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ABSTRACT  

This paper deals with the application of Artificial Neural Network (ANN) to estimate 
elastic kinematic seismic bending moment at pile head in end bearing piles embedded in 
homogeneous soil layer overlying bed rock which is subjected to harmonic excitation. 
The data generated for training and testing the ANN models is based on Beam on 
Dynamic Winkler Formulation. Two ANN models are developed, namely ANN1 and 
ANN2.  ANN1 predicts the pile head moment when bed rock is excited by natural 
frequency of the overlying soil deposit. ANN2 is applicable to excitations with any 
frequency. The inputs to ANN1 are the length to diameter ratio of pile and ratio of the 
elastic modulus of pile to that of soil. The inputs to ANN2 also include the frequency 
ratios. The output of ANN models is the normalized pile head bending moment. Feed 
forward Levenberg-Marquardt back propagation algorithm is used to train the ANN 
models. To evaluate the performance of the ANN models, correlation coefficients and 
coefficient of variation of the ratio of predicted to target response with reference to unity 
as mean are used.   

Both the ANN models mapped the target response to a reasonable accuracy, and show 
a promising application in the area of seismic soil pile structure interaction. The ANN 
models developed in this study can, therefore, be used in practice for preliminary design 
purposes to estimate pile head moment with little effort of calculations in a hand held 
programmable calculator.  
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INTRODUCTION 
The passage of seismic waves in soil imposes curvatures, and thereby bending moments 
in the pile along its length. The magnitude of this moment can be sometimes quite high 
and shall be evaluated as part of any dynamic soil pile structure interaction problem 
(Irshad A. & Akhtar N.K. 2006, Mizuno, H. 1987).  

For fixed head piles embedded in homogenous soils, the kinematic bending moment 
are high at the fixed end of pile, particularly at frequencies near the fundamental 
frequency of the soil deposit. A situation of particular importance occurs when the 
predominant frequency of the seismic input matches the natural frequency of soil deposit. 
In such cases, the kinematic bending moment at fixed head of pile may be larger than the 
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inertial bending moment, especially when the natural frequency of the supported structure 
is far from the seismic input predominant frequency. 

  Amongst the simplest techniques to find kinematic pile response is the Beam on 
Dynamic Winkler Formulation which necessitates carrying out free field site response 
analysis; imposing free field displacement time histories on winkler supports to excite the 
pile; and carrying out dynamic analysis to find the response of pile. In this paper 
Artificial Neural Network is used for function approximation to estimate normalized 
fixed pile head moment (Mn) due to kinematic interaction. Two ANN models are 
developed in this paper. The first model, ANN1 estimates Mn when pile base is excited 
by the fundamental frequency of the overlying soil deposit. The second model, ANN2 is 
applicable for a range of excitation frequencies. Feed forward Levenberg-Marquardt back 
propagation algorithm is used to train the ANN models. Using the trained ANN model, 
the kinematic bending moment of a fixed head pile can be estimated without performing 
any dynamic analysis.  

PARAMETERS OF SEISMIC SOIL PILE INTERACTION 
Figure 1 shows the layout of the pile soil system considered in this study. The fixed head 
pile rests on rock formation, which is considered as a hinged support. The bedrock is 
excited by vertically propagating S-waves characterized by a harmonic displacement of 
ug (t) =Ug eiωt, where Ug is the ground displacement amplitude and ω is the excitation 
circular frequency. The pile group effect is not considered as it plays a negligible role in 
kinematic interaction (Gazetas et al., 1992).  

Beam on Dynamic Winkler Formulation (BDWF) is adopted in this paper to generate 
data for ANN models training. The ranges of input parameters selected to generate data 
for ANN1 and ANN2 are given in Table 1. The considered ranges cover most of the 
practical situations.   

 
  

Ep = elastic modulus of pile 
d = pile diameter 
Es = elastic modulus of soil deposit 
Vs = shear wave velocity of soil 
ω1 = first natural frequency of soil 
deposit 

z 

L 

ug=Ugeiωt 

Figure 1: Pile Soil System 
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Table 1: Ranges of Parameters used for data generation 

Parameter Minimum Maximum Increment Data points 

 Ep/ E1 100 9600 500 20 

L/d 10 40 2.5 13 

Frequency ratio ao=ωd/Vs 0.01 0.8 0.01 80 

Total data (ANN1)    260 

Total data (ANN2)    20800 

BEAM-ON-DYNAMIC-WINKLER-FOUNDATION (BDWF) MODEL  
Data for ANN models was generated by modeling the soil pile system as BDWF, which  

is schematically shown in Figure 2. The pile is connected to free field soil along its length 
by continuously distributed linear springs (kx) and dashpots (cx) that resist the lateral pile 
motion. The support of the springs and dashpots are excited by the free field 
displacement uff(z,t).  

