
THE MANAGEMENT AND ANALYSIS OF

INFRASTRUCTURE TIME SERIES DATA: AN

ENVIRONMENTAL TIME SERIES DATABASE

Greg Reilly
1

ABSTRACT

Until recently, the City of Ottawa did not have a centralized and coherent system to manage
their long-term water and sewer time series data. Consequently, it was difficult to perform
data management tasks, access data, and do useful analysis.

The City’s Water Resources Group initiated the Environmental Time Series (ETS)
database project. ETS has organizational and time-saving features that reduce human error
and make tasks like data loading, validation, and derivation of new data easy to learn and
perform. ETS has a simple and powerful means of deriving data that transparently manages
data quality. These features facilitate the management of very large amounts of data.

A well-organized database system with all required data readily available makes for
powerful and flexible data analysis. Its ease of use facilitates detailed as well as broad
perception of the City’s infrastructure behaviour. This minimizes assumptions and
maximizes optimization of existing and future infrastructure. In short, it promotes good
decision-making.

KEY WORDS

Database, infrastructure, data type, open-architecture, data analysis, query, SQL

INTRODUCTION

The City of Ottawa has a large amount of water-supply, sewer-collection, and weather-
related time series data that used to be stored in multiple formats and locations, and managed
by multiple software programs.2 This presented significant problems:

• chaotic organization

• risk of data loss or storage media obsolescence

• limited user access

• no data quality system

• limited activity records and documentation

• limited ability to query and perform data analysis

1 Water Resources Analyst, Department of Public Works and Services, City of Ottawa, 100 Constellation

Cres., Ottawa, K2G 6J8, Canada, 613/560-6065, FAX 613/560-6068, greg.reilly@ottawa.ca.
2 ETS currently has almost 400,000,000 data items.

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 3216

• cumbersome and hidden derivation of new data from existing data

• high dependence on individuals’ knowledge

ETS was developed to solve these problems.

ETS ORGANIZATION

ETS is an open-architecture database system. It is made up of stand-alone components, and
new components can be added. Most importantly, the database itself is a stand-alone entity
that third party query and analysis software can freely access without depending on the other
components. The current components of ETS are:

• the database

• the front-end application that organizes and executes data management activity

• the calculation engine (.dll file) that performs new data derivation

• the query and analysis tool

The City’s IT department administers the database. One of their most important roles is to
ensure that it is always backed up. ETS is available to any network user on request.

The database is a normalized relational database. The table structure follows standard
rules of normalization, which are central to relational theory. Normalization ensures the
mathematically simplest structure by removing data integrity problems such as unnecessary
dependencies and complexities. Essentially, it means that each table represents one single
independent type of entity. In ETS, the raw_data table is a list of measurements and pertinent
information about them. The site table is a list of the locations at which measurements have
been made, and the parameter table is a list of the types of measurements that have been
made. Normalization helps make a database well-organized, efficient, and flexible. This can
mean being able to use it for unexpected purposes.

Table 1 shows a simplified view of the ETS table structure, or data model, with the
central tables: raw_data, site, and parameter. The actual data model has more than 50 tables.
The tables not shown deal with the data loading, validation, and derivation objects, as well as
users, geographic areas, GIS (Geographic Information System) links, execution errors,
equipment, and user-defined site properties. There is also a derived_data table which is
similar to the raw_data table. It also has a data_value and a confidence_level field.

Table 1: Simplified ETS Data Model

raw_data table

Column Name Data Type Column Description

Site_id Number Unique site identifier, foreign key to site table

Parameter_id Number Unique parameter identifier, foreign key to parameter table

Timestamp Date/time Date and time of the measurement

Data_value Number Value of the measurement

Confidence_level Number Quality indicator: 0=unknown; 1=bad; 2=questionable; 3=good

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 3217

site table

Column Name Data Type Column Description

Site_id Number Unique site identifier, primary key for table

Code Text Text identifier, a name

Location Text Geographic location

parameter table

Column Name Data Type Column Description

Parameter_id Number Unique parameter identifier, primary key for table

Code Text Text identifier, a name

Unit_type_id Number Unique unit type identifier, foreign key

Each sequence of rows in the raw_data table with the same site_id and parameter_id represents
a time series for that site and parameter.

This data model does not need to change when new sites or parameters are created
because the sites and parameters are seen as data, not part of the database structure. When a
new site or parameter is added, a row is simply added to the site or parameter table.

