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ABSTRACT 
A research engine is under development for studying the interaction of spatial and structural design processes. 
The design processes are being implemented as two separate configurable transformation steps; a conversion step 
and an optimisation step. A significant part of the spatial-to-structural conversion process together with a first 
version of a visualisation tool have been finalized. Because the interesting parts of spatial and structural designs 
are typically situated also on the inside of the design, the main goal of the visualisation tool is to make the innards 
visible from the outside. This has been realised by rendering translucent polygons with opaque outlines. However, 
care has to be taken in the order in which the translucent polygons are rendered. For an arbitrary set of convex 
polygons, finding a back to front order may not be as trivial as sorting a set of polygons on the distance to the 
viewpoint. Also, sets of polygons exist that do not have an explicit depth order. As a solution to this problem, a 
render engine has been developed that builds a binary space partition tree (BSP) to store the polygons. Another 
benefit of this BSP variant is that during the construction of the tree, difficult polygon arrangements are dealt with 
in an elegant matter. Further research involves the development of a complete version of the research engine. The 
performance of this first version will be compared to case studies. Based on these results, adjustments and 
additions to the research engine transformations will be made. The final version of the research engine will also 
be used to experiment on academic designs in order to develop insights in the fundamental relation between space 
and structure. 
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1 INTRODUCTION 
Design is a multidisciplinary, iterative process. Among others, two important disciplines involved are those of the 
spatial designer and structural engineer. In a typical design process, the spatial designer first creates a spatial 
design based on the customer’s requirements. The structural engineer then designs a structure to enable the 
designer’s spatial design. In practice, it may occur that the structural engineer requires a slight change in the 
spatial design in order to be able to design a more efficient structure. This feedback starts a new iteration in the 
design process. Although the spatial designer is mainly concerned with space, functionality, appearance and user 
comfort, most designers take the structural design possibilities (subconsciously) into account when creating a 
spatial design. Therefore in reality, the number of feedback iterations and changes made during such spatial 
designs are generally small. 
 Scientific research on the disciplines of spatial and structural design can be divided into three groups. There is 
one group that performs descriptive research which focuses on developing data models to formalise data and their 
relationships regarding specific aspects of the design process. Data models have been developed for the aspects of 
the individual spatial and structural design processes (Björk 1992; Weise et.al 2000). However, more important in 
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the context of this project, is the research that focuses on data models that relate spatial and structural design 
aspects (Martini and Powell 1990; Sause et.al 1992; Nguyen et.al 1996; Khemlani et.al 1998; Matthews et.al 
1998; Eastman and Jeng 1999; Rivard and Fenves 2000; Scherer and Gehre 2000). 
 The second group performs generative research and aims at formalising the design processes by developing 
procedures and algorithms to automate design tasks. The oldest –but still active– field in this group researches the 
subject of space allocation, where design requirements are transformed into spatial designs (Oxman 1997; 
Kotsopoulos 2006; Reffat 2006; Keatruangkamala and Nilkaew 2006). For structural design automation, a 
distinction should be made between research in methods that optimise an existing structural design (Fuyama et.al 
1997; Bletzinger and Ramm 2001; Kicinger et.al 2004; Yulin and Xiaoming 2004; Bletzinger et.al 2005; Mullins 
et.al 2005; Steirteghem et.al 2005) and methods that transform a given spatial design into a structural design 
(Maher 1985; Rafiq and Macleod 1988; Sause and Powel 1991; Borkowski et.al 1991; Harty and Danaher 1997; 
Sacks and Warszawski 1997; Fenves et.al 2000; Markov and Gabriel 2001). Most of the descriptive and 
generative research assumes a linear design process in which there is a one way path from spatial to structural 
design. However, the design process can also be modelled as a cyclic process. This model is supported by 
research in multidisciplinary design from the third group (Haymaker et.al 2004).  
 The cyclic design process starts with a spatial design for which a structural design is created, the structural 
design may be optimised or changed in any way that might consequently impact the original spatial design. The 
optimised structural design is thus transformed back to a spatial design which, in turn, may be improved by the 
spatial designer. The new spatial design initiates a new design cycle. In the course of the cyclic design process, 
each design cycle may gradually improve the spatial and structural design. Recent research (Hofmeyer 2007) has 
shown that fundamental knowledge on both interaction between spatial and structural design and the underlying 
design process can be acquired using the aforementioned strategy and a scale to evaluate the design 
characteristics. 
 This paper will present research that investigates the spatial and structural design process using the cyclic 
design model. To this end, a research engine is under development that performs the cyclic design 
transformations. Certain aspects of the design instances as produced by the research engine are evaluated using 
appropriate units of measurement. The goal of the research engine is threefold. The first goal is to develop an 
understanding of the interactions between the spatial and structural design processes, that is to say, the effects of 
specifically chosen transformation methods on the design measures. Secondly, this research project aims at 
developing fundamental knowledge on the relationship between structure and space by experimenting with 
specially crafted academic designs. Finally, the design instances as developed by the research engine may be used 
as design variants in AEC design processes (generative design) and techniques used in the engine like structural 
grammars, 3D pattern recognition, etc. can be used as add-on to currently used AEC computer tools. 
 In the following section 2, an overview of the current state of the research engine and the visualisation toolkit 
will be given. This is followed by section 3 that describes the implementation of each in more detail. Thereafter, 
the research to be carried out will be presented in section 4. Finally, in section 5, conclusions can be found. 

