
1 INTRODUCTION  

1.1 Motivation 
As stated above, getting data out of a digital model 
can soon get very complex. But complexity -if well 
documented- is not a first place issue. Access to 
structures and values of a model instance often re-
quires internal knowledge about commonly used 
good practices on how to use data structures if alter-
natives exist. Although publicly available the model 
schema is sometimes not enough for working effi-
ciently and unambiguously with model data. 
Several commonly used model types (e.g. IFC) have 
their primary focus on product description, which is 
well suited for data exchange; while data analysis is 
often hindered by the way data is structured. For ex-
ample IFC connects properties with entities through 
a plethora of at least four indirections before the re-
quested value is finally in sight. While this loose 
coupling is a very elegant and flexible mechanism 
for assigning properties to elements, it is quite im-
practical for inquiries on the data set. This is inde-
pendent of the data persistence technology used. Ei-
ther relational or object-oriented modeling will have 
to resolve the deep indirection trees, making either 
table joins or equivalent OO mechanisms necessary. 
Depending on the underlying problem, this might ei-
ther be solved by converting the logical model struc-
ture into a technical database structure in order to 
optimize data access (performance, complexity) or 
leads into complex query expressions. The price for 
the first solution is often conversion and redundancy 
management. Moreover, applications build on top of 
the database structures rather than the native model 
structures will find it harder to implement domain-
specific logic, which by definition is using the native 

domain-specific concepts. As for the second solu-
tion, complex queries might be hard to maintain and 
error prone, scaling down application robustness. 

1.2 Vision 
The internal digital representation of a domain-
specific model is the result of applying methods of 
computer science to the concepts of the respective 
problem domain. Although reflecting the under-
standing of the domain concepts, syntax and seman-
tics the digital model carries the image of computer 
science, not of the original problem domain. An ap-
proach of using this very valuable computer model 
as an underlying foundation while expressing ana-
lytic interactions in plain domain-specific language 
would strengthen the ability of domain-experts to 
use domain-models, without having to be a software 
specialist at the same time. 
E.g. instead of going along the following indirection 
path to find the floor area value of all office rooms 
in an IFC model 
 
IfcSpace  

IfcRelDefinesByProperty  
IfcSpaceProgram  

IfcPropertySingleValue  
IfcLabel:OccupancyType == “office” 
… 
 

As an analyst you’d rather like to say: “total office 
room floor area” meaning the summed up floor area 
of all rooms of type ‘office’ on the respective floor 
in the respective building. Instead of expressing how 
to collect the values by using the syntax of the digi-
tal model, a declarative expression doesn’t concern 
about the ‘how to’. Instead it focuses on the ‘what’. 
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How can this be achieved? This article tries to lay 
out an approach, conceptually and technically, how 
the separation of concerns between domain experts 
and technical experts can be encapsulated, resulting 
into better usability and software and the re-use of 
analysis concepts and technical components alike. 
The following example should show the principle. 

1.3 Benefits  
Separating domain concepts from technical concepts 
not only encourages the utilization of digital models 
by domain experts. The capability of defining prob-
lem-centered namespaces could even support cross-
domain collaboration of analysts of different do-
mains. A view exposing familiar structures and con-
cepts can be provided even if the analysis belongs to 
more than one domain. The mapping layer between 
expert view and technical view must be flexible 
enough to reflect changing requirements from the 
expert level. This also leads to more robust and re-
usable applications. In the end, complexity of digital 
models need not be challenging, as it comes along 
packed within suitable interfaces.  

2 EXAMPLE SCENARIO 

The local administration of X city is planning a new 
bus line to enhance the public transportation system. 
The route should link business areas and living areas 
by providing an alternative option to travelling by 
car for reducing office-hour traffic significantly. 
 
Data Sources 
The communal cadastral system, often basically a 
GIS system, contains the city map with real estate 
and city road information. Each real estate entry has 
a reference to an electronic building document con-
taining an IFC-based model of the building1. The 
technical specification is of no relevance for the 
concept.  
 
