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ABSTRACT 

Energy management in residential buildings is taking an increasing role in the construction workflows. 

It entails understanding thermal processes at stake in the buildings and quantifying energy 
consumption, which meets inhabitants comfort requirements. Experimental platforms such as INCAS 

aim at providing experts with a practical way to study such problems in real conditions. These heavily 

equipped buildings yield huge amounts of real-time data (sampling rates, number and types of sensors) 
for which new automatic approaches could be useful to thermal experts. Generic similarity measures 

from data-mining could therefore provide comprehensive analysis tools to thermal experts. 

This paper focuses on the ability of some distance and similarity measures to organize millions of 
data from homogeneous and heterogeneous sensors into coherent clusters. Simplifying data 

interpretations to thermal experts in highly equipped buildings, this approach could also stand as a 

basis for studying smart grids of less equipped domestic houses studies.  

Two types of similarity measures are explored. The first one consists of a set of three distances, 
and accounts for differences in terms of amplitude scaling and shifting between pairs of 

measurements. It relies on the comparison of homogeneous sensors by quantifying the relative 

proximity of their amplitude in terms of mean value, variance and time shift. The second type of 
similarity measure employs a pre-processing step transforming continuous signals into binary events. 

The resulting spike trains are then compared by quantifying the amount of unitary transformations 

(events moves or events deletions/additions) needed to align pairs of events sequences. 

These proximity measures are computed on real data from experimental buildings of the INCAS 
platform. It comprises three experimental buildings (with different construction types) dedicated to 

testing various approaches regarding systems, control and energy-saving policies. These geometrically 

identical buildings are equipped with hundreds of sensors measuring temperature, humidity, 
differential pressure, and others data at various positions of the structures with sampling rates of one 

measurement per minute. Simulation-based temperatures are integrated in the sensors set providing a 

comparison between real and simulated data.  
Results illustrate the contribution of the applied methods when dealing with large amounts of 

measurements related to instrumented buildings behaviors. Actually results show that coherent clusters 

regarding distinct signal properties are automatically generated. These clusters can be used for 

dimensionality reduction (clusters of sensors could be summarized by a single virtual measurement), 
or relative comparisons between sensors or between real and simulated datasets.  
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1. INTRODUCTION 

Energy consumption devoted to residential buildings accounts for up to forty three percents of the 

global energy produced (ADEME 2009). Current trends therefore aim at drastically reducing con-
sumption by introducing new restrictive standards. For example the resulting “low-energy buildings” 

do not have any conventional HVAC systems. The “low-energy” approach also implies using innova-

tive construction techniques and materials. For example thermal bridges and infiltration have to be re-
duced to minimum, and thermal exchanges between internal and external areas should be tightly con-

trolled. It thus entails deep changes in the construction workflow. First the design of residential 

buildings have to be reconsidered to take into account the various constraints involved by these ap-

proaches. Then energy consumption evaluation standards might be evaluated or modified to calculate 
energy consumption associated to new materials and construction techniques. Finally real-time moni-

toring in real conditions should be encompassed in the design process. Avoiding energy wastes indeed 

involves a tight control of the internal environment (temperature, humidity) to fulfill two contradictory 
criteria: energy savings and inhabitants comfort. Ideally monitoring should be the key point of an ac-

tive system able to regulate the living environment. Its training would only involve little human inter-

vention and should be done by the system in a transparent way to adapt users’ wishes.  
These considerations were the root of the INCAS platform construction, built at the French 

National Institute of Solar Energy (INES). This platform comprises buildings equipped with plenty of 

sensors able to measure temperature, humidity, differential pressure, air velocity and other data at 

various points of the structures. With a sampling rate of one measurement per minute, the sensors 
provide millions of data per month. Located inside and outside buildings, in different materials, and 

along various orientations, sensors provide a detailed overview of the thermal processes at stake in 

both each of these human-free houses. While usual approaches employed by thermal experts are 
possible with a few sensors, the amount of data provided by the INCAS platform proves difficult to 

explore. Specifically, sensors can be chosen by experts to study various physical thermal mechanisms, 

but studying global phenomena and interdependence would surely benefit from large scale data mining 

techniques. 
This article presents similarity-based techniques designed to ease interpretation by highlighting 

similarities and dissimilarities between sensors. The general approach underlying these techniques 

consists in computing a measure of dissimilarity between pairs of sensors. The resulting distance 
measurement yields a real number, which is zero if the two sensors measure the same quantity during 