2 RESEARCH ENGINE 
As mentioned in the introduction already, the research engine uses a cyclic design process to investigate the 
interactions between spatial and structural design processes. The processes are modelled as four sequential 
configurable transformation procedures as depicted in figure 1. On the left, for illustrative purposes, the 
transformation results can be seen of several iterations of the cyclic process as a spiral. The diagram on the right 
resembles the processes involved in one iteration of the research engine. For each iteration n, the research engine 
takes one spatial design as input and incrementally transforms this design into a structural design, an optimised 
structural design, a new spatial design and finally a modified spatial design. The spatial and structural designs are 
numbered sequentially as a function of the iteration number n. The following four transformations are performed 
in the order specified: 

1. The first transformation converts a given spatial design 2n-1 into a kinematically determined structural 
design 2n-1.  



2. The second transformation takes structural design 2n-1 and creates an optimised version of the structural 
design, resulting in structural design 2n.  

3. The third step transforms the optimised structural design 2n  into spatial design 2n.  
4. Finally, the last transformation takes spatial design 2n from the previous transformation and transforms it 

into a modified spatial design 2n-1 (with n increased by 1) which is meant to resemble the original design 
more closely.  

The cyclic process continues with iteration n (with n increased by 1) by using spatial design 2n-1 as input. The 
second, third and fourth transformation steps are, in reality, not likely to be performed explicitly, but may model 
the implicit thought processes performed by the architect and structural engineer. 
 One of the aims of the research is to develop multiple (configurable) strategies per transformation. The 
structural optimisation transformation could for example optimise the structure for building costs or optimise the 
load bearing capacity of the structure, both by means of different (mathematical) optimisation techniques. 
In order to quantify the interaction between the two design processes, adequate units of measurement have to be 
developed to gauge certain properties of the designs. The idea is to use these units of measurement to evaluate 
each design that results from a transformation step. The measurements can be studied as a function of the 
transformation strategies chosen  and their parameters, in order to get insight in how the designs evolve. 

 
Figure 1: Research engine 

The research engine under development contains a visualisation tool that displays the designs as interactive 3D 
models. In addition to the measurements, these visualisations aid in understanding the interactions between the 
design processes. Another benefit that the visualisation tool offers is the ability to visually debug the intermediate 
results of the transformations during the development of the research engine. Verifying the results of a design 
transformation is easier and less prone to interpretation errors if the design is visualised as an interactive 3D 
model in contrast of having to interpret the raw data by hand and build mental representations of the design. 

