The Validation Logic and Structures of a Building Information
Model Pertaining to the Model View Definition

Yong-Cheol Lee, yongcheol@gatech.edu
Georgia Institute of Technology, USA

Charles M. Eastman, charles.eastman@coa.gatech.edu
Georgia Institute of Technology, USA

Abstract

Model views are recognized as a fundamental component of Industry Foundation Classes (IFC) based
model exchange. To ensure its effective interoperability, validation of IFC data exchange is imperative
because product data must reflect the level of development, the needed types of geometry, the
appropriate properties, and relational structures needed by receivers and their BIM authoring tools.
Effective data exchanges require that project participants and software vendors confirm that received
building model data comply with the syntax and semantics of a targeted model view. This paper
outlines an open framework for the automated validation of IFC instance files against the
specifications of model views. The authors examine types of checking rules, categorizing them from
the model view of the Precast Concrete National BIM Standard, and suggest the validation logic and
structures of each rule set. Rules are executed on the modularized platform of the IfcDoc validation
tool provided by BuildingSmart International.

Keywords: Building Information Modeling (BIM), Industry Foundation Classes (IFC), Design Model
Validation, IFC Interface (IFC Import and Export) checking, Model View Definition (MVD), Rule-
based Checking

1 Introduction

Throughout the design and construction phases of building projects, each domain professional uses
building model data shared by other professionals. With the growing number of requirements for
client-driven projects, the data that should be exchanged among stakeholders applying these building
models has grown quickly, making the efficient exchange of building data an important business goal.
To define specifications for each data exchange, implementers need to identify the subset of the
Industry Foundation Classes (IFC) schema, called a model view, sufficient for the needs of receivers
and their building information modeling (BIM) application. In other words, a model view definition
(MVD) encompasses predefined syntactic and semantic requirements for data contents required by a
receiving application, mapped to the IFC model schema. Considered another way, an MVD consists
of criteria to be used for evaluating an IFC instance file according to the specifications of data
exchange. Since several domains such as the Precast/Pre-stressed Concrete Industry (PCI), the
American Concrete Institute (ACI), American Industry of Steel Construction (AISC), and the U.S.
Federal Highway Administration have defined or are currently defining model views for their data
exchanges, they should have a means of validating IFC instance files regarding conformity to model
views. Software vendors also have to evaluate their IFC interfaces such as import and export features
according to the specifications of a targeted model view (Lee et al 2015). To support these demands,
in this paper, authors describe types of specifications and suggest rule logic and structures of model
view validation using the IfcDoc software tool provided by BuildingSmart, which is a MVD
documentation tool. This tool was used to define the specifications of the IFC 4 schema and to generate
documents of several model view definitions such as COBie. This paper also includes the discussions
of the complex structure of a modularized checking system and the challenging issues of model view
validation.

450

2 Industry Foundation Classes and Model View Definition

As building projects have increased in complexity with various requirements, domain experts employ
a neutral file format that can be exchanged among heterogeneous BIM tools. The main neutral file
format that architecture, engineering, construction, and facility management (AEC/FM) industries
broadly use is IFC. The specifications of IFC defined in the EXPRESS language, encompass diverse
modeling constructs, exchange definitions, and business rules. Since each data exchange during the
design and construction phases needs the different subset of building design data, each project task
requires an IFC sub-model that can represent specific domain information and can entail
interoperable building data. Thus, MVD, which defines schema subsets applied to it for various
domains (IAI 2003; Sacks et al 2010), includes the process of a specific value chain and the
specifications of applicable data exchanges among BIM authoring tools (Hietanen 2006). MVD
consists of a series of concepts that define data exchange requirements and implementation
agreements necessary for one or more entities, their attributes, and relationships (Lee 2009;
Venugopal et al 2012). In particular, the implementation specifications of a concept is supposed to be
used for binding native objects onto IFC ones for software vendors. A concept is a unit of data
exchange specifications that is reusable by several exchanges and sharable with diverse domains. A
set of concept descriptions modularizes domain knowledge for redefining possible new MVDs. For
example, Figure 1 is a binding document defined for the precast piece material association. This
concept declares that the IfcBuildingElement must refer an IfcRelAssociatesMaterial entity for
representing its material: IfcRelAssociatesMaterial must have values or relationships for Globalld,
OwnerHistory, RelatedObjects, and RelatingMaterial attributes. Thus, several subtypes of
IfcBuildingFlement such as IfcBeam can employ this concept to define its material relationship. Using
these implementation specifications of each concept as checking criteria to validate an IFC instance
file, the authors generalize types of requirements and suggest validation frameworks.

