
A SYSTEM ARCHITECTURE FOR NET-DISTRIBUTED

APPLICATIONS IN CIVIL ENGINEERING

Daniel G. Beer
1
, Berthold Firmenich

2
, and Karl E. Beucke

3

ABSTRACT

The planning process in civil engineering can be characterized by three iterative phases: the

phase of distribution of tasks, the phase of parallel working with cooperation among the

planners and the phase of merging the results. Available planning software does only support

the second phase and the exchange of data via documents.

This paper presents a software design that supports the three phases and all types of

cooperation (asynchronous, parallel and reciprocal) in principle and integrates existing

engineering applications. The common planning material is abstracted as a set of object

versions, element versions and their relationships. Elements extend objects with application

independent properties, called features. Subsets on the base of features are calculated for the

execution of tasks. Therefore, new versions of elements and objects are derived and copied

into the planner's private workspace. Already stored versions remain unchanged and can be

referred to. Modifications base on operations that ensure consistency of the versioned model.

The system architecture is formally described. Available information technology is

analyzed and used for an implementation concept. A pilot that is based on the programming

language Java, a version control system and a relational database proves the implementation

concept.

KEY WORDS

system architecture, net-distributed applications, civil engineering, versioning

STATE OF THE ART AND RESEARCH

The state of the art and research in the field of cooperation in the planning process in civil

engineering will be presented with the help of specific scenarios. There are two planners, A

and B, with their local planning material in their sandboxes and the common planning

material in the repository that is available via a network. In all scenarios, data is exchanged

between the sandbox and the repository. The planning material is structured as documents,

databases or object sets:

1 Research Engineer, Informatik im Bauwesen, Bauhaus-Universität Weimar, Coudraystraße 7, D-99425

Weimar, Deutschland, Phone +49 3643/58-4221, FAX +49 3643/58-4216, daniel.beer@bauing.uni-

weimar.de
2
 Professor, CAD in der Bauinformatik, Bauhaus-Universität Weimar, Coudraystraße 7, D-99425 Weimar,

Deutschland, Phone +49 3643 58-4230, FAX +49 3643 58-4216, berthold.firmenich@bauing.uni-

weimar.de
3
 Professor, Informatik im Bauwesen, Bauhaus-Universität Weimar, Coudraystraße 7, D-99425 Weimar,

Deutschland, Phone +49 3643 58-4215, FAX +49 3643 58-4216, karl.beucke@informatik.uni-weimar.de

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 3706

• Persistent overwriting: Both planners open the same document over the network and

start editing. Planer A stores prior to planner B. As a result the changes of planner A

are overwritten by the results of planner B and are therefore lost. Reciprocal work

has to be disabled, for example by the help of locks.

• Locking: Locks can be placed on documents within the file system or on records

within a database. They prevent a reciprocal cooperation and require a

sequentialization of work. Only one planner can work on a document or database

record at the same time. This may lead to idle time for other planners.

• Short Transactions: With the transaction concept of available databases only short

transactions can be executed during interactive work. On commit, results are stored

in the database and are visible to all planners that use this material. An application

for engineering tasks has disadvantages because the iterative planning process has to

be interrupted and intermediate results are published.

• Version History: Document management systems (Sutton 1996) support a version

history. Documents stored do not overwrite existing documents but are stored in a

linear sequence. This allows for reciprocal work but an examination of variants is not

possible since there is no version graph that stores the parallel development of

versions.

• Document Versioning: Version control systems (VCS) from the software

configuration management (SCM, Hass 2003) support the versioning of text

documents and hence a distributed processing. Software developers can work in

parallel or even reciprocally. Space is preserved by storing the differences of

subsequent document versions. However, in most systems the differences between

binary files are stored inefficiently. This particularly applies for objects that are

serialized into binary files.

The authors propose an object version approach (Firmenich 2001, Firmenich 2002, Beucke

and Beer 2005) that is based upon the idea of VCS. If a VCS is used in an object version

approach some extensions have to be done:

• Creation of subsets: Object version sets cannot be predefined as it is the case with

documents. Instead, different engineering domains and many changes during the

planning process require a flexible description. An object extension via application

independent attributes − called features − is proposed. The selection of subsets is

based on a feature algebra.

• Storing object graphs: Object graphs have to be serialized into documents to be

versioned with VCS. Each object is stored in a separate file. The name of the file has

to be unique and persistent to be identified as a version of an existing file.

• Merging variants: The version graph is stored with the help of features since a VCS

is not able to store graphs but only trees that do not contain merges.

