
Proceedings of the CIB W78 2010: 27th International Conference –Cairo, Egypt, 16-18 November

VISUALISATION AND RESEARCH STRATEGY FOR
COMPUTATIONAL SPATIAL AND STRUCTURAL DESIGN
INTERACTION

Dennis Peeten, Ph.D. Student, d.peeten@tue.nl
Herm Hofmeyer, Associate Professor and Vice-Chairman Unit, h.hofmeyer@tue.nl
Unit Structural Design, Department of Architecture, Building, and Planning, Eindhoven Univ. of Tech., The Netherlands

ABSTRACT
A research engine is under development for studying the interaction of spatial and structural design processes.
The design processes are being implemented as two separate configurable transformation steps; a conversion step
and an optimisation step. A significant part of the spatial-to-structural conversion process together with a first
version of a visualisation tool have been finalized. Because the interesting parts of spatial and structural designs
are typically situated also on the inside of the design, the main goal of the visualisation tool is to make the innards
visible from the outside. This has been realised by rendering translucent polygons with opaque outlines. However,
care has to be taken in the order in which the translucent polygons are rendered. For an arbitrary set of convex
polygons, finding a back to front order may not be as trivial as sorting a set of polygons on the distance to the
viewpoint. Also, sets of polygons exist that do not have an explicit depth order. As a solution to this problem, a
render engine has been developed that builds a binary space partition tree (BSP) to store the polygons. Another
benefit of this BSP variant is that during the construction of the tree, difficult polygon arrangements are dealt with
in an elegant matter. Further research involves the development of a complete version of the research engine. The
performance of this first version will be compared to case studies. Based on these results, adjustments and
additions to the research engine transformations will be made. The final version of the research engine will also
be used to experiment on academic designs in order to develop insights in the fundamental relation between space
and structure.

Keywords: spatial design, structural design, computational design, visualisation

1 INTRODUCTION
Design is a multidisciplinary, iterative process. Among others, two important disciplines involved are those of the
spatial designer and structural engineer. In a typical design process, the spatial designer first creates a spatial
design based on the customer’s requirements. The structural engineer then designs a structure to enable the
designer’s spatial design. In practice, it may occur that the structural engineer requires a slight change in the
spatial design in order to be able to design a more efficient structure. This feedback starts a new iteration in the
design process. Although the spatial designer is mainly concerned with space, functionality, appearance and user
comfort, most designers take the structural design possibilities (subconsciously) into account when creating a
spatial design. Therefore in reality, the number of feedback iterations and changes made during such spatial
designs are generally small.
 Scientific research on the disciplines of spatial and structural design can be divided into three groups. There is
one group that performs descriptive research which focuses on developing data models to formalise data and their
relationships regarding specific aspects of the design process. Data models have been developed for the aspects of
the individual spatial and structural design processes (Björk 1992; Weise et.al 2000). However, more important in

