
selection of very closely spaced solutions, respectively. The selected solutions then exchange 
their genes at a randomly selected point in the crossover process. The selected individuals 
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could also undergo a random change in one of their genes in the mutation process. The 
generated child population is then combined with the parent population. The combined 
population is then passed back to the fitness evaluation function to enable the sorting of its 
solutions based on their non-dominated ranking and crowding distances. The top solutions of 
the sorted combined population form the parent population of the following generation. The 
iterative execution of fitness evaluation and the generation evolution functions continues 
until the specified number of generations is completed (Deb 2001).  

PHASE 2: MULTI-DEME PARALLEL COMPUTING FRAMEWORK  
The second phase of the development of the present model implements a multi-deme parallel 
computing framework to reduce the computational time required for optimizing large-scale 
construction projects. This framework is implemented in two main stages: (1) the framework 
design stage; and (2) the framework implementation stage. 

FRAMEWORK DESIGN  

The multi-deme framework is designed using the coarse-grained paradigm of parallel and 
distributed computing (Cantú-Paz 2000). In this paradigm the genetic algorithm population is 
divided into a number of sub-populations called demes. Each of these demes is optimized 
independently by one of the processors utilized in the computation, in order to reduce the 
computational time required to optimize the project. These processors implement all the 
functions of the multi-objective genetic algorithm in a nonhierarchical collaborative fashion. 
The processors involved in the computation are fully connected to each other, as shown in 
Figure 2, and collaborate with each other by exchanging their best found solutions in a 
process called the migration process. The migration process requires the determination of 
two parameters called the migration rate, and the migration interval. The migration rate 
determines the number of solutions exchanged in each migration, while the migration 
interval determines how often the migration process is executed.  

 

Figure 2: Multi-Deme Parallel Framework Design 
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FRAMEWORK IMPLEMENTATION  

The present multi-deme parallel computing framework was implemented using 50 processors 
on the Tungsten cluster which is located at the National Center for Supercomputing 
Applications. This cluster is composed of 640 Dell PowerEdge 1750 servers, each with two 
Intel Xeon 3.2 GHz processors, 1.5 MB of cache memory, and a total of 3 GB of SDRAM. 
The cluster uses the Red Hat Linux operating system and the servers are connected using 
Myricom's Myrinet low latency cluster interconnect network. The cluster has a peak 
performance of 6.4 Gflops which makes it the 10th fastest supercomputing cluster in the 
world at the time of publication of this paper (NCSA 2006). The communications in the 
framework were implemented using the message passing interface (MPI), which is a standard 
library that offers a myriad of communication functions that enable the implementation of 
parallel and distributed programs on a wide range of computing systems including 
supercomputing clusters and networks of personal computers (Snir et al. 1998; Gropp et al. 
1999). This present implementation using MPI is envisioned to facilitate the planned 
migration of the present framework in a future phase of this study to a network of personal 
computers that is typically available in construction engineering and management offices. 

The implementation of the present model was tested and evaluated using two parallel and 
distributed computing performance metrics to determine the effect of the size of the 
optimized project, the number of processors utilized, and the migration process on both the 
efficiency and effectiveness of the model. The main performance metrics along with the main 
results of the evaluation are discussed in the following section.  

PHASE 3: PERFORMANCE EVALUATION  

The performance of the present model was evaluated using: (1) three different project sizes 
which are composed of 180, 360, and 720 activities; (2) different numbers of processors 
ranging from 1 to 50 processors; (3) three different migration rates that transfer 25%, 50%, 
and 75% of the populations of each deme; and (4) three different migration intervals that 
allow the migration process to occur every one, two, or four generations. The performance of 
the model was evaluated using two performance metrics: (1) Elapsed time, which evaluates 
the efficiency of the model by measuring the computational time it requires; (2) Quality of 
solutions, which evaluates the effectiveness of the model by measuring the number of 
optimal solutions it obtains.  