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 3707

SYSTEM ARCHITECTURE

The system architecture proposed for an object versioning approach in civil engineering can

be divided in layers (Figure 1).

From a vertical view there is a local layer (engineering application and workspace) and a

central layer (project) that are connected on demand via a network. From a horizontal view it

can be distinguished between application and persistent model. The interface between them

is the selection component.

Application

Object model

Workspace

Selection

Sandbox

networkProject

Repository

Selection

Figure 1: System Architecture (Beer 2006, Excerpt)

COMPONENTS

Engineering Application

The engineering application is used to solve engineering tasks. Subsets of the common

planning material are processed. Intermediate results are stored locally. The application

cannot process versioned models in general.

Workspace

The workspace enhances the model and the functionality of the engineering application for

distributed processing.

An application independent element model that consists of elements with features

enhances the object model. Application independent relations − called bindings − as well as

the version graph are formulated with these elements. This approach enables a deferred

model update.

The functionality needed to enhance the application is a generic serialization mechanism

for object and element models generating a set of persistent objects and elements in the

sandbox and a synchronization of the local sandbox with the remote repository (see

operations below).

Project

The project manages the repository and communicates with the planners’ workspaces to

synchronize their sandboxes with the repository.

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 3708

Object Model

The object model contains objects with attributes und references between objects.

Sandbox

The sandbox is the persistent representation of the object model and element model. It

consists of a set of objects and elements. Additionally, bindings and version data are stored.

Repository

The repository is the persistent representation of all stored versions from the sandboxes of all

participating planners. It additionally stores the binding graph and version graph.

OPERATIONS

Operations are applied to one specific model or serve to synchronize two models (Figure 2).

store

checkout
load

commit

update

merge process

SandboxRepository
Object
model

release

Figure 2: Operations, Beer 2006

Checkout and commit

Operation checkout transfers copies of selected object versions from the repository to the

sandbox. Consistent subsets have to fulfill specific conditions (Beer 2006). Results are

published in the repository via operation commit. New versions of objects and elements are

created as a revision or a variant and the version graph is extended.

Load and store

Sandbox data is deserialized via load operation of the workspace. The result is an object

model that can be serialized via store operation. Both operations consider features that are

managed outside the application in the workspace.

Update

Long-term transactions may lead to obsolete planning material in the sandbox. Operation

update determines obsolete objects and transfers current versions. This may need user

interaction to define versions to be transferred.

Merge and release

Variants are merged by the homonymous operation. The feature algebra supports the user in

defining the variants to be merged. Published results that can be used for further planning or

that are legal states can be released via operation release. A valid release state has to fulfill

some conditions (Firmenich and Beer 2003, Beer 2006).

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 3709

FORMAL DESCRIPTION

MODELS

Object Model

The object model can be formally described with the following sets and relations (Table 1):

Table 1: Formal Description of the Object Model (Beer 2006, Excerpt)

Set/ Relation/ Mapping Description

Ω The object set contains the persistent identifiers of all objects.

αa , α ⊆ Ω ∪ αa Set of atomic attribute values and all values including non atomic
values (objects).

A , R Set of attribute names and names of reference attributes whose
value is an object.

A ⊆ Ω × α , R ⊆ Ω × (α \ αa) Attribute relation between objects and values, reference attribute
relation between objects and non atomic values.

a : A → A , r : R → R Attribute set with the mapping between attribute relation and
attribute names, respectively between reference relation and
reference names.

O := (Ω, R, r) Object model as named graph with attribute relation as edges,
objects as nodes and attribute names as edge labels.

Sandbox

The sandbox is the persistent representation of the object model and its enhancement with

features that form elements. The element model is described in Table 2:

Table 2: Formal Description of the Element Model (Beer 2006, Excerpt)

Set/ Relation/ Mapping Description

µ The element set contains the persistent identifiers of all elements.

ε : µ → Ω Assigment from elements to objects.

β Set of feature values (atoms, collections, element identifiers).

F Set of feature names.

F ⊆ µ × β Feature relation between elements and feature values.

f : F → F Feature set, mapping between feature relation and feature names.

E := (µ, F, f) Element model as named graph with feature relation as edges,
elements as nodes and feature names as edge labels.

B ⊆ µ × µ Binding relation as an application independent model structuring.

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 3710

Repository

The repository stores versions of different sandboxes and their development in a version

graph. The extension of the formal model of the sandbox is shown in Table 3:

Table 3: Extension of the Sandbox’ Formal Model in the Repository (Beer 2006, Excerpt)

Set/ Relation/ Mapping Description

O , M Set of object/ element versions.