mailto:d.peeten@tue.nl�
mailto:h.hofmeyer@tue.nl�

the context of this project, is the research that focuses on data models that relate spatial and structural design
aspects (Martini and Powell 1990; Sause et.al 1992; Nguyen et.al 1996; Khemlani et.al 1998; Matthews et.al
1998; Eastman and Jeng 1999; Rivard and Fenves 2000; Scherer and Gehre 2000).
 The second group performs generative research and aims at formalising the design processes by developing
procedures and algorithms to automate design tasks. The oldest –but still active– field in this group researches the
subject of space allocation, where design requirements are transformed into spatial designs (Oxman 1997;
Kotsopoulos 2006; Reffat 2006; Keatruangkamala and Nilkaew 2006). For structural design automation, a
distinction should be made between research in methods that optimise an existing structural design (Fuyama et.al
1997; Bletzinger and Ramm 2001; Kicinger et.al 2004; Yulin and Xiaoming 2004; Bletzinger et.al 2005; Mullins
et.al 2005; Steirteghem et.al 2005) and methods that transform a given spatial design into a structural design
(Maher 1985; Rafiq and Macleod 1988; Sause and Powel 1991; Borkowski et.al 1991; Harty and Danaher 1997;
Sacks and Warszawski 1997; Fenves et.al 2000; Markov and Gabriel 2001). Most of the descriptive and
generative research assumes a linear design process in which there is a one way path from spatial to structural
design. However, the design process can also be modelled as a cyclic process. This model is supported by
research in multidisciplinary design from the third group (Haymaker et.al 2004).
 The cyclic design process starts with a spatial design for which a structural design is created, the structural
design may be optimised or changed in any way that might consequently impact the original spatial design. The
optimised structural design is thus transformed back to a spatial design which, in turn, may be improved by the
spatial designer. The new spatial design initiates a new design cycle. In the course of the cyclic design process,
each design cycle may gradually improve the spatial and structural design. Recent research (Hofmeyer 2007) has
shown that fundamental knowledge on both interaction between spatial and structural design and the underlying
design process can be acquired using the aforementioned strategy and a scale to evaluate the design
characteristics.
 This paper will present research that investigates the spatial and structural design process using the cyclic
design model. To this end, a research engine is under development that performs the cyclic design
transformations. Certain aspects of the design instances as produced by the research engine are evaluated using
appropriate units of measurement. The goal of the research engine is threefold. The first goal is to develop an
understanding of the interactions between the spatial and structural design processes, that is to say, the effects of
specifically chosen transformation methods on the design measures. Secondly, this research project aims at
developing fundamental knowledge on the relationship between structure and space by experimenting with
specially crafted academic designs. Finally, the design instances as developed by the research engine may be used
as design variants in AEC design processes (generative design) and techniques used in the engine like structural
grammars, 3D pattern recognition, etc. can be used as add-on to currently used AEC computer tools.
 In the following section 2, an overview of the current state of the research engine and the visualisation toolkit
will be given. This is followed by section 3 that describes the implementation of each in more detail. Thereafter,
the research to be carried out will be presented in section 4. Finally, in section 5, conclusions can be found.

2 RESEARCH ENGINE
As mentioned in the introduction already, the research engine uses a cyclic design process to investigate the
interactions between spatial and structural design processes. The processes are modelled as four sequential
configurable transformation procedures as depicted in figure 1. On the left, for illustrative purposes, the
transformation results can be seen of several iterations of the cyclic process as a spiral. The diagram on the right
resembles the processes involved in one iteration of the research engine. For each iteration n, the research engine
takes one spatial design as input and incrementally transforms this design into a structural design, an optimised
structural design, a new spatial design and finally a modified spatial design. The spatial and structural designs are
numbered sequentially as a function of the iteration number n. The following four transformations are performed
in the order specified:

1. The first transformation converts a given spatial design 2n-1 into a kinematically determined structural
design 2n-1.

2. The second transformation takes structural design 2n-1 and creates an optimised version of the structural
design, resulting in structural design 2n.

3. The third step transforms the optimised structural design 2n into spatial design 2n.
4. Finally, the last transformation takes spatial design 2n from the previous transformation and transforms it

into a modified spatial design 2n-1 (with n increased by 1) which is meant to resemble the original design
more closely.

The cyclic process continues with iteration n (with n increased by 1) by using spatial design 2n-1 as input. The
second, third and fourth transformation steps are, in reality, not likely to be performed explicitly, but may model
the implicit thought processes performed by the architect and structural engineer.
 One of the aims of the research is to develop multiple (configurable) strategies per transformation. The
structural optimisation transformation could for example optimise the structure for building costs or optimise the
load bearing capacity of the structure, both by means of different (mathematical) optimisation techniques.
In order to quantify the interaction between the two design processes, adequate units of measurement have to be
developed to gauge certain properties of the designs. The idea is to use these units of measurement to evaluate
each design that results from a transformation step. The measurements can be studied as a function of the
transformation strategies chosen and their parameters, in order to get insight in how the designs evolve.

Figure 1: Research engine

The research engine under development contains a visualisation tool that displays the designs as interactive 3D
models. In addition to the measurements, these visualisations aid in understanding the interactions between the
design processes. Another benefit that the visualisation tool offers is the ability to visually debug the intermediate
results of the transformations during the development of the research engine. Verifying the results of a design
transformation is easier and less prone to interpretation errors if the design is visualised as an interactive 3D
model in contrast of having to interpret the raw data by hand and build mental representations of the design.