3 IMPLEMENTATION 

3.1 Research Engine 

The implementation of the first transformation step, from spatial design 2n-1 to structural design 2n-1 (see 
Figure 1), has nearly been finished. The procedure accepts a spatial design consisting of axis parallel rectangular 
prisms as input and  produces a structural design consisting of axis parallel rectangular walls and floors, vertical 



columns and diagonal trusses. The spatial to structural design transformation procedure performs the following 
sub-steps in order to arrive at a structural design: 

 
1a. The grouping of the rectangular prisms into larger rectangular prisms, referred to as zones, which play a 

useful role in the simulated structural design process (Hofmeyer and Kerstens 2006). 
1b. By using a structural grammar, the addition to each zone of a set of structural elements like columns, 

beams, plates, and shear walls (Hofmeyer and Bakker 2008).  
1c. Pre-processing the structure’s geometry, such that no vertex or edge intersects the interior of another  

edge or face (Hofmeyer et.al 2010). 
1d. Analysis of the pre-processed structure in order to determine the kinematical mechanisms in the structure 

(Hofmeyer and Russell 2009). 
1e. Stabilisation of the structure by intelligently adding structural elements and constraints until no 

mechanisms remain in the structure (finished, but not yet incorporated). 
1f. The transformation of the stabilised structural design into a finite element model and its simulation. This 

includes the determination of wind and gravity loading and the detailed meshing of the model (under 
development). 

 
The current implementation performs steps 1a through 1d. An automated method for 1e has been developed, but 
not yet incorporated into the research engine. The output of steps 1a to 1d are shown in Figure 2. 
 

 
Figure 2:  Spatial to structural transformation procedure: l.r.t.b: Spatial design (input), Zoned design (step 1a), 

Structural design (step 1b), Pre-processed Structural design (step 1c), Kinematic mechanism shown as node 
displacements (step 1d) 

The first step (1a) in the spatial to structural design transformation takes the rectangular prisms of the spatial 
design as input and groups them together into larger rectangular prisms referred to as zones. The resulting sets of 
zones occupy the same space as the original spatial design. Depending on the spatial design, multiple zone 
configurations exist that fulfil this requirement. The research engine computes all possible zone configurations, 
referred to as zoned designs, helped by a technique termed as a “geometrical related reducer” and discussed in 
(Hofmeyer and Kerstens 2006). 
 In step 1b, a rule based system (a structural grammar) adds structural elements to a zoned design, like 
columns, beams, plates (slabs) and shear walls. Each rule of the structural grammar associates a set of structural 
elements with a zone of particular dimensions. Depending on the dimensions of a zone, different structures can be 



generated to accommodate the space required by the zone. The shear walls and slabs are defined by their four 
corner points and columns are defined by their two endpoints. For now, the zoned design that contains the least 
number of zones for which at least one rule can be matched for each zone is selected by default for further 
processing. 
 The resulting structure may not be stable because the structural grammar treats every zone in isolation. 
However, in order to be able to determine stresses and strains using the finite element method, the structure is 
required to be kinematically determined, i.e. fixed in space.  The method used in step 1d to determine the 
kinematical  mechanisms in the structure is supported by a recently developed method presented in (Hofmeyer 
and Russel 2009), which uses the null space of the structure stiffness matrix to predict these kinematic 
mechanisms. This work was inspired by (Hofmeyer and Bakker 2008) that demonstrates that when a structure 
stiffness matrix is singular, one or more mechanisms exists. The locations of these mechanisms can subsequently 
be computed by finding the null space of the stiffness matrix. 
 During the development of the null space procedures, it was realised that the structure generated from a zoned 
design is not necessarily connected, i.e. adjacent structural elements do not share endpoints. As a result, these 
neighbouring structural elements are able to move independently from each other. When implemented in the finite 
element model, though, they are expected to be connected. 
 For this reason, two splitting algorithms have been developed, which are described in (Hofmeyer et.al 2010), 
one of which is implemented as step 1c in the spatial to structural transformation procedure. Using logic and 
partly brute force calculations, all structural elements are checked for intersections and coincident points. Where 
relevant, areas and lines are then split and redefined such that for the resulting structure all adjacent elements are 
correctly connected. 
 When the automatic stabilising procedures have been incorporated, to get to the finite element model (the end 
result of the first transformation procedure) loads have to be added and the structural system should be provided 
with a finer mesh than used during the analyses of free mechanisms. 