∆ , M∆ = M ∪ ∆ Set of virtual versions that are used in the version graph to mark
versions as first versions or deleted versions.

V ⊆ M∆ × M∆ \ ∆ × ∆ Version graph.

B ⊆ M × M Binding graph.

ω : O → Ω Mapping between object versions and objects.

m : M → µ Mapping between element versions and elements.

OPERATIONS

Operations modify the sets and relations of the formal model described above. Beer 2006

defines them in detail.

SELECTION

For the selection of subsets an algebra of sets based on feature logic (Smolka 1992, Zeller

1997, Firmenich 2001) is proposed. An extension with operations that provide version

functionality is shown in Table 4. The specific features in, src and dst are used for elements

of a set and for the first/ second element of a relation. Vn is the transitive hull of the version

relation. The language is called object version query language (OVQL, Beer 2006).

Table 4: Feature Logic and Object Version Query Language (Beer 2006, Excerpt)

Operation Description

{S,T,…} , [S,T,…] Union/ intersection of sets S, T, …

f:S All elements whose feature f has a value from set S (selection).

S.f All values for the feature f of elements from set S (extraction).

prev(S) := [in:V,dst:S].src The first versions of all versions from S.

anc(S) := [in:Vn,dst:S].src Ancestors of all versions from S.

desc(S) := [in:Vn,src:S].dst Descendants of all versions from S.

rev(S) := [in:V,src:S].dst Revisions of all versions from S.

var(S) := rev(prev(S))\S Variants of all versions from S.

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 3711

IMPLEMENTATION CONCEPT

The implementation concept that bases upon the system architecture (Figure 1) is shown in

Figure 3. The reuse of standard software for technical processing, storage and versioning is

an advantageous implementation strategy.

VCSServer VCSClient

Application

object
versions

objects

SandboxRepository

FLServer FLClient Workspace

elements
element
versions

n
e
tw

o
rk

FeatureLogicFeatureLogic Stream

version
data

Project

Figure 3: Implementation Concept (Beer 2006, Excerpt)

COMPONENTS

Engineering Application

All engineering applications that provide an object oriented programming interface are

capable to be used with that approach in general. For a pilot implementation the open source

engineering platform CADEMIA (www.cademia.org) is used.

Workspace

The workspace uses the streaming concept of the programming language Java (Sun 2003) to

serialize the object and element graph into an object and element set (Firmenich et al. 2005).

A VCS serves to version the object set. Unlike this approach, the element set is versioned by

a data store independent FeatureLogic component. The FeatureLogic component provides a

flexible and powerful mechanism to select subsets with the help of features via a language

called Feature-Logic. With an available VCS, this would be possible only to a limited extent.

Thus, the workspace uses two clients to synchronize the sandbox with the repository: a

version control client for the objects and a feature logic client for the elements. For the pilot

implementation the concurrent versions system (CVS) and Subversion (SVN, Collins-

Sussman 2004) were used.

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 3712

Project

The project starts two servers that wait for incoming messages: a version control server and a

feature logic server. Both servers are responsible for different parts of the repository: the

object version model respectively the element version model.

Object Model

The Java object model is assumed. Therefore, a generic serializer was implemented

(Firmenich et al. 2005)

Sandbox

The sandbox consists of three parts: the persistent object model, the persistent element model

and additional version information of the VCS. Since the amount of data is relatively low,

this information can be stored in the local file system. Objects and elements are stored in

separate files with persistent names that are to be maintained during the whole life of this

information.

Repository

The repository consists of two parts: the persistent versioned object model and the persistent

versioned element model. The objects are stored incrementally with the VCS. The elements

are stored by the FeatureLogic component in a relational database. This is appropriate since

the element model consists of a small number of sets and relations.

OPERATIONS

Version Control System

Version control systems offer operations that are appropriate to be used for the approach

proposed: checkout, commit and update. The tag command to mark subsets is not used since

our investigations revealed that the repository structure is not suitable for a fast selection of

subsets via tags.

Additional implementation

The operations on the element model have to be newly implemented. Operations that read

from or write to the sandbox use a serialization concept and Java streams. The Feature-Logic

structure of the persistent element model is created by the FeatureLogic component. The

component provides operations for the version and binding graph.