This model also makes querying flexible. For example, it is simple to write a short SQL
(Structured Query Language) statement that involves multiple sites or parameters. The
following is a sample of such a query:

SELECT s.code, avg(r.data_value) as average_flow
FROM raw_data r, site s, parameter p
WHERE s.site_id=r.site_id and p.parameter_id=r.parameter_id and p.code='PSFlow' and
 r.confidence_level=3
GROUP BY s.code;

This statement averages all good (confidence_level=3) rows in the raw_data table that have the
parameter_id for the “PSFlow” (pumping station flow) parameter. It groups the averages for
each site name. The result is average flow for all pumping station sites.

If the data model had one separate table for each site, for example, it would not be as
flexible. There are many applications for such multiple-site queries and also multiple-
parameter queries. Other examples are given in the “Data Analysis” section.

DATA MANAGEMENT

The ETS front-end application organizes and executes data loading, validation, new data
derivation, maintenance of sites and parameters, and equipment tracking.

EXECUTABLE ACTIVITY LISTS

All data loading, validation, and derivation activities are organized and carried out through
“executable activity lists”.

Each type of activity has its own list, so there is a list of data loads, a list of validations,
and a list of derivations. Each data load, validation, or derivation is an activity object that
contains the information required to perform one activity, (or a group of activities as data
loads are lists of lists).

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 3218

There are different variations, but the basic user steps to perform an activity are: defining
the object to perform it; adding it to the appropriate list; and executing it. Once this is done,
the list immediately serves as a complete record with the new activity added.

Any object in the list can be executed at any time, so redoing an activity is the same as
doing it the first time. Any number of new objects can be added and multiple objects can be
selected for being executed, so doing multiple tasks or redoing part or all of the activity
history is done in the same way.

Executable lists make all activities openly visible. They act as a history of activity that
automatically documents the source of data and details about how, when and by whom it was
created. This reduces dependence on individuals’ knowledge, and makes learning easier
because what has been done by others in the past can be seen and followed. Since executable
lists are stored in the database, they are data too and can be queried.

Objects are usually created by copying a similar one and changing a small part of it. This
saves time and reduces human error. If a mistake does occur, it is usually easy to see what
has been done wrong and redo it correctly. This reduces user anxiety.

This feature has helped make possible the management of large numbers of activity
objects and very large amounts of data.

DATA LOADING

ETS has flexible loading of row-column ASCII files. All the information required to load a
given file type is stored in a user-defined template object for that file type called a data
source. A data source is created and saved in the database for each file type to be loaded. The
data source defines the destination site and specifies column to parameter mappings, unit
conversions, and time adjustments.

ETS uses an executable list of data load objects to perform data loading. A data load
itself is a sub-list that represents one sequence of files. This structure is necessary to handle
many files and many file types. A data load’s members are objects that have a file name and
the name of the data source to use for it. New files are easily added by copying any existing
member and editing the file name.

To load data, the user adds file names to the appropriate data loads, sets previously
loaded files not to load if necessary, and executes the data loads.

The capability to save and reuse data sources means that the user does not have to define
how to load files every time loading is done. The ability to copy a similar object minimizes
the risk of using the wrong data source to load a file.

VALIDATION

Data validation assigns a quality indicator (see Table 1) called a confidence level to raw data.
This is stored in the confidence_level column of the raw_data table.

All data is kept regardless of quality to allow for possible future re-validation, and
because all data is of interest in some analyses. For example, someone may want to know
what fraction of a particular site’s data is good, or it may be necessary to see all data, good or
bad, to help trouble-shoot equipment. Also, some analyses can tolerate data of lesser quality.

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 3219

ETS uses an executable list of validation objects to perform validation. Validation objects
define the confidence level to be applied to raw data for a site and parameter over a range of
time.

The user reviews data with charts, uses the features of executable lists to add the required
validations, then executes them. Executing them assigns the confidence_level field directly.

DERIVATION

Derivation creates new data from existing data using arbitrarily complex, user-defined text
expressions.

ETS uses an executable list of derivation objects to perform derivation. Derivation
objects define the calculation expression to create derived data for a site and parameter over a
range of time.

The user creates the required derivations and executes them. Normally they are defined
once for a given site and then the same ones are used every time new raw data is loaded, but
changes can be added at any time and existing derivations can be re-executed, as allowed by
the executable list. Executing them creates derived data in the derived_data table. Re-
executing overwrites it.