3.2 Visualisation 

The intent for the visualisation part of the research engine is to visualise the different designs as interactive 3D 
models in a way that is clear and comprehensible at a first glance. Because the interesting parts of spatial and 
structural designs are typically also situated on the inside of the design, the main goal of the visualisation tool is to 
make the innards visible from the outside without having to navigate the design in first person view. This goal has 
been realised by rendering translucent surfaces with opaque outlines. The translucency makes it possible to look 
through elements and even infer relative depth order between different elements while the outlines make it easier 
to identify the individual elements. 
 The current spatial designs that are accepted and produced by the research engine consist of axis aligned 
elements, which can be straightforwardly rendered using polygons. Although there are numerous scientific 
visualisation toolkits available, it was decided to implement a custom made render engine using the OpenGL 
graphics library (Shreiner and Group 2009). Considering that many of the available visualisation toolkits have an 
overkill in features and are needlessly complex compared to the relatively limited requirements for the 
visualisations of design instances, it was believed that the time needed to implement a custom render engine 
would not exceed the time needed to research and select an appropriate visualisation toolkit and to subsequently 
study its application programming interface (API). Note that an API defines the data types and functions that are 
available to the calling application. 
 As mentioned in the previous paragraph, OpenGL is used to render the spatial and structural designs. OpenGL 
defines a standardised API for a cross-platform 2D/3D graphics library for producing raster graphics. The 
standard defines the functions and data types an OpenGL library must provide to the calling application. OpenGL 
implementations exist for nearly all operating systems and most graphics hardware can accelerate OpenGL 
rendering tasks. The features provided by the OpenGL API are sufficient to satisfy the visualisation requirements 
for this research project.  
 Although it is possible in OpenGL to render translucent polygons through the notion of blending, care has to 
be taken in the order in which the translucent polygons are rendered. Because a translucent object ’filters’ the 



colours of the objects behind it, it is important for the correctness of the image that objects behind a translucent 
polygon are rendered first. A simple solution is to render the opaque polygons first and then render the translucent 
polygons in back to front order. However, for an arbitrary set of convex polygons, finding such a back to front 
order may not be as trivial as sorting a set of polygons on the distance to the viewpoint. Sets of polygons exist that 
do not have an explicit depth order. One such an example is depicted in Figure 3 (a), where three triangles have a 
cyclic overlap when viewed from an arbitrary direction. However, by splitting the white triangle over the dotted 
line as depicted in Figure 3 (b), a depth order can be imparted on the triangles and triangle fragments as indicated 
by the numbers in the figure. Another more trivial case is the situation where two or more polygons intersect; no 
back to front order can be established among the intersecting polygons.  

 

 
Figure 3:  (a) Arrangement of triangles with no depth order. (b) By splitting the white triangle a depth order 

relation can be established 

As a solution to the depth order problem, a render engine has been developed that builds a binary space partition 
tree (BSP tree for short) to store the polygons. Using the BSP tree, the renderer is able to efficiently compute a 
back to front (or front to back) order of the polygons from an arbitrary view point. Another benefit of the BSP tree 
variant used by the render engine is that during the construction of the tree, difficult polygon arrangements are 
dealt with in an elegant matter.  