3 IMPLEMENTATION

3.1 Research Engine

The implementation of the first transformation step, from spatial design 2n-1 to structural design 2n-1 (see
Figure 1), has nearly been finished. The procedure accepts a spatial design consisting of axis parallel rectangular
prisms as input and produces a structural design consisting of axis parallel rectangular walls and floors, vertical

columns and diagonal trusses. The spatial to structural design transformation procedure performs the following
sub-steps in order to arrive at a structural design:

1a. The grouping of the rectangular prisms into larger rectangular prisms, referred to as zones, which play a

useful role in the simulated structural design process (Hofmeyer and Kerstens 2006).
1b. By using a structural grammar, the addition to each zone of a set of structural elements like columns,

beams, plates, and shear walls (Hofmeyer and Bakker 2008).
1c. Pre-processing the structure’s geometry, such that no vertex or edge intersects the interior of another

edge or face (Hofmeyer et.al 2010).
1d. Analysis of the pre-processed structure in order to determine the kinematical mechanisms in the structure

(Hofmeyer and Russell 2009).
1e. Stabilisation of the structure by intelligently adding structural elements and constraints until no

mechanisms remain in the structure (finished, but not yet incorporated).
1f. The transformation of the stabilised structural design into a finite element model and its simulation. This

includes the determination of wind and gravity loading and the detailed meshing of the model (under
development).

The current implementation performs steps 1a through 1d. An automated method for 1e has been developed, but
not yet incorporated into the research engine. The output of steps 1a to 1d are shown in Figure 2.

Figure 2: Spatial to structural transformation procedure: l.r.t.b: Spatial design (input), Zoned design (step 1a),

Structural design (step 1b), Pre-processed Structural design (step 1c), Kinematic mechanism shown as node
displacements (step 1d)

The first step (1a) in the spatial to structural design transformation takes the rectangular prisms of the spatial
design as input and groups them together into larger rectangular prisms referred to as zones. The resulting sets of
zones occupy the same space as the original spatial design. Depending on the spatial design, multiple zone
configurations exist that fulfil this requirement. The research engine computes all possible zone configurations,
referred to as zoned designs, helped by a technique termed as a “geometrical related reducer” and discussed in
(Hofmeyer and Kerstens 2006).
 In step 1b, a rule based system (a structural grammar) adds structural elements to a zoned design, like
columns, beams, plates (slabs) and shear walls. Each rule of the structural grammar associates a set of structural
elements with a zone of particular dimensions. Depending on the dimensions of a zone, different structures can be

generated to accommodate the space required by the zone. The shear walls and slabs are defined by their four
corner points and columns are defined by their two endpoints. For now, the zoned design that contains the least
number of zones for which at least one rule can be matched for each zone is selected by default for further
processing.
 The resulting structure may not be stable because the structural grammar treats every zone in isolation.
However, in order to be able to determine stresses and strains using the finite element method, the structure is
required to be kinematically determined, i.e. fixed in space. The method used in step 1d to determine the
kinematical mechanisms in the structure is supported by a recently developed method presented in (Hofmeyer
and Russel 2009), which uses the null space of the structure stiffness matrix to predict these kinematic
mechanisms. This work was inspired by (Hofmeyer and Bakker 2008) that demonstrates that when a structure
stiffness matrix is singular, one or more mechanisms exists. The locations of these mechanisms can subsequently
be computed by finding the null space of the stiffness matrix.
 During the development of the null space procedures, it was realised that the structure generated from a zoned
design is not necessarily connected, i.e. adjacent structural elements do not share endpoints. As a result, these
neighbouring structural elements are able to move independently from each other. When implemented in the finite
element model, though, they are expected to be connected.
 For this reason, two splitting algorithms have been developed, which are described in (Hofmeyer et.al 2010),
one of which is implemented as step 1c in the spatial to structural transformation procedure. Using logic and
partly brute force calculations, all structural elements are checked for intersections and coincident points. Where
relevant, areas and lines are then split and redefined such that for the resulting structure all adjacent elements are
correctly connected.
 When the automatic stabilising procedures have been incorporated, to get to the finite element model (the end
result of the first transformation procedure) loads have to be added and the structural system should be provided
with a finer mesh than used during the analyses of free mechanisms.