The variables of an expression are the names of parameters or assigned variables.
Parameters can represent raw or derived data. They are assumed to belong to the target site
unless specified otherwise using [site].[parameter] syntax. The target timestamp is the same
timestamp for which the values of the input parameters are retrieved.

Unlike the many scripts and individual programs involved in the legacy systems, the
calculation expressions are readily visible for any user to see how data is calculated.

Calculation Engine

Derivation execution is carried out by the calculation engine which is a .dll file. Its
functionality can be changed or expanded at any time with C++ programming.

All data items stored in ETS have two parts, the data_value and confidence_level fields of
the raw_data and derived_data tables. The calculation engine represents all data items with a
data type called the reading type. It has three parts: a value, a confidence, and an error
message.

The reading type is used as one uses data types such as floats or complex numbers to
write an expression in a programming language. The rules to deal with its parts are
transparent. It defines all operations to take confidence into account, so that derived data
automatically inherits its confidence from the data it is derived from. There is no need to
validate derived data manually, or assign confidence explicitly in calculation expressions.
Users just create normal expressions and execute them. This keeps the process simple and
minimizes errors in confidence.

The data type is transparent but documented. For standard mathematical operations
performed on the data, the confidence of the result is that of the worst of its operands (there
are exceptions listed below). For example, bad 2 + good 2 equals bad 4. This is the
“minimum confidence rule”.

There is however the option to manage confidence explicitly, if this is required. Special
functions are defined that can act on or assign the confidence of the result. Statements can be

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 3220

conditional on confidence or they can pick out only the best of their arguments. For example,
bestavg(arg1, arg2, …, argn) finds the average of only those of its arguments that have the
best confidence. An expression can also explicitly assign the confidence of its result. This
allows automatic validation.

When a math error occurs, the error message is put into the error part of the reading
object and the calculation continues. The error message is carried throughout the calculation
and is reported to the user when the derivation is complete. The error message can also be
assigned explicitly (see “reading” function in Table 2). This allows custom error messages
for specific conditions where a problem is known to occur in a part of an expression.

Engineering functions carry out specific engineering tasks. This is the most likely kind of
feature to be a new requirement for the calculation engine but, fortunately, adding functions
is the easiest kind of change to make in the calculation engine .dll file. Copying the code
from another function and modifying it is reasonably straight-forward.

The following are samples of calculation engine syntax features.

Table 2: Sample Calculation Engine Syntax Features

Syntax Meaning

+ - * / ^ < > <= >= = Standard operators

avg(x1,x2,...xn) Average of all x's

best(x1,x2,...xn) Returns the first x with the best confidence*

bestavg(x1,x2,...xn) Average of all x's with the best confidence*

bestavgmin(min_num, x1, x2,..xn) Like bestavg but if # of x’s with best conf is less
than min_num, result confidence is 0

iif(condition, then_result, else_result) Standard “if” function

conf(x) Value of result is conf. of x; conf. of result is 3

value(x) Value of result is value of x; conf. of result is 3

reading(val,confidence) Constructs a reading with value=value(val),
conf.=value(confidence), no error message

reading(val,confidence, “error”) Constructs a reading with value=value(val),
conf.=value(confidence), error message=”error”

<< Variable assignment

; Statement separator

<parameter name>[n] Indexing shifts parameter’s timestamp n timesteps;
negative n shifts backward; positive shifts forward

circarea(depth, diam) x-sectional area of water in circular pipe

manningflow(depth, diam, slope, n) Flow by Manning equation

contflow(depth, diam, velocity) Flow by continuity equation

pipevolume(inv1, inv2, length, diam, surf) Volume of still water in pipe; inv1=1
st
 invert,

inv2=2
nd

 invert, surf=surface elevation

*Confidence of result is the best of the operands’ confidence.
Notes: where not indicated otherwise, the confidence of the result follows the minimum confidence
rule, hence is the minimum of the confidences of the operands. All of the functions and operators
return a reading object and all of the functions’ non-text arguments are reading objects.

The following example expression calculates rate of flow into a tank based on the volume of
liquid in the tank and the rate of flow out of the tank:

bestavg(outflow[0],outflow[-1])+(volume[0]-volume[-1]) / (timestamp[0]-timestamp[-1])

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 3221

There are subtle exceptions to the minimum confidence rule. These occur when a result is not
a function of one of its operands. For example, a good zero times anything is a good zero
because it doesn’t matter how bad the other operand is. Similarly, a good one raised to any
power does not depend on that power. However, division does observe the minimum
confidence rule: a good zero divided by something is a function of that operand because
whether it is zero or non-zero makes a difference.