the considered period of time. It increases when the difference between the two time series 

measurements amplifies. Distances are usually defined by the expert after the pursued goal. For 
example a distance can be designed for rendering differences between the absolute values measured by 

the sensors, or the dissimilarities related to the amount of variations, namely the variance. A distance 

matrix is obtained by evaluating dissimilarities between all pairs of sensors. It is then used for 

clustering purposes, which consists in gathering sensors into groups of coherent clusters. The resulting 
clusters can be interpreted by considering that two sensors belonging to a same cluster measure similar 

data (relatively to the chosen distance). This article describes a few distances able to gather sensors 

into sets of coherent clusters.  
The remainder of this article is organized as follows. The real dataset as well as the simulated data 

will be described in section 2. Distances able to characterize various properties of the measurement 

time series will then be described. In a following section results will be illustrated using data recorded 
in February 2011. Methods will be applied to both real data measurements as well as simulated 

temperatures. Finally results will be discussed in section 5. Specifically, comparisons between real 

data and simulated temperatures will be discussed.  

2. EXPERIMENTAL DATA 

The dataset used in this article corresponds to measurements acquired in February 2011. During the 

considered periods, the human activities inside the houses were negligible and internal loads were well 
known. A local meteorological station reported the external conditions (temperatures, sun direct 

horizontal exposure).  



Real measurements 

While hundreds of sensors are installed in houses, the analysis focuses on the first floor of the house. 

The external envelope of the building is composed of two separate layers (agglomerate concrete of 15 
cm each) separated by a 20-centimeter insulator. In order to ease interpretation of the work, only 

temperature sensors are considered. The dataset therefore corresponds to twenty-five sensors (𝑁𝑠 =
25) recording temperatures between the 16th and the 25th of February. The sample rate is one 
measurement per minute for each sensor. They are located in three distinct materials (air, windows and 

walls). All of them are protected from the direct sun illumination. Figure 1 shows positions of the 

sensors in the numerical 3D model of the house. Table 1 provides a summary of the positions of the 

sensors. It mentions sensors names, implantation materials and situation in the house. In the following 
of the article a three dimensional view of the house will be used to illustrate positions of sensors. It 

should be reminded that the big balcony is south-oriented.  

 

 
Figure 1: Experimental house from the INCAS platform. Upside view. Bottom of the image is south-oriented. Sensors are all located at the 

first floor of the building. 

 
Table 1: Description of sensors. Orientations are as follow: Room 1 (West-North), Room 2 (South-West), Room 3 (South-

East), Bathroom (North-East), Toilets (East), Landing (North). 

Sensors names Material Room Sensors names Material Room 
THC058 

THC059 

THC060 

THC061 

THC063 

THC084 

THC085 

THC086 

THC112 

THC130 

THC134 

 

Wall 

Wall 

Wall 

Wall 

Wall 

Wall 

Wall 

Wall 

Wall 

Wall 

Wall 

 

Room 3 

Room 3 

Room 2 

Bathroom 

Room 1 

Room 1 

Room 2 

Room 3 

Outside 

Room 2 

Bathroom 

 

PTA010 

PTA015 

PTA016 

PTA017 

PTA024 

PTA025 

PTA035 

PTA036 

THCV007 

THCV008 

THCV009 

THCV010 

THCV011 

THCV012 

Air 

Air 

Air 

Air 

Air 

Air 

Air 

Air 

Window 

Window 

Window 

Window 

Window 

Window 

Bathroom 

Room 1 

Room 2 

Room 3 

Toilets 

Landing 

Room 3 

Room 3 

Bathroom 

Toilets 

Room 3 

Room 2 

Room 1 

Landing 



 

Simulated temperatures 

Simulation is done with EnergyPlus (e.g. Crawley et al, 2001). It is a multi-zonal dynamic simulation 

tool, used by a very broad panel of engineers, architects and researchers.  

The house was simulated with 4 thermal zones: 1) two heated, ground floor and the first floor; 2) two 
free of heating systems, basement and roof space. In that first step, the model is voluntarily quite 
simple: inter-zone aeraulic exchange are not modeled, the heat recovery HVAC system is modeled 
with a limited energy-equivalent ventilation flow rate, heating sources are replaced by two heating 
ideal systems (one in each thermal zone), thermal bridges were not taken into account, only solar 
shading due to structures at the south of the house are considered (roof overhang and balcony) and 
heat convection transfer coefficients are constant and depend of type of wall (vertical, horizontal, 
internal, external). 

