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ABSTRACT 

A comprehensive finite element model for predicting the rate of steel corrosion in concrete 
structures has been developed. The model consists of the solution of Laplace’s equation for 
electric potentials with nonlinear boundary conditions imposed by the polarization of the 
steel surface. Since current density is a function of potential distribution, the boundary 
conditions depend on the potential distribution within the medium; hence, the problem is 
nonlinear. The degree of nonlinearity depends on the geometry of the domain and the 
boundary conditions, i.e. reinforcement detailing, and whether boundary conditions are 
defined using simplified or detailed polarization equations. Authors have been working on 
new methods to improve convergence of the nonlinear solution of Laplace’s equation, which 
can be, at times, difficult to achieve. In this paper, authors will demonstrate the issues 
associated with the nonlinear solution of Laplace’s equation to calculate the corrosion rates 
in reinforced concrete members. Two methods for the solution of the corrosion problem will 
be introduced. The results and the convergence rates of the nonlinear solutions obtained from 
these two methods will be compared.    
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INTRODUCTION  

The corrosion of steel in concrete is a result of the dissolution of iron in pore water which can 
be represented by the following half-cell reaction (Broomfield 1997): 

[1]  2 2Fe Fe e+ −→ +  

The electrons that are produced in this anodic reaction must be consumed at the cathodic 
sites on the steel surface to preserve electrical neutrality. The cathodic reaction in which 
these free electrons are consumed is the oxygen reduction given by: 

[2]  _
2 2
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The corrosion rate at any point on the surface of steel in concrete is related to the current 
density, which can be predicted if the electrochemical potential (abbreviated henceforth as 
“potential”) distribution around that point is known. Once the potential distribution along the 
reinforcement is known, the current density at any point can be calculated by (Munn 1982): 

[3]  
1

i
r n

φ∂= −
∂

 

where i [A/cm2] is the current density, φ [volts] is the  potential, r [Ω-cm (ohm-cm)] is the 
resistivity of the pore solution and n is the direction normal to the bar surface. The rate of 
rust production at the anodic regions on the steel surface can be calculated by Faraday’s law. 
Therefore, once the current densities on the steel surface are calculated, the determination of 
the rate and amount of corrosion becomes a straightforward task. The main difficulty in this 
process is the calculation of current densities on the steel surface. As it can be observed from 
Eq. 3, the calculation of current densities requires knowledge of the potential distribution 
around the reinforcement.  

GOVERNING EQUATION 

The equation governing the potential distribution can be derived from first principles (Munn 
1982). If the domain is assumed to be homogeneous, i.e. resistivity of the medium is assumed 
to be constant within the domain, the potential distribution is governed by the Laplace’s 
equation (Munn 1982):  

 [4] 
2 2

2 2
0

x y

φ φ∂ ∂+ =
∂ ∂

 

where x and y are planar Cartesian coordinates.  
Calculation of the potential distribution around the surface of the steel involves the 

solution of Eq. 4 subject to prescribed boundary conditions. These boundary conditions 
comprise the relationship between potential and current density for the anodic and cathodic 
regions as well as prescribed current densities. For the anodic and cathodic regions of the 
steel surface, as illustrated in Fig. 1, the boundary conditions can be defined as (Uhlig 1985): 

[5] log a
a Fe a
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where Feφ and
2Oφ  are non-standard equilibrium potentials, aβ is the Tafel slope of the anodic 

reaction, cβ is the Tafel slope of the cathodic reaction, ia and ic are anodic and cathodic 

current densities, respectively, ioa is the exchange current density of the anodic reaction, ioc is 
the exchange current density of the cathodic reaction, R is the universal gas constant, T is the 
temperature, and iL is the limiting current density. In Eq. 5, the polarization is due to 
activation, and in Eq. 6, it is in the form of activation and concentration polarization. It can 
be observed that the cathodic polarization imposes more nonlinearity than the anodic 
polarization. 
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SOLUTION BY DIRECT ITERATION METHOD  

One of the methods that can be used to solve the nonlinear boundary value problem for the 
calculation of corrosion rates is the direct iteration method (DIM). With the reference to Fig. 