These subtleties extend to the engineering functions since the reading type is used
internally for their implementation. For example, “contflow” will return a good zero if the
depth of flow is a good zero even if the diameter or velocity is bad.

There are also subtle effects of the minimum confidence rule. For example, the
confidence of the “iif” function’s result depends on the confidence of the “condition”
argument, and the confidence of the “reading” function’s result depends on the confidence of
the “confidence” argument.

As these rules are encapsulated in the data type, users don’t have to refer to them in
creating expressions.

DATA ANALYSIS

QUERY AND ANALYSIS TOOL

ETS has a flexible, user-friendly query tool that makes it easy to create, save, and organize
queries, charts, and tables. Features include a spreadsheet-like query definition table, an
option to show different confidence levels in different colours, a tree structure to organize
saved queries and charts, and clipboard data extraction. Data can be extracted in a format
similar to the native tables, or a format with a column for each parameter. Timestep
resampling can redefine timesteps in different ways in the extracted data.

The query editor executes Oracle SQL, Microsoft JET SQL, and Microsoft Visual Basic
for Applications statements and functions. Features include text substitution variables and the
ability to create Microsoft Access tables.

There are established queries for sewer inflow and infiltration analysis, frequency
distributions, long term trends, flow exceedences, correlation tests, hydraulic model
parameters, data coverage, weekly flow patterns, percentiles, outdoor water use, and weather
data analysis. There are also queries that provide information about the ETS database itself.
For example, there is one that lists all derivations containing a given text substring. It can be
used to find how many times a given function is used.

Ad Hoc Query Example

The potential benefit of using real-time control for the City of Ottawa’s main sewer trunk
(Ottawa Outfall Sewer) was quickly assessed using an ad-hoc query.

The first step was to use the query tool to extract from the ETS database a Microsoft
Access table (given the name data0) with a field for the timestamp, the depth of flow at a site
on the main trunk, and the depths of flow in four combined sewer overflow sites.

The overflows protect the main trunk from overload by diverting flow from its tributaries
into the Ottawa River during rainfall events. The following query counts timestamps at which
overflow to the river occurred while the main trunk was less than half full. The fields bol, bot,

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 3222

joo, and rci are the overflow depths and bee is the depth in the main trunk. Overflow depths
greater than zero indicate the occurrence of overflow. The 2.44 is the diameter of the main
trunk and the .5 is the fraction full.

SELECT count(*) as timestep_count
FROM data0
WHERE (bol>0 or bot>0 or joo>0 or rci>0) and bee<2.44*.5;

Running the same query without the bee field criterion provided the total number of overflow
timesteps without regard to main trunk depth. The first count divided by the second indicated
that, for the study period, the main trunk was less than half full 31% of the time that there
was overflow.

Doing the same test with different fractions produced the following result:

How full Main Trunk is when Combined Sewers overflow

3/4 full to

completely full

9% of the time

Full

37% of the time 1/2 full or less

31% of the time

1/2 to 3/4 full

24% of the time

Figure 1: How Full the Main Sewer Trunk is when Combined Sewers Overflow

Since real-time control can reduce overflow depending on unused capacity in the main trunk,
these results presented strong support for it. This query convinced City managers to pursue
real-time control which will save the City $50 Million by reducing overflows.

Water Consumption Patterns Example

ETS has water consumption data for individual buildings. In ETS, each building is a site. The
ETS front end allows users to create properties and assign text values for them to sites. The
properties are stored in the property table and the assignments are stored in the site_property
table. We use this feature to assign a land use code to each building site.

property table

Column Name Data Type Column Description

Property_id Number Unique property identifier, primary key for table

Code Text Property name

site_property table

Column Name Data Type Column Description

Property_id Number Property identifier

Site_id Text Site identifier

String_value Text Value of property assigned to the site

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 3223

The following query creates an average weekly water consumption pattern for each land use
code. This is useful for water distribution system hydraulic modelling. Also, this example
shows the flexibility of the data model in its simple use of multiple sites.