3.2 Visualisation

The intent for the visualisation part of the research engine is to visualise the different designs as interactive 3D
models in a way that is clear and comprehensible at a first glance. Because the interesting parts of spatial and
structural designs are typically also situated on the inside of the design, the main goal of the visualisation tool is to
make the innards visible from the outside without having to navigate the design in first person view. This goal has
been realised by rendering translucent surfaces with opaque outlines. The translucency makes it possible to look
through elements and even infer relative depth order between different elements while the outlines make it easier
to identify the individual elements.
 The current spatial designs that are accepted and produced by the research engine consist of axis aligned
elements, which can be straightforwardly rendered using polygons. Although there are numerous scientific
visualisation toolkits available, it was decided to implement a custom made render engine using the OpenGL
graphics library (Shreiner and Group 2009). Considering that many of the available visualisation toolkits have an
overkill in features and are needlessly complex compared to the relatively limited requirements for the
visualisations of design instances, it was believed that the time needed to implement a custom render engine
would not exceed the time needed to research and select an appropriate visualisation toolkit and to subsequently
study its application programming interface (API). Note that an API defines the data types and functions that are
available to the calling application.
 As mentioned in the previous paragraph, OpenGL is used to render the spatial and structural designs. OpenGL
defines a standardised API for a cross-platform 2D/3D graphics library for producing raster graphics. The
standard defines the functions and data types an OpenGL library must provide to the calling application. OpenGL
implementations exist for nearly all operating systems and most graphics hardware can accelerate OpenGL
rendering tasks. The features provided by the OpenGL API are sufficient to satisfy the visualisation requirements
for this research project.
 Although it is possible in OpenGL to render translucent polygons through the notion of blending, care has to
be taken in the order in which the translucent polygons are rendered. Because a translucent object ’filters’ the

colours of the objects behind it, it is important for the correctness of the image that objects behind a translucent
polygon are rendered first. A simple solution is to render the opaque polygons first and then render the translucent
polygons in back to front order. However, for an arbitrary set of convex polygons, finding such a back to front
order may not be as trivial as sorting a set of polygons on the distance to the viewpoint. Sets of polygons exist that
do not have an explicit depth order. One such an example is depicted in Figure 3 (a), where three triangles have a
cyclic overlap when viewed from an arbitrary direction. However, by splitting the white triangle over the dotted
line as depicted in Figure 3 (b), a depth order can be imparted on the triangles and triangle fragments as indicated
by the numbers in the figure. Another more trivial case is the situation where two or more polygons intersect; no
back to front order can be established among the intersecting polygons.

Figure 3: (a) Arrangement of triangles with no depth order. (b) By splitting the white triangle a depth order

relation can be established

As a solution to the depth order problem, a render engine has been developed that builds a binary space partition
tree (BSP tree for short) to store the polygons. Using the BSP tree, the renderer is able to efficiently compute a
back to front (or front to back) order of the polygons from an arbitrary view point. Another benefit of the BSP tree
variant used by the render engine is that during the construction of the tree, difficult polygon arrangements are
dealt with in an elegant matter.

Figure 4: An example of a 2D BSP tree storing a set of objects, the left image shows the space partition, the right

image shows the tree structure

To get an impression of a BSP tree, consider Figure 4. The left image shows a set of five 2-dimensional objects.
The space and object set is partitioned by the four lines l1, l2, l3, l4. The right image shows the subsequent
structure of the BSP tree. For a 3-dimensional hyperplane h : ax + by + cz + d = 0, let h+ be the open positive
half-space bounded by h and h−

 be the open negative half-space (open means not including its bound). A BSP tree
for a set S of objects in 3-dimensional space is defined as a binary tree T with the following properties:

• If |S| ≤ 1 then T is a leaf v storing S. The possibly empty set of objects stored at node v is denoted S(v).
• If |S| > 1 then the root v of T stores a hyperplane hv, together with the set S(v) of objects that are fully con-

tained in hv. The left child of v is the root of a BSP tree T− for the set S− := {hv
− ∩ s | s ∈ S} and the right

child of v stores the root of a BSP tree T+ for the set of objects S+ := {hv
+ ∩ s | s ∈ S}.

Note that X := {f (x) | P(x)} denotes the set of elements f(x) for x satisfying P(x), where f : α → β is a function, P :
α → B is a Boolean predicate and X ⊆ β. The size of the resulting BSP tree depends on the number of polygon
fragments that are generated during its construction. Every leaf node contains at most one polygon fragment, the
internal nodes store the fragment s that was used to create the hyper plane h(s) and all other fragments in S that are
fully contained in h(s). Therefore the size of the BSP tree is linear in the number of fragments generated by the
splitting planes. The randomised 3-dimensional BSP construction algorithm using auto partitions is expected to
generate O(n2

 Using the BSP tree, a render engine can determine a back to front order to correctly render the translucent
polygon fragments as follows. Given a tree T with root v and viewpoint p

) fragments for an input consisting of n triangles (De Berg et.al 2008). Although better BSP
construction algorithms exist, this randomised auto partition variant is the easiest to implement and in practice
performs quite well.

view, when v is a leaf node then simply
render the polygon fragment in S(v). Otherwise, if pview ∈ hv

+ as shown in Figure 5, then no polygon fragment in
T− will obscure a polygon fragment in T+. The render engine first draws the polygon fragments in T−, followed by
the polygon fragments in S(v) and finally the polygon fragments in T+. When pview is contained in hv

Algorithm 1
, the order in

which the sub trees of T are rendered is not important. See for the pseudo code of
RenderBackToFront.