 
Figure 4:  An example of a 2D BSP tree storing a set of objects, the left image shows the space partition, the right 

image shows the tree structure 

To get an impression of a BSP tree, consider Figure 4. The left image shows a set of five 2-dimensional objects. 
The space and object set is partitioned by the four lines l1, l2, l3, l4. The right image shows the subsequent 
structure of the BSP tree. For a 3-dimensional hyperplane h : ax + by + cz + d = 0, let h+ be the open positive 
half-space bounded by h and h−

 

 be the open negative half-space (open means not including its bound). A BSP tree 
for a set S of objects in 3-dimensional space is defined as a binary tree T with the following properties: 

• If |S| ≤ 1 then T is a leaf v storing S. The possibly empty set of objects stored at node v is denoted S(v). 
• If |S| > 1 then the root v of T stores a hyperplane hv, together with the set S(v) of objects that are fully con-

tained in hv. The left child of v is the root of a BSP tree T− for the set S− := {hv
− ∩ s | s ∈ S} and the right 

child of v stores the root of a BSP tree T+ for the set of objects S+ := {hv
+ ∩ s | s ∈ S}. 



Note that X := {f (x) | P(x)} denotes the set of elements f(x) for x satisfying P(x), where f : α → β is a function, P : 
α → B is a Boolean predicate and X ⊆ β. The size of the resulting BSP tree depends on the number of polygon 
fragments that are generated during its construction. Every leaf node contains at most one polygon fragment, the 
internal nodes store the fragment s that was used to create the hyper plane h(s) and all other fragments in S that are 
fully contained in h(s). Therefore the size of the BSP tree is linear in the number of fragments generated by the 
splitting planes. The randomised 3-dimensional BSP construction algorithm using auto partitions is expected to 
generate O(n2

 Using the BSP tree, a render engine can determine a back to front order to correctly render the translucent 
polygon fragments as follows. Given a tree T with root v and viewpoint p

) fragments for an input consisting of n triangles (De Berg et.al 2008). Although better BSP 
construction algorithms exist, this randomised auto partition variant is the easiest to implement and in practice 
performs quite well.  

view, when v is a leaf node then simply 
render the polygon fragment in S(v). Otherwise, if pview ∈ hv

+ as shown in Figure 5, then no polygon fragment in 
T− will obscure a polygon fragment in T+. The render engine first draws the polygon fragments in T−, followed by 
the polygon fragments in S(v) and finally the polygon fragments in T+. When pview is contained in hv

Algorithm 1
, the order in 

which the sub trees of T are rendered is not important. See  for the pseudo code of 
RenderBackToFront.  

 
Figure 5: Diagram illustrating the depth order algorithm, using line segments 

 
Algorithm 1. RenderBackToFront(T, pview) 

1 Let v be the root node of T ; 
2 if v is a leaf node then 
3  Render the polygon fragments in S(v) ; 
4 else 
5  if pview ∈ hv

+

6 
 then 

  RenderBackToFront(T−, pview
7 

) ; 
  Render the polygon fragments in S(v) ; 

8   RenderBackToFront(T+, pview
9 

) ; 
 else if pview ∈ hv

−

10 
 then 

  RenderBackToFront(T+, pview
11 

) ; 
  Render the polygon fragments in S(v) ; 

12   RenderBackToFront(T−, pview
13 

) ; 
 else 

14   RenderBackToFront(T+, pview
15 

) ; 
  RenderBackToFront(T−, pview) ; 

 
As mentioned before, the BSP construction algorithm deals with cyclic overlapping and intersecting polygons in 
an elegant manner. In fact the construction algorithm does not deal with them explicitly, these situations are 
resolved as a consequence of the definition of the BSP tree. Let T be a BSP tree with root node v, then by the 
definition of a BSP tree, v is either a leaf node or an internal node. When v is a leaf node, then S(v) stores at most 



one polygon fragment, for which a depth order can be established from any point of view. Otherwise, if v is an 
internal node storing hyper plane hv, a list of fragments S(v) that are fully contained in hv and sub trees T+ and T−, 
then the hyper plane hv splits space in two half spaces hv

+ and hv
−. All polygon fragments that are stored in T+ are 

fully contained in hv
+ and all polygon fragments in T− are fully contained in hv

−. Furthermore, assuming that a 
depth order exists for the polygon fragments in T+ and depth order exists for the polygons in T−

4 OUTLOOK 

, a depth order can 
be established for all polygon fragments stored in the tree T, by following the three cases in Algorithm 1. 