Algorithms for Analysis  
Different route alternatives have to be compared. 
The catchment area of the optimal route would col-
lect most commuters in the morning and let them 
disembark as close as possible at their working loca-
tion and vice versa in the evening. Although it’s not 
possible to link everybody’s living location with the 
individuals working location, it seems statistically 
sound enough to optimize the traffic line by finding 
the best coverage of the related embarking and dis-
embarking areas. The floor area of all buildings in 
the covered region is summed up, separated into the 

                                                 
1 admittedly quite an optimistic assumption by now, making 

it necessary to have an alternative instrument if this is not 
given 

different occupancies like type ‘office’, type ‘pri-
vate’, etc. In this simple example we leave other 
considerations like route length, time of travelling, 
line switching and so on out of scope. The intention 
of this example is not to build up a sophisticated 
analysis model for urban traffic optimization. The 
focus is on domain-spanning analysis and the advan-
tages of putting an abstraction layer between the 
software-centered and the domain-knowledge-
centered view. We could apply nearly the same algo-
rithms for placing block heat and power plants at op-
timal locations in the urban area and –even more 
important- separation of concerns into two separate 
physical layers would promote the re-use not only of 
concepts but also of components. 
 
Basic Assumptions 
− Coverage area is calculated assuming a maximum 

walking distance to the route. Beyond that dis-
tance it wouldn’t be attractive to utilize the bus 
line.  

− An estimation of the amount of people involved 
is given by the person ratio per square meter of-
fice floor and per square meter private home floor 
respectively.  

 
Involving different Algorithms 
As a first rough estimation, the coverage area could 
be calculated by applying a direct surface to surface 
connection between building and bus route. Build-
ings within the maximum distance belong to the 
coverage area. 
In a more meaningful (but also more time consum-
ing) calculation the exact walking distance between 
building location and bus route could be calculated 
by called a navigation service (e.g. Google maps). 
Pursuing the concept of dynamic business logic in-
volvement through the use components loaded at 
runtime, different algorithms for calculation could 
be consulted declaratively. 

3 DECLARATIVE ANALYSIS ENVIRONMENT 

3.1 Design Principles and Requirements 
A systematic solution has to meet the following re-
quirements. 
 
− Separation of conceptual and technical level 
− Extensibility on both levels 
− Configurable domain-specific language support 
− Independence of underlying domain model 
− Independence of underlying data model 
− Works with OO and relational paradigm alike 
− Use of mainstream software technology 



− More than one model type simultaneously (cross-
domain)2 

3.2 System Architecture Concepts 
Separating the domain-specific language (DSL) 
layer from the data technology layer requires an ab-
straction layer between them. The language used in 
the DSL-Layer could be considered as an intermedi-
ate language that will be subject of further interpre-
tation. The first step of building an interpreter is to 
define the language to interpret. This language will 
be defined in the EBNF (Extended Backus-Naur 
form3) notation, which is itself a language to de-
scribe other languages. This must be done by do-
main experts eventually supported by computer sci-
ence experts. It includes the definition of operators, 
keywords and functions used in the domain-specific 
language, e.g. 

 
Rooms Occupancy(“office”) FloorArea 

or alternatively 
FloorArea OFALL Room WITH occupancy “office” 
 
This virtually exposes a room element with occu-
pancy and a floor area attribute to the user. The se-
lection of keywords and operators is entirely up to 
the domain expert. In the first example above the 
‘ ’ is used as dereferencing operator which would 
evaluate internally to a query for room elements 
with their occupancy attribute set to “office”. The 
second example uses a different syntax expressing 
identical semantics. Independent of the DSL design, 
after interpretation both expressions would return 
the same list of values of the floor area of each 
room. In this simple example the DSL consists of 
the operators OFALL and WITH, the keywords 
FloorArea, Room and occupancy and the parameter 
“office”. Obviously the originator of the DSL is ab-
solutely free in choosing the names for operators and 
keywords.  
DSLs have to be interpreted by an interpreter4. An 
interpreter is a program that is able to dynamically 
execute commands written in a defined language, in 
this case the DSL. E.g. a mathematical expression 
evaluator should enable dynamic input and calcula-
tion of formulas, whereas a model analysis inter-
preter should be able to evaluate terms, characteriz-
ing concepts and properties of the given model 
domain.  
It must be able to maintain the returned sets of ob-
jects for further processing. A DSL has to be unam-