SELECT
 sp.string_value as land_use_code,
 mod((trunc(rd.timestamp)-to_date('1900/01/01','yyyy/mm/dd')),7) as day_of_week,
 trunc(trunc((rd.timestamp-trunc(rd.timestamp))*1440/60,0)*60) as hour_of_day,
 avg(rd.data_value) as avg_value
FROM raw_data rd, parameter pa, site_property sp, property pr
WHERE
 pa.parameter_id=rd.parameter_id and pa.code='Meter Master Flow' and
 sp.site_id=rd.site_id and pr.property_id=sp.property_id and pr.code='LUCode' and
 rd.confidence_level=3
GROUP BY
 sp.string_value,
 mod((trunc(rd.timestamp)-to_date('1900/01/01','yyyy/mm/dd')),7),
 trunc(trunc((rd.timestamp-trunc(rd.timestamp))*1440/60,0)*60);

This query lists an average value for the “Meter Master Flow” parameter for each land use
code, each day of the week, and each hour of the day. It uses all sites that have a land use
code property assigned to them.

The following chart shows sample results. They have been made dimensionless by
dividing by their mean:

Weekly Consumption Pattern by Land Use

0

1

2

0 1 2 3 4 5 6 7
Day of Week (0=Monday)

Residential

Off ice

Figure 2: Weekly Land Use Consumption Patterns

Correlation Example

When data exists in the raw_data table for a given site and one or more parameters, those
parameters are said to be the set of raw data parameters belonging to that site. In this query,
that set of parameters is sampled, two at a time, and a correlation coefficient is calculated
from the data values of the two time series corresponding to the sampled parameters. The
query lists all possible pairs of raw data parameters belonging to a given site along with the
correlation coefficient for each pair.

This is useful for assessing the relationships among different measurements at a site.
Also, this example shows the flexibility of the data model in its use of multiple parameters.
The code “ss_haw” refers to Hawthorne Shaft, a shaft on a major sewer trunk.

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 3224

SELECT pa.code as xname, pb.code as yname,
 sum(a.data_value*b.data_value)-sum(a.data_value)*sum(b.data_value)/count(*) as s
INTO data0
FROM
 raw_data a, site sa, parameter pa,
 raw_data b, site sb, parameter pb
WHERE
 sa.site_id=a.site_id and sa.code='ss_haw' and pa.parameter_id=a.parameter_id and
 sb.site_id=b.site_id and sb.code='ss_haw' and pb.parameter_id=b.parameter_id and
 b.timestamp=a.timestamp
GROUP BY pa.code, pb.code;

SELECT c.xname, c.yname, c.s/(a.s*b.s)^.5 as r
FROM data0 a, data0 b, data0 c
WHERE
 a.xname=a.yname and b.xname=b.yname and c.xname=a.xname and c.yname=b.yname;

The first SELECT statement makes the table data0, which lists a calculated value s for all
parameter pairs. It lists the parameters’ names and the field s calculated as Σxy-Σx*Σy/n, in
which x is the first parameter’s data values, y is the second parameter’s data values, and n is
the number of (x, y) data pairs. It includes all possible parameter pairs in either order as well
as pairs of the same two parameters. It therefore contains all of the values sxx=Σxx-Σx*Σx/n,
syy=Σyy-Σy*Σy/n, and sxy=Σxy-Σx*Σy/n, with each of these on a separate row.

The second SELECT statement does a self-join on three copies of data0 to put sxx, syy,
and sxy all on the same row for each parameter pair so that the final calculation,
r=sxy/(sxx*syy)^.5, can be made for the correlation coefficient.

With minor modifications, this query could be made to work on one parameter and list
the correlation coefficient for all pairs of sites, or work with multiple sites and multiple
parameters. It could also easily be adapted to derived data.

CONCLUSIONS

ETS has solved the problems that were identified. It manages a very large amount of data,
and makes data access and analysis available to all who need it. Its power and ready
availability have given users heightened insight into the behaviour of the City’s water and
sewer infrastructure.

ACKNOWLEDGMENTS

Shaun Richards, Rick Seeley, and Barbara Fox (all of AJJA Information Technology
Consultants), Carlos Narvaez, Louis Julien, Adrien Comeau, Chris Melanson, Gerry Taylor,
Ron Rooke, Kevin Cover, and Pat Leblanc (all current or former employees of the City of
Ottawa), helped formulate the ideas used in ETS. Shaun Richards designed the data model.

REFERENCES

Korth, Henry F., and Silberschatz, Abraham (1991). Database System Concepts. McGraw-
Hill, Inc., New York, 694 pp.

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 3225