2, the DIM consists of constructing a series of solutions{ } { } { }0 1, , , kφ φ φ  ⋅⋅⋅  , where { }kφ  is 

calculated from the previous value{ }1kφ − , where the superscript, k, represents the iteration 

number. The solution starts with the assumption of values for all potentials on the steel 

surface, { }0φ . These initial potentials can be calculated by substituting small values of 

current densities, ia and ic in Eqs. 5 and 6, respectively. The solution of Eq. 4 with imposed 
values of the initial potentials at the cathodic and anodic surface of the steel rebars yields a 
potential distribution within the domain. The potential gradients at the steel concrete 
interface that are obtained form this distribution are used to calculate new current densities 
by using Eq. 3, and then the calculated current densities, ia and ic, are respectively substituted 
in Eqs. 5 and 6 to update the new potentials on the steel surface. With these new boundary 
conditions, Eq. 4 can be solved again to obtain a new set of potentials in the domain. At the 
end of each solution, the calculated nodal values of the potential are compared with the 
corresponding values in the previous iteration to check for convergence. Iterations are 
terminated when a user-defined convergence norm is satisfied.  

It should be noted that Fig. 2 shows an ideal case where the solution converges to the 
expected result with successive iterations. Even though the DIM is easy to implement, it has 
significant limitations, and for complex problems such as reinforcement corrosion in concrete 
structures, it generally fails to provide converged and accurate results. One of the main 
reasons why the DIM does not provide converged and accurate solutions is that it is not 
based on an analytical nonlinear solution algorithm. Iterations are based on the conditions 
that are valid at a given iteration and do not include any information from previous iterations. 
In other words, there is a randomness associated with the DIM, hence to achieve accurate 
results, large number of iterations may be necessary. 

Another limitation of the DIM is the fact that it can violate the limitation imposed in the 
polarization of the cathodic reactions by the limiting current density. During any iteration, 
the current density calculated from the solution of the Laplace’s equation can be larger than 
the limiting current density. When this happens, the solution will not converge, as illustrated 

Anode: Γa 

 on a aφ φ= Γ  on c cφ φ= Γ

Insulated surfaces: Γo 

0 on on

φ∂ = Γ
∂

Figure 1: Boundary conditions of a typical rebar corrosion problem type 

Cathode: Γc 
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in Fig. 3. This problem is more significant when the limiting current density is small, a 
situation that can be observed in concrete structures where the oxygen supply around the 
reinforcement is limited. It is also obvious from Fig. 3 that initial assumption of the current 
densities can make a significant difference in the convergence of the solution (Path A-B vs. 
path C-D). 

SOLUTION BY MODIFIED DIRECT ITERATION METHOD  

Modified direct iteration method (MDIM) is a generalized version of the DIM. The MDIM 
uses the same approach as the DIM, albeit with a relaxation factor, ξ. Therefore, it is still 
subject to some of the issues that were described for the DIM. In the MDIM, the boundary 
conditions on the steel surface, assuming Dirichlet-type definition, are determined as: 

[7] 1 (1 ) ( )k k kf iφ ξ φ ξ+ = − +  

where ξ is a factor between 0 and 1. The new boundary condition 1kφ +  is calculated as a 
weighted average of the boundary condition of the previous iteration and the boundary 
condition provided by the polarization equation, ( )kf i . The MDIM has an inherent measure 
of trust that the new iterate is moving towards a converged solution. It should be noted that 
when ξ = 1, the MDIM is the same as the DIM. 