                                                 
2 Avoiding the term ‚multimodeling here which is discussed 

extensively in [Hess09] and others (see References section) 
3 ISO Standard 14977 
4 or transferred into machine by a compiler 

biguous, but it is by intention not Turing-complete in 
the sense of general purpose languages (GPL).  
The creation of an interpreter can be largely sup-
ported by tools. As known, lexical analysis is the 
process of converting a sequence of characters into a 
sequence of tokens. Programs performing lexical 
analysis are called lexical analyzers or lexers. To-
kens have a meaning given by a grammar (data type, 
keywords, functions, etc.). A parser can then create 
an abstract syntax tree (AST), representing the hier-
archy among the tokens. The AST aligns with the 
syntax defined for the DSL.  
In order to separate the evaluation of the syntax tree 
from the model logic itself, we take advantage of the 
visitor pattern (Gamma et al. 1995).  
Visitors can be implemented separately in a modular 
way, providing a means of adding domain-specific 
evaluation logic (semantics) by configuration,  
 

Figure 1. DSL Interpreter 
 
according to analytic requirements. Several tools ex-
ist for the semi-automatic creation of lexers and 
parsers. They create program code from EBNF nota-
tions. A closer description of how to create an inter-
preter is beyond the scope of this paper.  



 
Figure 2. AST instance of sample expression 
 
Linking Syntax to Semantic 
The main reason for using DSLs is to hide technical 
complexity and let the domain expert use his own 
language. The interpreter can traverse and “under-
stand” analytic expressions given in the domain-
specific language. The semantics is implemented in-
side the interpreter. Encountering a node in the AST, 
the interpreter knows with function to call and which 
set of data to provide as parameters. Important is, 
that there is a well-defined relation between naming 
conventions used in the AST and in the visitors. This 
is being assured by using the same EBNF notation 
for the lexer and the implementation of the visitor. 
In the expression “a + b” everybody has an immedi-
ate idea about the meaning of the plus-sign. On a 
closer look, this certainty turns out to be unfounded. 
It depends on the data type of ‘a’ and ‘b’ which op-
erations to be performed. E.g. a matrix operation “a 
+ b” differs deeply from a simple addition of integer 
values. Some programming languages offer a 
mechanism for over-defining existing operators (e.g. 
operator overloading in C and C++), for re-using op-
erators within different contexts. In our example, a 
visitor object (implementing the visitor pattern) will 
be developed for a specific context. This context is 
given by the problem domain represented by the un-
derlying model schema (e.g. IFC). Therefore the 
DSL-term ‘Rooms WITH occupancy “office” ‘ will 
evaluate always to the same syntax tree, but the visi-
tor implementation evaluating the tree will be de-
pending on the actual model type. E.g. a CityGML 
model will have another notion of building locations 
as an IFC model, therefore the algorithm calculating 
the distance between the building location and a 
given route (e.g. polyline) queries for different enti-
ties in the model and resolves links due to the char-
acteristics of the specific model type.  
In our case the DSL-Interpreter represents the lan-
guage of a specific analysis; the visitor implementa-

tion encapsulates the access methods to the domain 
model. One DSL-Interpreter might therefore work 
together with different visitors, each representing the 
semantics of a concrete DSL.  
 
Dynamic method binding 
Two problems are still waiting for a solution here:  
 
− How to dynamically associate domain-specific 

language syntax (AST) with the domain-model-
specific semantics (visitor object)?  

− How to add a visitor object dynamically at run-
time? 

 
Another design pattern comes to the rescue: the Ab-
stract Factory Pattern (Gamma et al. 1995). In our 
case it will be a factory for visitor objects.  
 

 
Figure 3. Visitor traversing AST 
 
All we have to know about the visitor object to be 
loaded is the base class from which it has been de-
rived (VisitorBase). The concrete type is (and will 
remain) unknown to the application invoking it.  
According to (Gamma et al. 1995) a factory hides 
the concrete type of an object to be created against 
the application. The application can create and use 
the object without knowing its type. Our goal here 
is, to be able to add functionality by configuration. 
Therefore, the factory object itself needs a dynamic 



mechanism of being able to instantiate new DSL-
visitor class objects. For that, the factory object 
needs to know where to find the code (e.g. assem-
bly), the type name of the new visitor class, and the 
internal name of the visitor class. The internal name 
is for keeping and internal list of available visitor 
classes. 
 