In the house the internal loads are emitted by the data acquisition system. The internal gains are 
spread uniformly through both zones. 160W of heat per thermal zone is assumed, exchanged by 
convection. One key point of a simulation which will be compared to measures is the creation of the 
weather file in a EnergyPlus format. This was done thanks to the outside measured conditions. The 
time step of this file is one sample per minute. Among the various simulated variables provided by 
EnergyPlus, we only consider the simulated temperature corresponding to the first floor of the house. 
The comparisons between real and simulated measurements is thus not obvious (one simulated time 
series against twenty-five measurements). Evaluation of the fitness between simulated and real 
observations involves choosing among the various potential sensors. Hence the issue of choosing 
comparison criteria able to characterize the simulated measurements regarding some predefined signal 
properties (amplitude, variance or time shifts). 

3. METHODS 

We begin by stating the notations used throughout this paper. Let 𝐱(t) denote the vector of data 

acquired for all sensors at time 𝑡. 𝐱(t) is extended as the concatenation of the real measurements with 
the simulated temperature corresponding to the first floor thermal zone 

𝐱 t =  𝑥PTA010 𝑡   𝑥PTA015 𝑡   …  𝑥THCV012 𝑡  …   𝑥simu(𝑡) 𝑇 , where T denotes the transpose 

operator. This work amounts to partitioning the sensors into coherent clusters according to various 
signal properties. Due to the complex nature of the time series, many techniques have been proposed 

in the literature for the classification of time series into a reduced dimension space such as Principal 

Component Analysis PCA (Korn et al. 1997). However, all of them suggest that simple nearest 

neighbor classification is difficult to beat. This argument opens the question on which distance 
measure to use. In the following condition, one tested several methods to measure the distance 

between time series such as the Euclidian Distance ED (Wang and Wang, 2000), the Complexity 

Invariant Distance CID (Batista et al., 2011), Dynamic Time Warping DTW (Yi et al., 1998) and a 
spike train based distance (Victor, 2005 and Victor and Purpura, 1997).  

Similarity measures for continuous data 

Euclidean distance. Euclidean Distance is the most popular distance for data classification (Wang and 

Wang, 2000). Supposing we have two time series 𝑥𝑖 and 𝑥𝑗, the Euclidean distance is computed by 

𝐸𝐷 𝑥𝑖 , 𝑥𝑗 =    𝑥𝑖(𝑡) − 𝑥𝑗 (𝑡) 
2𝑁

𝑡=1  (1) 

 
where 𝑁  stands for the number of time points used to compute the distance (in our case it corresponds 

to approximately one week of data). Each time point from 𝑥𝑖  and 𝑥𝑗  contributes an equal amount to the 

total error. Euclidean distance in figure 2 (left) between these two signals is large nevertheless both 

signals are very similar. The Euclidian distance has several advantages; the complexity of evaluating 

this measure is linear and it is a very competitive method according to large datasets. Yet the 
Euclidean Distance can lead to absurd results when the purpose is to classify time series of raw data. 

In fact, the major drawback of Euclidean Distance is its high sensitivity to error, outliers, missing data 



and time distortion. To overcome these shortcomings, many researchers have advised that time series 

should be transformed before computing distance measure (Keogh and Kasetty, 2002). Such 

transformations include data normalization and smoothing, complexity invariant integration, shifts 
removing of non-matching parts and distortion correction in time axis (Batista et al., 2011). 

 

Complexity Invariance Distance. The CID introduces information about Complexity Invariance of a 
couple of given time series (Batista et al, 2011). Applied on temperature data measurements, it can 

help users to identify sensors with big variation and outlier’s data. 

𝐶𝐼𝐷 𝑥𝑖 , 𝑥𝑗  =    𝑥𝑖(t) − 𝑥𝑗 (t) 
2𝑁

𝑡=1 ×
𝑚𝑎𝑥  𝐶𝐸 𝑥𝑖   ,𝐶𝐸 𝑥𝑗    

𝑚𝑖𝑛  𝐶𝐸 𝑥𝑖   ,𝐶𝐸 𝑥𝑗    
       (2) 

Where 𝐶𝐸 𝑥 =    x(t + 1) − x(t) 2𝑁−1
𝑡=1  represents the complexity estimation of a time sequence 

stretched represented on figure 2 (middle). Appling 𝐶𝐸 requires that the two times sequence should 

have the same length. Unfortunately, the other problems remain unresolved. Using the DTW can help 

to avoid distortion problem. 