As illustrated in Fig. 4, the MDIM can provide a converged solution when the DIM 
method is not successful. In addition, due to the reasons that are obvious in Fig. 4, the 
convergence of the solution is generally faster in the MDIM. However, the success and rate 
of convergence of the MDIM is function of the value of ξ. 
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Figure 2: Converged solution using DIM  
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Figure 3: The effect of limiting current density on the convergence of DIM  
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COMPARISON OF THE SOLUTION METHODS 

A typical test case, as shown in Fig. 5, is used to compare the solution algorithms described 
above. The sensitivity of the results and convergence of the solution as a result of the 
changes in the following parameters is investigated: (1) element size, (2) anode-to-cathode 
ratio, (3) resistivity of the concrete pore solution. 

10
0 

m
m

2ab b

600 mm

Concrete

Cathode

Anode

 

Figure 5: Model used in the comparison of the solution algorithms 

As illustrated in Fig. 5, using symmetry, only half of the upper-right quarter of the member is 
modeled. To simplify the problem, the concrete is treated as a homogenous medium with 
uniform resistivity. In order to eliminate the possible convergence problems that may 
originate from the limiting current density, it is assumed that adequate amount of oxygen is 
present around the reinforcement. Therefore the limiting current density used in the analysis 
is selected as 1x10-6

 A/mm2, which is large enough to ensure that the convergence issues will 
not be as a result of the limiting current density. Table 1 provides the input parameters and 
constants that are used in the analyses presented here. 

EFFECT OF ELEMENT SIZE 

The effect of element size on the convergence of the nonlinear finite element solution of the 
corrosion problem defined Fig. 5 is studied. Nonlinear solution algorithms described in the 
previous sections are used to solve the problem with varying element size. The anode-to-
cathode ratio is kept constant as 0.111, with an anode length of 60 mm (cathode length = 540 
mm). Table 2 shows a comparison of the solution algorithms based on the element size. It 
can be observed from this table that the  DIM method does not converge to a solution even 
after 10,000 iterations for small element sizes of 0.5 mm, 1 m and 2 mm. For larger elements, 
the convergence can only be achieved if the maximum convergence norm, i.e. the maximum 
difference between the potentials of the two successive iterations at a node, is kept large. If 
this difference is interpreted as an error, the error in the DIM varies between 58.2 mV to 91.1 
mV, which is not within the acceptable range. In order to reduce the error within the DIM, 
the number of iterations need to be increased. However, due to the random nature of the 
DIM, increasing the number of iterations does not guarantee a better convergence. It may be 
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necessary to carry out millions of iterations in order to achieve an acceptable level of 
convergence. The randomness of the DIM is illustrated in Fig. 6 in which the error term in 
successive iterations carried out by the DIM is plotted for a mesh created by 5 mm elements. 

The solution of the same cases using the MDIM (with ξ =0.2) provides better results. 
Although the convergence is still not achieved for small element sizes of 0.5 mm and 1 mm, 
for larger elements, the results are promising. For  a mesh created with 5 mm elements, the 
maximum error (the maximum difference between two successive iterations for a node) is 1.6 
mV after 28 iterations. Although this can still be considered as a large difference, it is within 
the acceptable range of results. As illustrated in Fig. 6, the convergence of MDIM does not 
have a random nature as observed in DIM for this specific case. It should be noted that the 
results of the MDIM is highly dependent on the selection of ξ, however, the discussion of the 
is not within the scope of this paper. 

 
Table 1: Input parameters and constants for the comparison of the solution methods 

Parameter Value 
Length, a+b (mm) 300 
Height (mm) 100 
Standard half cell potential of Fe (mV ~SCE)  -780 

Tafel slope of the anode, βa (mV) 60 
Anodic exchange current density, ioa (A/mm2) 300x10-10 
Standard half cell potential of oxygen (mV ~SCE) -160 
Tafel slope of the cathode,  βc (mV) 160 
Cathodic exchange current density,   ioc (A/mm2) 10x10-10 
Limiting current density, iL(A/mm2) 1x10-6 
Temperature, T (K) 298 