All this information can be kept in an external con-
figuration file being loaded at runtime by the factory 
object. The factory object can then dynamically load 
all referenced assemblies and instantiate the right 
visitor objects on demand (see C# code snippet be-
low).  
 
public static object CreateFactory(string virtualName) 
{  

string path = "../../VisitorFactory.config"; 
XmlDocument doc = new XmlDocument(); 
doc.Load(path); 
XmlNode factoriesNode= 

 doc.SelectSingleNode("//Factories"); 
foreach (XmlNode factoryNode in  

factoriesNode.ChildNodes) 
{ 

if (virtualName.Equals( 
factoryNode.Attributes["virtualName"].Value)) 

{ 
string assemblyAndTypeName =  

factoryNode.Attributes["type"].Value; 
return CreateInstance(assemblyAndTypeName); 

} 
}  

 
The internal list will also have an entry for the do-
main assignment of the respective visitor. This en-
ables the interpreter to invoke the correct factory re-
sponsible for the creation of the visitor object of the 
domain requested. 

 
 
Figure 4. Analysis declarations, instrumentation and execution 
 
For convenient processing the format of the configu-
ration file is XML (see sample below) 
 
 
<?xml version="1.0" encoding="utf-8" ?> 

<configuration> 
<Factories> 

<Factory virtualName="OccupancyAnalysis" type= 
"Factories. OccupancyFactory, AssemblyName1" 

domaineName=”IFC”  
subDomaine=”3.0”/> 

<Factory virtualName=" BusLineAnalysis " type= 
"Factories. BusLineFactory2, AssemblyName2" 

domaineName=”CityGML”  
subDomaine=”1.0”/> 

</Factories> 
</configuration> 

 
At runtime the parser can now invoke the right visi-
tor object factory when encountering the fully quali-
fied function name (e.g. domainName + ’.’ + func-
tionName) in the AST. The factory will create the 
visitor object which will be used to evaluate the re-
lated node in the AST. 

3.3 Technologies and Tools 
ANTLR, ANother Tool for Language Recognition, 
is a language tool that provides a framework for 
constructing recognizers, interpreters, compilers and 
translators from grammatical descriptions containing 
actions in a variety of target languages. Generated 
code for lexers, parsers and the like can be used in-
side applications. ANTLR uses EBNF notations as 
input for code generation. It provides excellent sup-
port for tree construction, tree walking, translation, 
error recovery, and error reporting.  

"Oslo" is the code name for the Microsoft's next 
generation application development platform. "Oslo" 
leverages domain-specific models, languages and 
tools. It promotes the idea of model-driven method-
ology and provides a toolset for the creation of 
DSLs. Two modeling languages MGrammar and 
MSchema and the data format MGraph have been 
developed. The extensible editor Intellipad supports 
the development of schemas and grammars.  

The programming language C#5 has a built-in 
support for conducting queries with the same formal 
query language on all data sources6. According to 
(Akehurst et al. 2008) ‘the recent offering from Mi-
crosoft of the “Orcas” version of Visual Studio with 
C# 3.07 and the LINQ library provides functionality 
almost identical to that of Object Constraint Lan-
guage (OCL8)’. Other than its ‘platform independ-
ence’ the major advantages of OCL over traditional 
Object Oriented programming languages has been 
the declarative nature of the language, its powerful 
navigation facility via the iteration operations, and 
the availability of tuples as a first class concept. 
LINQ / OCL is a powerful mechanism for the speci-

                                                 
5 Standard ECMA-334 and ISO/IEC 23270 
6 LINQ – Language INtegrated Query  
7 C#4.0 release candidate available at time of this publica-

tion 
8 OMG Standard 



fication of an object set in a declarative way. Trans-
lation between declarative expressions of a DSL and 
the respective evaluation expression in the semantic 
layer can therefore be more in sync, avoiding the 
need for changing the paradigm. 