Figure 5: Diagram illustrating the depth order algorithm, using line segments

Algorithm 1. RenderBackToFront(T, pview)

1 Let v be the root node of T ;
2 if v is a leaf node then
3 Render the polygon fragments in S(v) ;
4 else
5 if pview ∈ hv

+

6
 then

 RenderBackToFront(T−, pview
7

) ;
 Render the polygon fragments in S(v) ;

8 RenderBackToFront(T+, pview
9

) ;
 else if pview ∈ hv

−

10
 then

 RenderBackToFront(T+, pview
11

) ;
 Render the polygon fragments in S(v) ;

12 RenderBackToFront(T−, pview
13

) ;
 else

14 RenderBackToFront(T+, pview
15

) ;
 RenderBackToFront(T−, pview) ;

As mentioned before, the BSP construction algorithm deals with cyclic overlapping and intersecting polygons in
an elegant manner. In fact the construction algorithm does not deal with them explicitly, these situations are
resolved as a consequence of the definition of the BSP tree. Let T be a BSP tree with root node v, then by the
definition of a BSP tree, v is either a leaf node or an internal node. When v is a leaf node, then S(v) stores at most

one polygon fragment, for which a depth order can be established from any point of view. Otherwise, if v is an
internal node storing hyper plane hv, a list of fragments S(v) that are fully contained in hv and sub trees T+ and T−,
then the hyper plane hv splits space in two half spaces hv

+ and hv
−. All polygon fragments that are stored in T+ are

fully contained in hv
+ and all polygon fragments in T− are fully contained in hv

−. Furthermore, assuming that a
depth order exists for the polygon fragments in T+ and depth order exists for the polygons in T−

4 OUTLOOK

, a depth order can
be established for all polygon fragments stored in the tree T, by following the three cases in Algorithm 1.

In order to realise the three goals of this research project, the research engine will be developed further. The first
transformation step will be finalised by adding the finite element analysis procedure, which will involve several
aspects. First of all, the stabilised structure has to be loaded with gravitational, wind and possibly other forces.
Subsequently, a finite element mesh should be generated for the structure and solved to predict strains and
stresses within the structural elements.
 The next transformation step transforms structural design 2n-1 into structural design 2n, optimising one or
multiple structural properties. One approach for such an optimisation would be to use the finite element results to
detect structural elements having small strain energy and to remove these structurally redundant elements.
 The third transformation step takes the optimised structural design 2n and produces spatial design 2n. This
might prove to be a difficult transformation when using nothing more than the structural design, since the
structural design only describes the geometry of the structural elements. Information on the utilisation of the space
between the structural elements has been lost during the process. A first strategy could be to compute the convex
hull of the vertices of the structural elements, however the resulting spatial design would be a single volume
shaped as a convex polyhedron, which is likely to contain much more space than the original - not necessarily
convex - spatial design.
 The fourth transformation step takes spatial design 2n and transforms into spatial design 2n-1 (with n
increased by 1). The intent of this transformation step is to change the design such that it resembles the original
spatial design more closely, by restoring features that were lost during the previous transformations. One strategy
could restore the number of rooms in the new spatial design or scale the spatial design to restore the original
volume. An interesting transformation would be to restore the original topology of the spatial design. The
topology can be represented as a graph whose nodes correspond to the rooms in the spatial design, the edges in
the graph connect nodes whose corresponding rooms are adjacent in the spatial design. Given the topology of the
original (or previous) spatial design and the topology graph of the current spatial design, graph operations can
decide whether they are equal or relate in some other way. Using the topology graphs, it might be possible to
restore the original topology without having to resort to complicated 3D geometrical representations of the spatial
designs.
 Parallel to the development of the research engine, cases studies will be performed on actual design processes,
typically those of buildings. The design processes of at least a small residential building, a medium sized multi-
story building and a large industrial building will be studied. The focus of these case studies will be on the
interaction between the structural and spatial design processes, e.g. to find out which design decisions have had an
impact for the other discipline involved and why these decisions have been taken. The results of these case
studies, defined conform the data and process models as used in the research engine, will be used to benchmark
the first version of the research engine. The research engine is supplied with spatial designs that resemble the
studied cases in order to test whether the results produced by the engine are comparable to the actual design
processes. Depending on the success of these tests, recommendations are made for improvements to the current
transformations and of addition of other transformation strategies. A selection of the recommendations will
subsequently be implemented.
 Additionally, units of measurement will bee developed to quantify the properties of spatial and structural
designs. As a result, current spatial-structural design processes can be understood and managed better, as the
influence of different transformation strategies on the design instances can be predicted. For this, the next phase
of the research project focuses on the relation between spatial and structural design itself. By performing