 
Table 2: The comparison of the solution algorithms based on element size 

DIM (ξ = 1.0) MDIM (ξ = 0.2) Element size 
(mm) A/C ratio 

Error (mV) # Iterations Error (mV) # Iterations 

0.5 N/C > 10,000 N/C > 10,000 
1 N/C > 10,000 N/C > 10,000 
2 N/C > 10,000 2.7 3096 
3 91.1 2552 1.9 1574 
5 87.1 3127 1.6 28 
6 78.6 786 1.3 29 

10 71.7 1440 1.7 22 
15 

0.111 

58.2 2640 1.6 22 
 
The problem associated with the DIM can also be observed in Fig. 7. Although anodic 

potentials calculated by both methods are quite stable, the cathodic potentials from the DIM 
show significant fluctuations. On the other hand, MDIM provide the expected smooth 

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 3673



  

potential distribution along the cathode for most element sizes. The fluctuations in the MDIM 
start at the far end of the cathode, and as the element size get smaller, the convergence 
becomes difficult to achieve. 

 

Figure 6: Maximum error vs. number of iterations when for a 5 mm elements are used 

 

Figure 7: Surface potentials calculated with DIM and MDIM 

EFFECT OF ANODE-TO-CATHODE RATIO 

The effect of anode-to-cathode (A/C) ratio on the convergence of the nonlinear finite element 
solution of the corrosion problem defined Fig. 5 is studied. Nonlinear solution algorithms 
described in the previous sections are used to solve the problem with varying A/C ratio from 
0.001 to 1.0. In all cases, 10-mm elements are used to discretize the domain. The results of 
the analysis are plotted in Fig. 8 for both methods. As it can be seen from this figure, both 
methods give very similar (and stable) results for the anode. However, the solution along the 
cathode anodes show significant fluctuations for all A/C ratios in the DIM. The convergence 
problems experienced in the DIM can be attributed to these fluctuations along the cathode. In 
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the MDIM, the fluctuations does not exist for large A/C ratios; however, as the A/C ratio 
becomes very small, some disturbance can be observed at the far end of the cathode. 

 

Figure 8: Model used in the comparison of the solution algorithms 

EFFECT OF RESISTIVITY 

The effect of concrete resistivity on the convergence of the nonlinear finite element solution 
of the corrosion problem defined Fig. 5 is studied. Nonlinear solution algorithms described in 
the previous sections are used to solve the problem with varying concrete resistivity from 
10,000 to 1,000,000 ohm-mm. In all cases, 10-mm elements are used to discretize the 
domain. The results of the analysis are plotted in Fig. 9 for both methods. As it can be seen 
from this figure, both methods give very similar (and stable) results for the anode. However, 
the solution along the cathode anodes show significant fluctuations for all resistivity in the 
DIM. The convergence problems experienced in the DIM can be attributed to these 
fluctuations along the cathode. In the MDIM, the fluctuations are minor, but still exist at the 
far end of the cathode. 

 

Figure 8: Model used in the comparison of the solution algorithms 
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CONCLUSIONS 

The following conclusions can be drawn from the analyses performed in this study: 
1) The nonlinear solution of the Laplace’s equation for corrosion of steel in concrete can 

be difficult due to convergence problems originating from the non-linear polarization 
boundary conditions. 

2) Both methods used in this study gave stable solutions along the anodes, but showed 
fluctuations along the cathodes. This can be explained by the fact that the non-linearity due to 
the anodic polarization is not as severe as the non-linearity due to the cathodic polarizations. 
Unlike the MDIM, the convergence of the DIM showed a random pattern. 

3) Fluctuations along the cathodes were more severe in the DIM than the ones in the 
MDIM. Fluctuations in the MDIM were limited to the far end of the cathode, and were more 
obvious when small elements were used. 

4) The convergence could not be achieved in neither of the methods studied here when 
small elements were used to discretize the domain. 
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