Reflection-oriented programming9 extends the ob-
ject oriented paradigm by the ability of self-
examination, self-modification, and self-replication. 
However, the emphasis of the reflection-oriented 
paradigm is dynamic program modification, which 
can be determined and executed at runtime. Reflec-
tion is used in the visitor factory for type validation 
of visitors loaded dynamically and for inference of 
data types by the interpreter. 

4 APPLICATION 

Now, as the puzzle begins taking shape, we can pro-
ceed with our bus line example on the fully equipped 
analysis environment. The interpreter is now able to 
run the following script: 
modelKA =  

 CityGML.LOAD_MODEL “Karlsruhe”  
In the interpreter the visitor for the CityGML do-
main will be instantiated, the method associated with 
the keyword LOAD_MODEL will be called with the 
parameter “Karlsruhe”, the respective model will be 
instantiated. Finally a model instance will be as-
signed to the variable modelKA, the data type of the 
variable will be inferred for being of type CityGML. 
This, by intention is hidden from the domain user, 
who can fully concentrate on the his/her domain-
centric view. Next the expression 
route = LOAD_ROUTE “BUS_LINE_ALT_1” 
will be processed. This will load the geometric de-
scription of the bus route and stores it in the variable 
‘route’. 
 
In the next step we create objects for the subsequent 
analysis step. It could have been done completely in-
side a visitor object e.g. by using a joined LINQ 
query inside the visitor, but it is shown here explic-
itly for clarity. This will explicitly show a query on 
the data sources of the two domains involved. Using 
a loop over all city buildings we get the building lo-
cation from the CityGML domain and the floor areas 
(office and private) from the IFC domain. Within the 
loop IFC models are being instantiated and queried 
for the respective floor area values.  

ForEach (cityBuilding in modelKA) 
Note that ‘cityBuilding’ is from the CityGML domain 
(inferred by the interpreter) 

                                                 
9 Paradigm driven by reflection is called reflective pro-

gramming 

ifcBuilding = IFC.LOAD_MODEL cityBuilding 
Instantiates the IFC building model referenced in the  
city model 

officeFloor += ifcBuilding.OfficeFloor 
  Uses IFC domain visitor to dereference OfficeFloor,  

consecutive values summed up in the variable officeFloor 

privateFloor += ifcBuilding.PrivateFloor 
Uses an IFC domain visitor to dereference PrivateFloor,  
consecutive values summed up in the variable  
privateFloor 

location = cityBuilding.Location 
Uses CityGML domain visitor to dereference Location in 
the city model 

buildingList.Add(cityBuilding.ID, location,  

 officeFloor, privateFloor) 
Stores the attributes relevant for analysis in a list, one en-
try for each building 

EndForEach 

profile = EMBARKATION_PROFILE(buildingList) 
  Calculates embarkation profile using default visitor 

STORE_PROFILE (“ALTERNATIVE_1”, profile) 
  Stores profile  

SHOW_PROFILE(profile) 
  Visualizes profile 
 
 

 
Figure 5. Profile visualization (fictive sample) 
 
Needless to say, that alternative routes could easily 
be compared running the same script with different 
route data.  
Refining results by exchanging the rough estimation 
algorithm for coverage area calculation could even 
be realized ‘under to hood’ by changing the visitor 
assignments in the xml configuration file, then run-
ning the scripts with critical data again. 

5 CONCLUSION 

Today much of the model logic is buried inside 
some developers’ guideline handbook or just in the 
heads of a few nerds. The value of a model is rising 
with the capability to interact with domain experts in 
an efficient and less time consuming fashion.  



Encapsulation of technical complexity by using do-
main-specific languages as an abstracting layer of-
fers efficient handling of model interaction.  
The degree of complexity exposed at DSL level can 
easily be scaled, due to the specific granularity 
needed for an analysis. Reusable components can 
implement model semantics and model access pat-
ters. They can serve as foundation for the semantic 
level as basis for putting different DSL-Layers on 
top.  
Through this interface many applications could 
prosper from the ability of not just storing and ex-
changing data through digital models, but also get-
ting specific pre-processed data back from the model 
on demand of the domain. As shown in this paper, 
complex domain-spanning analysis can be handled 
declaratively at domain user level by using and / or 
providing the right abstractions and toolset. Standard 
technology has evolved greatly to support domain-
related requirements. 
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