 
Dynamic Time Warping. Dynamic Time Warping DTW (Sankoff  and Kruskal,  1983) is an algorithm 

that aligns and matches two time series or sub-time series with different dimension and solve the 
distortion time axis, problem usually identified with temperatures time series. This method allows 

non-linear alignments (Keogh and Pazzani, 2001), (Ratanamahatana and Keogh, 2004) between two 

time series locally out of phase as shown in figure 2 (right).  To align two sequence (𝑄 1×𝑛  and 

𝐶 1×𝑚 ) using DTW, we construct an n-by-m matrix corresponding to the squared distance  d i, j  =

  qi − cj 
2
. To find the best match between these two sequences, we can find a path through the 

matrix that minimizes the total cumulative distance  𝛾 𝑖, 𝑗  between them. 

 

𝛾 𝑖, 𝑗 = 𝑑 𝑖, 𝑗 + 𝑚𝑖𝑛 𝛾 𝑖 − 1, 𝑗 − 1 , 𝛾 𝑖 − 1, 𝑗 , 𝛾 𝑖, 𝑗 − 1       (3) 

 
We refer the interested reader to Kruskall and Liberman (1983) for more details. One drawback of 

these methods is their high computational cost.  

 

Figure 2: Left: Euclidian Distance. The distance is computed by comparing pairs of amplitude at the same instant between 
two signals. The comparisons are illustrated in the figure by dashed lines linking compared points. Middle: Complexity 
Invariance Distance. The Euclidean distance is normalized using the ratio of complexities between the two series. Right: 

Dynamic Time Warping Distance. On the figure, straight lines linking the two series illustrate the associations realized by the 
algorithm. Such links amount to time shifts of points such as the best alignment between two series is achieved. The distance 

between two time series accounts for the total amount of time shift transformations necessary to perform the alignment. 

 

Similarity measures for successive events comparison 

From signals to events. Instead of computing similarities between continuous signals acquired from 

sensors, we also propose a metric based on a transformed version of the signals. In a first step, a basic 



transformation is applied to the signal in order to extract crucial events available in the signal. While 

various such transformations can be chosen according to the considered purpose, we here demonstrate 

the method using a peak-detection algorithm. This pre-processing step aims at extracting local 
maxima. The rationale behind this approach is that temporal events yield a rich source of information 

to characterize signals signatures. It should be noticed that the retained information does not anymore 

accounts for amplitude of initial measurements. It rather focuses on precise events timings. The major 
advantage of this approach is that resulting similarity measures will only focus on the temporal 

synchronization between successive events. Our pre-processing will thus illustrate how phase 

differences can be efficiently rendered. Figure 3 (left) describes the pre-processing step that transforms 

continuous signals into a train of events. 

  
Figure 3: (left) The continuous line represents the temperature measurements from sensor THCV012. The spiky signal 

accounts for the transformed version of the temperatures as successive events. (Right) Illustration of the spike trains 
alignment transformations. 

 
Event-based similarity measure. At this point, we thus have successive events corresponding to each 

sensor. Measuring resemblance between these spikes trains can be done by using unitary operations to 
transform a pike train into another one. This has been proposed by Victor and Purpura, 1997. In this 

article, it has been proposed that spikes trains alignment can be realized using  

 A spike temporal shift. The cost of such a transformation is set to be proportional to the 

temporal shift used to align a spike of one train onto the spike of a second train. 

 A spike deletion/addition. This transformation will be applied a unitary cost of 1 each time a 

spike is deleted from a train to match another train. 
While an infinite number of transformations can be used to align two spike trains, it can be shown that 

dynamic programming techniques are able to find the minimum cost for aligning two spike trains 

(with q fixed). This minimal cost is defined as the event-based distance between the two spike trains. 
It should be noted that the maximum distance between two spike trains is achieved by 

transformations consisting in removing all spikes of the first train and adding spikes to the first train at 

temporal positions of the second train. In this case the global cost is the sum of the number of spikes in 
the first and second train. As a consequence there always exists a transformation, which achieves a 

cost lower or equal to this sum. We use this observation to normalize the distances by dividing the 

computed cost by the total amount of spikes presents in both trains. The normalized similarity measure 

is therefore comprised between 0 and 1. The interpretation of the measure is therefore relatively 
straightforward. Identical spike trains yields a distance of 0, whereas completely dissimilar spike trains 