 
Seismic free-field motion Uff(z) Seismic pile motion Up(z) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Beam-On-Dynamic-Winkler Foundation model 
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Dashpot coefficients cx 

During soil pile interaction, the seismic energy is dissipated through hysteretic (material 
damping) and radiation (geometric damping). The former incorporates the internal energy 
dissipation in the soil, and is, thus related to soil damping ratio, βs and the later is a 
geometric effect and represents the radiation of energy by waves spreading geometrically 
away from the pile soil interface. Hence the distributed dashpot/length of pile is, cx = cr + 
cm, where cr= distributed radiation dashpot coefficient and cm= distributed material 
dashpot coefficient.  

   In this study these coefficients are adopted from Gazetas, G. & Dobry, R. (1984a,b). 
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Where Vc is the apparent velocity of the extension compression waves taken as the 
Lysmer’s analog velocity VLa and Vs is the shear wave velocity of soil under 
consideration.   
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three-dimensional effects arising from the stress-free boundary are better reproduced by 
use of Vc≅Vs  

Solution of differential equation governing kinematic response of piles 
The governing differential equation for harmonic excitation ug(t) at the bed rock is 
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Sx is complex impedance function.U and are displacement amplitudes of free 
field and pile at depth z respectively and hyphen over them in above differential equation 
represents differential with respect to depth z.  

(z)
^
ff (z)

^
ppU

   Equation has the general solution 

)(zff
^
Us

D4

D3

D2

D1

zieλzeλzeλz[e(z)pp
^
U +−−=



















λi  

4λ4*q

α
s

−
=  , where is complex wave number = *q

siβsV

ω

+
 

D1, D2, D3, and D4 are arbitrary constants to be evaluated through boundary 
conditions. 
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Boundary Conditions  

The boundary conditions suggest that rotation and shear at top of pile are zero i.e. 
θ(0,t)=0, V(0,t)=0, respectively and moment at pile base is zero, M(L,t)=0; and pile 
displacement at base is equal to ground displacement at bed rock i.e. up(L,t)=ug(t).  

   The solution of the differential equation is implemented in MATLAB environment 
as a general case for a single homogeneous soil layer to make it robust for parametric 
study. The code first evaluates the free field displacements as a function of depth, their 
first, second, and third derivative. Determine four arbitrary constants through four 
boundary conditions and then evaluates normalized pile head bending moment Mn = 
M/(ρp ω2 d4), where M is the pile head bending moment, and ρp is the pile density. 

ARTIFICIAL NEURAL NETWORK (ANN) MODEL  

ARCHITECTURE OF ANN MODEL FOR ESTIMATING PILE HEAD MOMENT  

ANNs are data processing paradigms constructed of highly interconnected nodes 
(neurons) that map a complex input pattern with a complex output pattern (Dowla, F.U. 
and Rogers, L.L. 1995, Hagan, M.T., Demuth, H.B., and Beale, M. 1996). A Levenberg–
Marquardt back-propagation algorithm was used in this research. It is one of the fastest 
methods available for training moderate-sized feed-forward neural networks (Hagan, 
M.T., Demuth, H.B., and Beale, M. 1996). The theory and implementation of the 
Levenberg-Marquardt algorithm is given in detail by (More, J.J. 1977). The architecture 
of ANN1 model consisting of an input layer of two input neurons, a hidden layer of two 
neurons, and an output layer consisting of one output neuron is shown in Figure-1. The 
symbols w and b in figure 3 represent connection and bias weights with subscripts 
representing the corresponding neurons between two layers. 
 

Ep/Es 

L/d 

Input Layer 
Hidden Layer Output Layer 

w22,1 

w12,1 

w21,1 

w11,1 
∑ 

∑ 

∑ 

w12,2b12,1
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b11,2 1 

w11,2

1 Mn 

 
For the ANN models developed in this study a tan–sigmoid (the hyperbolic tangent) 

transfer function is used for the hidden layer neurons, and a linear transfer function is 
used for the output neuron. This structure is found to be useful for function 
approximation (or regression) problem under present study.  