IFC Release Specific Concept Description (IFC 2x3)
Precast Piece Material Association
Reference PCI-061 | Version | 1.1 | Status | Draft
Relationships Assigns material to either precast or non-precast elements.
History Developed Fall, 2009, revised for submission November, 2012
Authors Ivan Panushev, Chuck Eastman (chuck.castman(@coa.gatech.edu)
Document Owner | Precast/Prestressed Concrete Institute
Instantiation diagram
licBuilding Element
+ Globalld
+ OwnarHistory >
Material Association Neme
Description
licRelAssodatesMaterial ObjectType
+ Globalld ObjectPlacameant >
+ OwnarHistory > Representation >
Name Tag
Description (INV) Hashssocalions)

+

+ RelatedObjects >

| =
g
| IficMaterial
+ Name

Implementation agreements

* Attribu

i plementation agreements

Globalld Must be provided
OwnerHistory Must be provided, but may contain dummy data
Name Optional
Description Optional
RelatedObjects Must be subtype of IfcBuildingElement.
RelatingMaterial Moust be the IfcMaterial

Figure 1 A binding document defined for the precast piece

451

3 Related Efforts and Research

To ensure the interoperability of a building model data, it should be assessed according to its
assurance of compliance with the specifications of a model view and the IFC schema. However, the
validation whether an IFC instance file reflects exchange requirements and how accurate IFC
interfaces of BIM authoring tools import and export IFC format files cannot be successfully tested
because no approach currently supports these validation testing of IFC MVD specifications (Lee et al
2014). As a result, domain experts and software vendors manually evaluate an IFC instance file and
their IFC binding processes in order to identify semantic errors, technical problems, and translation
mapping issues. To ameliorate this tedious process, there have been several efforts for validation of
an IFC instance in accordance with specifications of model views and a fundamental syntax.

For the semantic validation of MVD, the global testing and documentation server (GTDS), which is a
web-documentation and a validation platform, helps evaluate an IFC interface and an IFC instance
file (buildingSMART International 2010). Using this platform provided by buildingSMART
International, software vendors can validate an IFC instance file exported from their applications
according to the IFC coordination view version 2.0, an agreed subset of the IFC 2x3 schema through
the agreements of the groups of buildingSMART International (buildingSMART International 2010).
In addition, they can receive a certification representing robustness of IFC implementations (Karstila
et al 2001). For validating an IFC interface, however, the GTDS uses only the IFC coordination view
version 2.0. Even though several industry domains are in the development of a growing array of
model views for guaranteeing the specifications of building data exchanges, they are limited to using
obsolete manual methods or present limited automated methods of testing. More specifically, software
vendors and end-users cannot validate IFC instance files against the subsets of user-defined model
views. Given a well-defined MVD, users must implement the semantic validation of an IFC instance
file to assure conformance to MVD specifications.

For the syntax checking, several applications evaluate an IFC instance file according to the IFC schema
defined in the EXPRESS language. The Express Engine, an EXPRESS language parser, has validation
features that evaluate both a schema with regard to the compliance with the EXPRESS schema and
an IFC instance file based on the given schema (Lanning, 2003). In addition, the EXPRESS Data
Manager™, an object-based application for developing object models, provides several features for
checking a schema and a data file (Eastman et al 2009). The eXtended Process to Product Modeling
(xPPM), which integrates the development processes of information delivery manual (IDM) and MVD,
can evaluate defined MVD according to a user-defined schema (Lee et al 2013). This tool, however,
does not support that users check an IFC instance file in accordance with specifications of a model
view.

4 MVD Rule Logic and Structures

4.1 Scope and methodology of a model view and its instance validation

The authors designed rule logic and execution structures in order to address diverse entities,
attributes, relationships, and data types of a model view. To identify the scope of MVD rule checking
and the types of rules, this study employs the Precast Concrete National BIM Standard, which includes
the model view of Precast/Pre-stressed Concrete Industry (PCI). The PCI model view, which has 46
exchanges and 96 concept descriptions reused by each exchange (Eastman et al 2010), is complete
specifications for implementation of data exchanges of a precast concrete domain. In addition, the
PCI model view includes details about how precast concrete objects, their attributes, and references
should be represented, translated, and referred when being exchanged using the IFC format. This PCI
MVD entails a goal of providing the specifications of an IFC product model for the precast concrete
domain. In addition, this effort allows the interoperable exchange of digital model-based information
and facilitates the adoption of the PCI model view by software vendors through an explicit mapping
configuration between native objects and IFC ones. In this paper, referring to the exchange models of
the PCI MVD, authors extracted and categorized the types of model view rules and implemented rule
sets on the modularized validation platform of the IfcDoc tool.