would amount to a distance close to 1. Figure 3 (right) illustrates the use of temporal shifts and 

deletions/additions of spikes to align trains of events. 
While some applications require fine-tuning of the q parameter, its interpretation simplifies the 

choice in our case. It should be observed that a shift transformation is advantageous over a 

deletion/addition if and only if 𝑞 Δ𝑡 > 2. The cost of a deletion of a spike in the first spike train, 

succeeded by an addition of a spike in this same train at the correct time instant cost 2. The analogous 

transformation using temporal shift costs 𝑞 Δ𝑡 . In our application we will set q such that temporal 

shift are not allowed between spikes belonging to distinct days. This constraint has a straightforward 

justification, it indeed means that local maxima can only be associated in an intra-days basis. 



Classification based on similarity measures 

Distances are computed for all pairs of sensors, thus yielding 
𝑁𝑠 .(𝑁𝑠−1)

2
 distances (because of 

symmetries). Various methods can then be used to interpret the set of distances in terms of clusters 

(groups of homogeneous sensors). In this work we will focus on a simple clustering approach, in 
which distances matrices will be used to gather sensors into coherent clusters. This clustering approach 

will be based on a hierarchical clustering approach with a fixed number of clusters. As the clustering 

method is not the goal of this paper, the number of clusters will be arbitrarily set to five. This has been 

chosen in order to obtain relatively small and interpretable clusters (corresponding to an average of 
around five sensors per classes). Automated procedures are able to automatically determine an optimal 

number of clusters according to some pre-defined criterion. We will use 3D model of the house to 

represent results. The virtual sensor consisting of the simulated temperatures will be placed in the 
middle of the house. 

4. APPLICATION 

Our analysis focuses on one week of data recorded last February, from the 16th to the 25th. Four 
distances have been presented. Among these, three are based on the continuous amplitudes of 

temperatures (ED, CID and DTW), and one is measuring similarities between spike trains representing 

local maxima of the temperatures (EV). Matlab has been used to compute distances ED, CID and 
DTW of the 325 pairs of signals, while R was used to perform the pre-processing steps (peak 

detection) and compute the event-based distance between pre-processed signals.  

The distance matrices are then provided to the clustering algorithm, which yields five clusters of 

similar (according to the considered distance) sensors. Results of the clustering approach for ED and 
EV are depicted in figure 4 and 5. On these figures two point of view are presented. On the one hand 

time series grouped are represented in five distinct plots. Each plot corresponds to one cluster and 

represents temperature time series. On the other hand, a 3D schematic of the house presents the spatial 
distribution of the sensors. Figure 4 shows results obtained using the Euclidean Distance. 

 
Figure 4: signals grouping using Euclidean distance. 



  

 Such results demonstrate that ED focuses on temperature amplitudes in order to gather sensors 

into coherent clusters. The predominant group (top left of figure 4) contains sensors placed inside the 
house, in the centers of the rooms. Other groups of sensors are mainly located on the windows or 

outside the house. THC112 (figure 4, left, second plot) is logically isolated from the other sensors as it 

registers temperatures drastically lower than inside the house. Interestingly the algorithm successfully 
gathers window sensors from the east/west orientation and window sensors from the south orientation 

together. It should also be noticed on figure 4 that window sensors at the north of the house are 

gathered with inside air sensors. This method thus seems to behave quite well to isolate heat 

phenomena such as direct sun light exposure. 
Results corresponding to the EV-based algorithm are depicted on figure 5. Unlike previous results 

with ED, results demonstrate that this method focuses on phase synchronization between sensors 

rather than amplitude of measurements. As an example the predominant group (top left, figure 5) 
contains sensors located inside the house but also THC112 which is located outside the building. This 

can be explained because inside temperatures mainly synchronize with outside ones (with some small 

temporal shift). As we applied the algorithm on a complete week, we are not able to distinguish 
between all sensors orientations but the same algorithm could be applied at finer time scale to 

highlight differences of phases synchronizations in different parts of the house. 

 
Figure 5: signals grouping using event-based distance. 

 

 Figure 6 shows the clustering results obtained using the CID and DTW algorithms. Clustering 

using the CID and DTW methods (figure 6) yields comparable results regarding internal sensors, 

grouped in a predominant cluster. Yet, we can observe that more discrimination is made between 
sensors inside the house with the CID method. This may result from relative exposition of these 

sensors to the sun illumination. Finally, an overview of the different results is depicted in table 2. This 

table highlights the fact that all air sensors are gathered in analogous clusters for all methods. Distinct 
properties of the time series independently appear in other clusters based on the distance chosen. 