Figure:3 Artificial Neural Network  Aarchitecture for ANN1 

The ANN1 model works on two inputs i.e. Ep/Es and L/d while ANN2 model uses 
four inputs Ep/Es, L/d, ao, and ω/ω1, and therefore have two and four neurons 
respectively in the input layers. The output of the ANN models is the normalized pile 
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head moment (Mn) and therefore has only one output neuron. The number of neurons in 
the hidden layer was determined by training several networks with different numbers of 
hidden neurons and comparing the predicted results with the desired output. In this study, 
two to ten neurons were considered for both ANN models. Optimum numbers of neurons 
were found to be two and eight respectively for ANN1 and ANN2. These neurons avoid 
underfitting i.e large training and testing errors and prevent overfitting i.e. low training 
error but high testing error.  

TRAINING AND TESTING ARTIFICIAL NEURAL NETWORK MODEL 
In the training phase of ANN model, the network is supplied with a set of inputs and 
known target values. The network adjusts the connection weights and bias such as to 
reduce the error between the known target and network output. Once the connections 
weights are established that ensure minimum training error, the next phase is the testing 
phase in which the network is presented with examples that are new to the network. The 
network predicts the output using the connection weights and biases established in the 
training phase.  

The data generated to train ANN1 and ANN2 are first randomized and then divided 
into two sets namely the training data set and the testing data set. The data was so divided 
so as to give comparable statistical properties for training and testing (Table 2). Seventy 
percent (70%) of the available data was used for training and 30% was reserved for 
testing.  

Table 2. Statistical Properties of Training, and Testing Data for ANN2 and ANN1(shown 
in parenthesis) 

Input and Output Parameters Data 
Type  

Statistical 
Properties Ep/Es L/d ao   ω/ω1 Mn 

Maximum 9600 (9600) 40 (40) 0.01 20.37 6083.2 (6134) 

Minimum 100 (100) 10 (10) 0.80 0.0637 0.654 (63.9) 

Range 9500 (9500) 30 (30) 0.79 20.3 6082.5 (6070) 

Mean 4830 (4894) 25 (24.8) 0.40 6.47 292.2 (3096) 

Training 
Data 

Standard 
Deviation 2887.7 (2822.6) 9.35 (9.3) 0.23 4.62 567.7 (1777) 

Maximum 9600 (9600) 40 (40) 0.01 20.37 6123.7 (6132) 

Minimum 100 (100) 10 (10) 0.8 0.0637 0.654 (63.9) 

Range 9500 (9500) 30 (30) 0.79 20.30 6123 (6068) 

mean 4896 (4747) 24.87 (25.4) 0.40 6.379 308.7 (2998) 

Testing 
Data 

Standard 
Deviation 2872.5 (3053.7) 9.34(9.56) 0.23 4.58 598.6 (1919.2) 

Preprocessing of the training data is performed so that the processed data was in the 
range of -1 to +1. In this study the training data sets (inputs and targets outputs) are 
scaled (preprocessed) according to 
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P = matrix of the input vectors; T= matrix of the output vectors; Pn=matrix of scaled 

input vectors; Tn= matrix of scaled target output vectors; minP= vector containing 
minimum values of the original input; maxP = vector containing maximum values of the 
original input; minT = vector containing the minimum value of the target output ( i.e. 
minimum value of Mn in the training dataset); maxT = vector containing the maximum 
value of the target output ( i.e. maximum value of Mn in the training dataset). The scaled 
data was then used to train the neural network. The data from the output neuron have to 
be postprocessed to convert the data back into unscaled units to get actual Mn value 
according to  

minTminTmaxTTnT +−+×= )()1(5.0       (3) 
The preprocessing and postprocessing parameters are given in Table 3. 

Table 3: Pre- and Post-processing Parameters for ANN2 and ANN1 (in parenthesis) 

 Ep/Es1 L/d ao w/w1 Mn(max) 

Minimum 100 (100) 10 (10) 0.01 0.0637 0.6641 (63.92) 

Maximum 9600 (9600) 40 (40) 0.80 20.4 6083.2 (6133.9) 

 

The training was carried out until the average sum squared error over all the training 
patterns was minimized. This occurred after about 1000 cycles of training. The 
connection and bias weights obtained after ANN training can be used to estimate the Mn.  

PROCEDURE FOR ESTIMATING PILE HEAD MOMENT  

The ANN model described in this paper can be used to predict the Mn. The procedure 
can easily be programmed into a computer, or performed using a calculator capable of 
performing simple matrix operations. The input data is first preprocessed according to 
equation-1 to get scaled input vector Pn. 

The Mn is then obtained through the network as follows: 
Tn = [W2 x { tanh(W1x Pn + B1) } + B2]     (4) 
Where Tn = matrix of scaled output vector and 

W1= weight matrix representing connection weights between the input layer neurons and 
hidden layer; W2= weight matrix representing connection weights between the hidden 
layer neurons and the output neuron; B1=bias vector for the hidden layer neurons; B2= 
bias vector for the output layer neuron.   