In order to realise the three goals of this research project, the research engine will be developed further. The first 
transformation step will be finalised by adding the finite element analysis procedure, which will involve several 
aspects. First of all, the stabilised structure has to be loaded with gravitational, wind and possibly other forces. 
Subsequently, a finite element mesh should be generated for the structure and solved to predict strains and 
stresses within the structural elements. 
 The next transformation step transforms structural design 2n-1 into structural design 2n, optimising one or 
multiple structural properties. One approach for such an optimisation would be to use the finite element results to 
detect structural elements having small strain energy and to remove these structurally redundant elements. 
 The third transformation step takes the optimised structural design 2n and produces spatial design 2n. This 
might prove to be a difficult transformation when using nothing more than the structural design, since the 
structural design only describes the geometry of the structural elements. Information on the utilisation of the space 
between the structural elements has been lost during the process. A first strategy could be to compute the convex 
hull of the vertices of the structural elements, however the resulting spatial design would be a single volume 
shaped as a convex polyhedron, which is likely to contain much more space than the original - not necessarily 
convex - spatial design. 
 The fourth transformation step takes spatial design 2n and transforms into spatial design 2n-1 (with n 
increased by 1). The intent of this transformation step is to change the design such that it resembles the original 
spatial design more closely, by restoring features that were lost during the previous transformations. One strategy 
could restore the number of rooms in the new spatial design or scale the spatial design to restore the original 
volume. An interesting transformation would be to restore the original topology of the spatial design. The 
topology can be represented as a graph whose nodes correspond to the rooms in the spatial design, the edges in 
the graph connect nodes whose corresponding rooms are adjacent in the spatial design. Given the topology of the 
original (or previous) spatial design and the topology graph of the current spatial design, graph operations can 
decide whether they are equal or relate in some other way. Using the topology graphs, it might be possible to 
restore the original topology without having to resort to complicated 3D geometrical representations of the spatial 
designs. 
 Parallel to the development of the research engine, cases studies will be performed on actual design processes, 
typically those of buildings. The design processes of at least a small residential building, a medium sized multi-
story building and a large industrial building will be studied. The focus of these case studies will be on the 
interaction between the structural and spatial design processes, e.g. to find out which design decisions have had an 
impact for the other discipline involved and why these decisions have been taken. The results of these case 
studies, defined conform the data and process models as used in the research engine, will be used to benchmark 
the first version of the research engine. The research engine is supplied with spatial designs that resemble the 
studied cases in order to test whether the results produced by the engine are comparable to the actual design 
processes. Depending on the success of these tests, recommendations are made for improvements to the current 
transformations and of addition of other transformation strategies. A selection of the recommendations will 
subsequently be implemented. 
 Additionally, units of measurement will bee developed to quantify the properties of spatial and structural 
designs. As a result, current spatial-structural design processes can be understood and managed better, as the 
influence of different transformation strategies on the design instances can be predicted. For this, the next phase 
of the research project focuses on the relation between spatial and structural design itself. By performing 



experiments on specially crafted academic designs, fundamental knowledge about the relation between the 
structural and spatial designs can be developed (Hofmeyer 2007). 

5 CONCLUSION 
A research engine is under construction that simulates a cyclic design model where spatial and structural design 
processes are considered. This research engine will be used to investigate the interaction between spatial and 
structural design processes and to gain knowledge in the fundamental relationship between spatial and structural 
designs themselves. 
 A significant part of the research engine’s first transformation procedure together with a first version of a 
visualisation tool has been implemented. The visualisation tool renders opaque and translucent polygons, with or 
without polygon outlines. Translucent polygons are rendered in back to front order for the purpose of image 
correctness. From any point of view, the render engine can establish a back to front order quickly, by using a 
binary space partition data structure that stores the polygons. 
 Although case studies, examples and implementations will be developed within the architectural domain, the 
developed research engine and principles of spatial-structural design interaction are equally useful for the domains 
of mechanical engineering, industrial design, automotive engineering, etc. Also, within the architectural domain, 
sub domains like building physics and construction technology could be integrated with the spatial design similar 
to the structural design in the research. 
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