 

 



 
Figure 6: Sensors clustering based on two proposed distances. Left, CID. Right, DTW. 

 
 

Table 2: Clustering results for the four presented distances. Euclidean Distance (ED), Event-based Distance (EV), 
Complexity Invariant Distance (CID) and Dynamic Time Warping (DTW). Cluster index are depicted for each sensor and 

each method. 

Sensors 

names 

Material Room ED EV CID DTW 

THC058 

THC059 

THC060 

THC061 

THC063 

THC084 

THC085 

THC086 

THC112 

THC130 

THC134 

PTA010 

PTA015 

PTA016 

PTA017 

PTA024 

PTA025 

PTA035 

PTA036 

THCV007 

THCV008 

THCV009 

THCV010 

THCV011 

THCV012 

Wall 

Wall 

Wall 

Wall 

Wall 

Wall 

Wall 

Wall 

Wall 

Wall 

Wall 

Air 

Air 

Air 

Air 

Air 

Air 

Air 

Air 

Window 

Window 

Window 

Window 

Window 

Window 

Room 3 

Room 3 

Room 2 

Bathroom 

Room 1 

Room 1 

Room 2 

Room 3 

Outside 

Room 2 

Bathroom 

Bathroom 

Room 1 

Room 2 

Room 3 

Toilets 

Landing 

Room 3 

Room 3 

Bathroom 

Toilets 

Room 3 

Room 2 

Room 1 

Landing 

1 

2 

1 

2 

1 

1 

1 

1 

3 

2 

5 

1 

1 

1 

1 

1 

1 

1 

1 

2 

2 

4 

4 

2 

1 

1 

1 

2 

1 

1 

1 

1 

3 

1 

5 

1 

1 

1 

1 

1 

1 

1 

1 

1 

4 

4 

3 

4 

4 

4 

2 

2 

2 

2 

2 

2 

3 

2 

5 

2 

4 

1 

1 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

1 

1 

2 

1 

2 

1 

1 

1 

1 

3 

2 

5 

1 

1 

1 

1 

1 

1 

1 

1 

2 

2 

4 

4 

4 

1 

 

5. DISCUSSION AND CONCLUSION 

Four methods have been presented to compute distances between signals recorded by temperature 
sensors. While such methods are still at their beginning for studying thermal processes in heavily 

instrumented buildings, many points appear encouraging. First sensors can be efficiently selected 

according to a wide variety of similarity measures. These distances can be chosen according to the 
goal pursued by the thermal expert. For example simple interpretations can be done about the 

presented distances. The Euclidean distance focuses on the relative average amplitudes between pairs 

of sensors. Previous results have shown that this distance can be useful to isolate sensors according to 

thermal position of the location (inside versus outside). Furthermore Euclidean Distance can be used to 
detect abnormal temperatures in a specific room of the house compared to the average one. While 

Euclidean Distance does not take into account the variance of the signals, the Complexity Invariance 



Distance is able to discriminate sensors by taking into account their relative variance. It can thus be 

useful to detect high temperature variations inside rooms of the house. Dynamic Time Warping 

appears as a good candidate for identifying similar thermal responses, which are not synchronized. For 
example it can be useful to gather sensors located at similar positions inside walls (thus having 

comparable thermal responses). Lastly the event-based distance is able to focus on the synchronization 

of events. Its potential could thus be clearly profitable when short delay between sensors responses 
should be studied. Another advantage (not demonstrated in this article) is the possibility to compare 

inhomogeneous responses such as temperature and humidity. Indeed the pre-processing step consisting 

in transforming signals into events is applicable to any signal. Such a transformation always result in 

comparable spikes trains that can be evaluated through the spike-based distance. 
Not surprisingly, the simulation signal is grouped with sensors located inside the building. As the 

simulation software is only designed to render average temperatures used to evaluate consumption, our 

result only confirm the coherent grouping strategies given by all methods. Clustering methods can 
further serve as tools to select sensors that can be compared with the simulation signal.  

At its very beginning, the use of distance-based techniques to interpret thermal processes involves 

people from various fields. The continuous discussion between “data miners” able to highlight data 
dependences and thermal experts able to interpret results may improve our understanding of the 

thermal behavior of low-energy consumption houses, a compulsory step towards the drastic reduction 

of energy wastes. 
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