The scaled output Tn is then unscaled using equation-3 to obtain Mn.  
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ANN MODEL PREDICTION  

In order to evaluate the capability of the ANN model, the model was presented with new 
data that was not part of the training data set and the Mn calculated. The correlation 
coefficient (R) and coefficients of variation (cv) of the ratio Mn (BDWF) to Mn(ANNs) 
with reference to unity as mean are given in table-4. It is seen that the prediction of 
ANN1 model is superior to ANN2 model. This is due to the fact that the response is quite 
sensitive to the frequency of excitation, being grossly reduced at high ω/ω1 ratios. 
However, from practical point of view, the ANN2 estimation of Mn is quite satisfactory 
because the error term is larger at low moments which occur at high ω/ω1 ratios. The 
contribution of these high modes to actual seismic input signal will be quite low.  

Table 4: Prediction Parameters of ANN1 and ANN2 

 Testing Data Training Data Complete Data 
ANN Model 

cv(%) R cv(%) R cv(%) R 

ANN1 3.1 0.99 3.3 0.99 3.26 0.99 

ANN2 16.5 0.99 16.2 0.99 16.3 0.99 
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Figure 4: ANN1 model prediction
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Figure 5: ANN2 model prediction 
 

CONCLUSION 
The ANN models used in this paper have performed quite satisfactoraly and have 
potenstial to be used for more complex seismic soil pile structure interaction problems 
with more complex configration of the nuerual network architechture. The ANN model if 
used to simulate the closed form solutions can drastically reduce the amount of 
calucalations involoved and can give quite satisfactory results, at least for preliminary 
design purposes. It has the advanatage that it can be implemented in simple hand 
calculator capable of matrix operation.  

Secondly, if real data of dynamic soil pile structure interaction is available either on 
prototype or model, the ANN can evaluate the complex response coupling the nonlinear 
parameters, which are otherwise difficult to numerically model.  

REFERENCES 
Dowla, F.U. and Rogers, L.L. (1995). ”Solving problems in environmental engineering 

and geoscience with artifical neural networks” , MIT, Cambrdge, Ma. 
Gazetas, G. & Dobry, R. (1984a). “Horizontal response of piles in layered soils” J. 

Geotech. Enggn Div. Am. Soc. Civ. Engrs. 110, No.1,20-40. 

 

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 4033



 

Gazetas, G. & Dobry, R. (1984b). “Simple radiation damping model for piles and 
footings. Horizontal response of piles in layered soils”. J. Geotech. Enggn Div. Am. 
Soc. Civ. Engrs. 110, No.6, 937-956. 

Gazetas, G. K. Fan, T. Tazoh, K. Shimizu, M. Kavvadas, and N. Makris (1992). “Sesimic 
Pile-Group-Structure Interaction. Piles Under Dynamic Loads” Geotechnical Special 
Publication No.34 pp.56-93. 

Hagan, M.T., Demuth, H.B., and Beale, M. (1996) ”Neural Network design”, PWS, 
Boston. 

Irshad A., & Akhtar N.K. (2006). ”Kinematic Seismic Response of Piles- Importance and 
Modeling” GeoCongress 2006: Geotechnical Engineering in the information 
Technology Age.              

Kavvadas M. and G. Gazetas (1993), “Kinematic seismic response and bending of free-
head piles in layered soil” Geotechnique 43, No.2, 207-222. 

More, J.J. (1977), ”The Levenberg-Marquardt algorithm: Implementation and theory.”, 
Numerical Analysis, Watson, G.A. ed., Springer, Heidelberg, 105-116.  

Mizuno, H. (1987). “Pile damage during earthquakes in Japan” Dynamic Response of 
Pile Foundations (ed. T. Nogami), pp. 53-78. New York: American Society of Civil 
Engineers. 

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 4034


	ABSTRACT
	KEY WORDS
	INTRODUCTION
	PARAMETERS OF SEISMIC SOIL PILE INTERACTION
	BEAM-ON-DYNAMIC-WINKLER-FOUNDATION (BDWF) MODEL
	Sprin Stiffness kx
	Dashpot coefficients cx
	Solution of differential equation governing kinematic response of piles
	Boundary Conditions


	ARTIFICIAL NEURAL NETWORK (ANN) MODEL
	Architecture of ANN Model for Estimating Pile Head Moment
	Training and Testing Artificial Neural Network Model
	Procedure for estimating Pile Head Moment
	ANN Model Prediction

	CONCLUSION
	REFERENCES