experiments on specially crafted academic designs, fundamental knowledge about the relation between the
structural and spatial designs can be developed (Hofmeyer 2007).

5 CONCLUSION
A research engine is under construction that simulates a cyclic design model where spatial and structural design
processes are considered. This research engine will be used to investigate the interaction between spatial and
structural design processes and to gain knowledge in the fundamental relationship between spatial and structural
designs themselves.
 A significant part of the research engine’s first transformation procedure together with a first version of a
visualisation tool has been implemented. The visualisation tool renders opaque and translucent polygons, with or
without polygon outlines. Translucent polygons are rendered in back to front order for the purpose of image
correctness. From any point of view, the render engine can establish a back to front order quickly, by using a
binary space partition data structure that stores the polygons.
 Although case studies, examples and implementations will be developed within the architectural domain, the
developed research engine and principles of spatial-structural design interaction are equally useful for the domains
of mechanical engineering, industrial design, automotive engineering, etc. Also, within the architectural domain,
sub domains like building physics and construction technology could be integrated with the spatial design similar
to the structural design in the research.

6 REFERENCES
Björk B.-C. 1992. A conceptual model of spaces, space boundaries and enclosing structures. Automation in

Construction 1:193 – 214.
Bletzinger, K.-U. Ramm, E. 2001. Structural optimization and form finding of light weight structures, Computers

& Structures 79:2053 – 2062.
Bletzinger, K.-U. Wchner, R. Daoud, F. Camprub, N. 2005. Computational methods for form finding and

optimization of shells and membranes, Computer Methods in Applied Mechanics and Engineering 194:3438 –
3452

Borkowski, A. Fleischmann, N. Bletzinger, K. U. 1991. Supporting conceptual decisions in structural design,
International Conference on the Application of Artificial Intelligence Techniques to Civil and Structural
Engineering, 87–96.

De Berg, M. Cheong, O. van Kreveld, M. Overmars, M. 2008. Computational Geometry: Algorithms and
Applications, Springer-Verlag TELOS, Santa Clara, CA, USA.

Eastman, C. Jeng, T. S. 1999. A database supporting evolutionary product model development design,
Automation in Construction 8:305–323.

Fenves, S. J. Rivard, H. Gomez, N. 2000. Seed-config: a tool for conceptual structural design in a collaborative
building design environment, Artificial Intelligence in Engineering 14:233 – 247.

Fuyama, H. Law, K. H. Krawinkler, H. 1997. Computer assisted conceptual structural design of steel buildings,
Computing in Civil and Building Engineering, 969–976.

Harty, N. Danaher, M. 1997. Evaluating preliminary structural designs in an expert system, Computers &
Structures 63:1243 – 1249.

Haymaker, J. Fischer, M. Kunz, J. Suter, B. 2004. Engineering test cases to motivate the formalization of an aec
project model as a directed acyclic graph of views and dependencies.

Hofmeyer, H. 2007. Cyclic application of transformations using scales for spatially or structurally determined
design, Automation in Construction 16:664 – 673.

Hofmeyer, H. Bakker, M. 2008. Spatial to kinematically determined structural transformations, Advanced
Engineering Informatics 22:393 – 409.

Hofmeyer, H. Kerstens, J.G.M. 2006. Full 3d structural zoning of space using a geometrically related reducer and
matrix coupling, CAADRIA06, Proceedings of the 11th Conference on Computer Aided Architectural Design
Research in Asia, 161–168.