Operations that read from or write to the repository use the same FeatureLogic

component. This component is formulated independently of the data store. Different

implementation types have been developed: one for a transient element model in the heap,

one for a persistent element model in the file system and one for a persistent element model

in a relational database.

Synchronization over the network is done by Java serialization and Java sockets. The data

exchange is encapsulated by messages.

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 3713

PROTOTYPE

Within a prototypical implementation of the concept the open source engineering platform

CADEMIA (www.cademia.org, Figure 4) is used. This platform supports application features

as well as user features. They can be used for storing version and binding information.

Bindings are supported by this platform, too. The workspace functionality is implemented by

separate commands that can be registered within the platform. Commands use generic

workspace functionality and add system specific user interaction and visualization.

workspace commands:
open, store, checkout,
commit, update, merge

features

Figure 4: Pilot Implementation

CONCLUSIONS

The following aspects are in the focus of future research:

• Complexity: How can the complexity of this approach be handled by the engineers?

Richter et al. 2006 proposes the development of flexible and powerful graphical user

interfaces.

• Consistency: A transaction concept for the synchronization of object and element

versions in the repository is needed to ensure model consistency.

• Integration of engineering applications: The concept has to be proven with different

engineering applications using standard models like IFC (Nour et al. 2006). The IFC

model can be used for the standardization of the feature names that is necessary for

the integration of different applications.

• Operative modeling: Koch et al. 2006 investigates the standardization, exchange and

versioning of operations that are performed to create a model.

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 3714

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support by the German Research

Foundation (Deutsche Forschungsgemeinschaft DFG) within the scope of the priority

program ‘Network-based Co-operative Planning Processes in Structural Engineering’.

REFERENCES

Beer, D. G., and Firmenich, B. (2003) “Freigabestände von strukturierten Objekt-

versionsmengen in Bauprojekten”. Internationales Kolloquiums über Anwendungen der

Informatik und Mathematik in Architektur und Bauwesen (IKM), Weimar, Germany.

Beer, D. G. (2006). Systementwurf für verteilte Applikationen und Modelle im

Bauplanungsprozess. PhD Diss, Civil Engineering, Bauhaus-Universität Weimar. Shaker,

Aachen, Germany.

Beucke, K., and Beer, D. G. (2005) “Net Distributed Applications in Civil Engineering:

Approach and Transition Concept for CAD Systems”. International Conference on

Computing in Civil Engineering 2005, ASCE, Cancun, Mexico.

Collins-Sussman, B., Fitzpatrick, B. W., and Pilato, C.M. (2004) Version Control with

Subversion. Beijing, O’Reilly.

Firmenich, B. (2001) “CAD im Bauplanungsprozess: Verteilte Bearbeitung einer

strukturierten Menge von Objektversionen“, PhD thesis, Civil Engineering, Bauhaus-

Universität Weimar. Shaker, Aachen, Germany.

Firmenich, B. (2002) “Operations for the distributed synchronous cooperation of a shared

versioned data model in the planning process”. Computing in Civil and Building

Engineering (ICCCBE-IX), Taipei, Taiwan.

Firmenich, B., Koch, C., Richter, T., and Beer, D. G. (2005) “Versioning structured object

sets using text based Version Control Systems”. Conference on Information Technology

in Construction, CIB W78, Dresden, Germany, 105-112.

Hass, A.M.J. (2003) “Configuration Management Principles and Practice”. The Agile

software development series. Boston, Addison-Wesley.

Koch, C., and Firmenich, B. (2006) “A Novel Diff and Merge Approach on the Basis of

Operative Models”. ICCCBE 2006. Montreal, Canada.

Nour, M., Firmenich B., and Beucke, K. (2006) “A versioned IFC Database for Multi-

disciplinary Synchronous Cooperation”. ICCCBE 2006. Montreal, Canada.

Richter, T., Firmenich, B., and Beucke, K. (2006) “Diff And Merge for Net-Distributed

Applications in Civil Engineering”. ICCCBE 2006. Montreal, Canada.

Smolka, G. (1992), “Feature Constraints Logics for Unification Grammars“, The Journal of

Logic Programming, New York.

SUN (2003), Java
TM

 2 Platform, Standard Edition, v 1.5, API Specification, Copyright 2004

Sun Microsystems, Inc.

Sutton, M.J.D. (1996), Document Management for the Enterprise: Principles, Techniques,

and Applications. Wiley, New York.

Zeller, A. (1997), Configuration Management with Version Sets, PhD thesis, Fachbereich

Mathematik und Informatik der Technischen Universität Braunschweig, Germany.

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 3715