ELAPSED TIME  

The elapsed time of the present model was measured for the different combinations of the 
aforementioned parameters using the high precision MPI_Time function, as shown in Figure 
3. The results of this evaluation demonstrated that as the number of processors utilized in the 
computation increased the total elapsed time for optimizing the different project sizes 
decreased. The percentage of this decrease was also noted to be larger for larger projects 
reaching a maximum of a 98% decrease in the 720 activity project optimized using 50 
processors, 25% migration rate, and a four generation migration interval. This decrease in 
elapsed time was however noted to be less for experiments with higher migration rates and 
intervals. For example, the percent decrease in elapsed time for the 720 activity project using 

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 1502



 

a migration rate of 25%, and a migration interval of one generation was found to be 97%. 
The results also demonstrated that the impact of larger migration rates and intervals was 
higher for projects with a smaller size. For example, the elapsed time using 50 processors and 
25% migration rate increased by 46% for the 180 activity project, as compared to an increase 
of only 28% for the 360 activity project, when the migration rate increased from once every 4 
generations to once every generation (see Figure 3). These results, therefore, clearly 
demonstrate the impact of deme size (and hence number of processors), migration rates, and 
migration intervals on elapsed time of the multi-deme parallel computing model.  
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Figure 3: Sample Elapsed Time Results for 360 Activity Project 

QUALITY OF SOULUTIONS  
The quality of solutions performance indicator was also measured for the different 
combinations of numbers of project sizes, numbers of processors, migration rates, and 
migration intervals (see Figure 4). The results demonstrated that the number of non-
dominated optimal solutions decreased as the number of processors involved in the 
computation increased. For example, the number of non-dominated solutions for the 360 
activity project decreased from 232 solutions using a single processor to about 98 solutions 
using 50 processors. This decrease can be attributed to the decrease in deme size as a result 
of this increase in the number of processors, which decreases the explorative and exploitive 
abilities of the genetic algorithm that allow it to use existing solutions to find better ones. The 
results also demonstrated that as the migration rates and intervals increased the number of 
non-dominated solutions obtained increased. For example, the number of non-dominated 
solutions for the 360 activity project increased from 98 solutions for the 75% migration rate 
and the every four generations migration interval to 112 solutions using the same migration 
rate and the every generation migration interval. This increase in the non-dominated 
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solutions can be attributed to the increase in the collaboration between the different demes in 
the model by increasing the number and frequency of exchanged top solutions. 
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Figure 4: Nondominated Solutions of 360 Activity Project 

The results of both performance measures illustrated that the developed multi-deme 
parallel computing model is capable of significantly reducing the time required to optimize 
large-scale construction projects. The results also demonstrated that there is a tradeoff 
between the effectiveness and efficiency of the developed multi-deme parallel computing 
model. This tradeoff is illustrated in Figure 5 which shows the relation between elapsed time 
and the number of non-dominated optimal solutions obtained in one of the examined 
example projects. The tradeoff demonstrated that although a higher number of non-
dominated solutions requires a larger elapsed time, a reasonable number of non-dominated 
solutions can be obtained at a significantly smaller elapsed time using a small number of 
processors. For example in Figure 5, it can be seen that 303 non-dominated solutions are 
obtained using a single processor in approximately 137 hours of processing. For the same 
project it only takes 12 hours to obtain 291 non-dominated solutions using 5 processors. 
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Figure 5: Tradeoff between model efficiency and effectiveness. 
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CONCLUSIONS 

This paper presented the development of a multi-deme parallel computing model for 
optimizing the planning of large-scale construction projects. The model was developed in 
three main phases that: (1) developed an advanced multi-objective genetic algorithm that 
simultaneously minimized both construction duration and cost; (2) implemented a multi-
deme parallel computing framework; and (3) evaluated the performance of the model using 
two performance measures. The model was implemented using 50 processors on the 
Tungsten cluster located at the National Center for Super Computing Application.   The 
performance of the model was tested using three projects containing 180, 360, and 720 
activities, respectively. The results of this evaluation demonstrated that model was capable of 
reducing the computational time requirements for all three projects, and that the time 
reduction was greater for the largest project that included 720 activities. This indicates that 
the model is more effective in reducing the computational requirements of larger projects, 
and shows the potential of more computational time reductions in larger sized projects. The 
results also demonstrated that the model was effective in finding non-dominated optimal 
plans for the optimized projects and that a tradeoff exists between the efficiency and 
effectiveness of the model. The analysis of this tradeoff demonstrated that the marginal loss 
in the effectiveness of the model was small compared to the efficiency gains achieved. This 
analysis also demonstrated to potential users of the model the computational time required to 
attain different levels of effectiveness, which enables them to select the level of efficiency 
they can afford or the level of effectiveness they desire.  
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