Hofmeyer, H. Russell, P. 2009. Interaction between spatial and structural building design: a finite element based
program for the analysis of kinematically indeterminable structural topologies, Proceedings of the 9th

Hofmeyer, H. Van Roosmalen, M. Gelbal, F. 2010. Pre-processing parallel and orthogonally positioned structural
design elements to be used within the finite element method, accepted for publication in Advanced
Engineering Informatics.

International Conference on Construction Applications of Virtual Reality, 247–256.

Keatruangkamala, K. Nilkaew, P. 2006. Strong valid inequality constraints for architectural layout design
optimization, CAADRIA06 Proceedings of the 11th Conference on Computer Aided Architectural Design
Research in Asia, 179–185.

Khemlani , L. Timerman, A. Benne, B. Kalay, Y. 1998. Intelligent representation for computer aided building
design, Automation in Construction 8:49–71.

Kicinger, R. Arciszewski, T. De Jong, K. 2004. Morphogenic evolutionary design: cellular automata
representations in topological structural design, Adaptive Computing in Design and Manufacture VI, 25–38.

Kotsopoulos, S. 2006. Constructing design concepts, a computational approach to the synthesis of architectural
form, Ph.D. thesis, Massachusetts Institute of Technology.

Maher M.L. 1985. Hi-rise and beyond: directions for expert systems in design, Computer-aided design 17:420–
427.

Markov, I.J. Gabriel, J.F. 2001. Spatial and structural aspects of polyhedra, Engineering Structures 23:4–11.
Martini, R. Powell, G. H. 1990. Geometric modeling requirements for structural design. Engineering with

Computers 6:93–102.
Matthews, K. Duff, S. Corner, D. 1998. A model for integrated spatial and structural design of buildings,

CAADRIA98: Proceedings of The Third Conference on Computer Aided Architectural Design Research in
Asia 123–132.

Mullins, M. Kiregaard, P. Jessen, R. Klitgaard, J. 2005. A topology optimization approach to learning in
architectural design, Proceedings eCAADe 23 Digital Design: The Quest for New Paradigms, 155–162.

Nguyen, T. Ha, H. Bédard, C. 1996. Architectural and structural design with code compliance checking, Third
Design & Decision Support Systems in Architecture & Urban Planning Conference 357– 364.

Oxman, R. 1997. Design by re-representation: a model of visual reasoning in design, Design Studies 18:329–347
Rafiq, M. Y. MacLeod, I. A. 1988. Automatic structural component definition from a spatial geometry model,

Engineering Structures 10:37 – 40.
Reffat, R. 2006. A computational system for enriching discovery in architectural design, CAADRIA06

Proceedings of the 11th Conference on Computer Aided Architectural Design Research in Asia, 169–177.
Rivard, H. Fenves, S. J. 2000. A representation for conceptual design of buildings, Journal of Computing in Civil

Engineering 14:151–159.
Sacks. R., Warszawski. A., 1997. A project model for an automated building system: design and planning phases,

Automation in Construction 7:21–34.
Sause, R. Martini, K. Powell, G. H. 1992. Object-oriented approaches for integrated engineering systems, Journal

of Computing in Civil Engineering 6:248–265.
Sause, R. Powel, G. 1991. A design process model for computer integrated structural engineering: Design phases

and tasks, Engineering with Computers 7:145–160.
Scherer, R. Gehre, A. 2000. An approach to a knowledge-based design assistant system for conceptual structural

system design, Product and Process Modelling in Building and Construction.
Shreiner, D. Group, T. K. O. A. W. 2009. OpenGL Programming Guide: The Official Guide to Learning

OpenGL, Versions 3.0 and 3.1, Addison-Wesley Professional.
Steirteghem, J. V. Wilde, W. P. D. Samyn, P. Verbeeck, B. P. Wattel, F. 2005. Optimum design of stayed

columns with split-up cross arm, Advances in Engineering Software 36:614 – 625
Weise, M. Katranuschkov, P. Scherer, R. 2000. A proposed extension of the ifc project model for structural

systems. Product and Process Modelling in Building and Construction 229–237.
Yulin, M. Xiaoming, W. 2004. A level set method for structural topology optimization and its applications,

Advances in Engineering Software 35:415 – 441.

	ABSTRACT
	1 INTRODUCTION
	2 Research engine
	3 Implementation
	3.1 Research Engine
	3.2 Visualisation

	4 OUTLOOK
	5 Conclusion
	6 References