4.2 Rule types and logic

This section describes proposed validation logic and structures categorizing them from the
specifications of PCI MVD. Table 1 represents eight types of rules extracted from 96 PCI concepts.

452

The generalized types of implementable specifications in concept descriptions are executed by diverse
parameters and checking features developed on the validation framework of the IfcDoc tool.

Table 1 Types of rules associated with PCI model view definition

Rule Type Description
Data accuracy checking Checking a data value and an algorithmic constraint
Data existence checking Checking the existence or null of a value
Data uniqueness checking Checking global and local uniqueness
Data type checking Checking the correct type of an entity and a subtype entity
Data conditional checking Checking an instance only if a given condition is satisfied

Checking lower and upper bound by setting a limit on the number of

Data cardinality checking attributes

Data reference/ inverse

relationship checking Checking a reference/inverse relationship

Data syntax checking Checking the scope of a model view and fundamental syntax

4.2.1 Data accuracy

This checking type primarily addresses the semantics of a building information model required for
data exchange for a scoped domain. For such exchanges, a model view allows users to declare
mandatory and optional values for the attributes of entities such as a name, a description, an object
type, a representation type, a connection, and a tag. The values of such attributes, determined by a
specific purpose, become criteria for validation of an IFC instance file pertaining to fulfillment and
accuracy of requisite values for data exchange. This accuracy checking is the most fundamental and
explicit rule type that is indispensable for constructing diverse rule sets. This type of checking
includes a simple comparison between defined values from model views and an IFC instance file.

4.2.2 Data existence and null

A model view requires the inclusion or exclusion of exchange building data: For example, a structural
engineer has to receive values associated with a structural load, stiffness, precise dimensions,
materials, connections, and others required for a structural analysis from other experts. On the other
hand, an exchange model can overlook including untraversed and dispensable values such as
reinforcing element data that the IFC coordination view version 2.0 does not require. Thus, domain
professionals need to evaluate the existence and the null status of a corresponding value according to
three levels of definitions: an attribute, an entity, and a relationship.

4.2.3 Data uniqueness

The IFC schema defines that all object instances require a globally unique identifier (GUID) attribute:
A unique 22 character length string must be fulfilled by all IFC instances. In addition, a model view
can declare that an attribute such as Tag must have a unique value within an IFC instance file. The
uniqueness checking is also needed at a local syntactic level where attribute values exist in a SET data
type because such type disallows duplicate elements. Even though the uniqueness regarding GUID
and a data type can be validated in the level of syntax, such requirements are also defined in
specifications of a model view that must be fulfilled in a data exchange process.

4.2.4 Entity data type

The IFC specifications define distinct entity data types for attributes and thus an IFC instance file must
comply with the predefined types. Within the allowable range of such regulations, domain
professionals and model view developers can define entity data types on model views for their
purposes, narrowing down the scope of acceptable data types for a targeted attribute. Thus, the entity
data types of instances should be evaluated to ensure the accuracy and interoperability of data models.

453

In particular, a user-defined entity data type must be restricted and validated by multiple inheritances
such as SUPERTYPE OF or SUBTYPE OF because the IFC schema has a strictly layered hierarchy. For
instance, if an aggregation concept description defines that the RelatingObject attribute of
IfcRelAggregate is IfcWall and that the RelatedObjects attribute is IfcBuildingElement, the subtype
entities of IfcBuildingElement such as IfcColumn can satisfy the RelatedObjects attribute.

4.2.5 Conditional checking

The implementation of validation typically consists of diverse types of rule sets that should be
launched only if instances meet the conditions of another rule logic such as data accuracy or a rule
parameter. Such correlated rules are dependent on the validation outcome of a precedent rule such as
TRUE or FALSE. Based on the checking result of a precedent condition, subordinate rules and their
executions must be controlled and managed, potentially with multiple levels of nesting.

4.2.6 Cardinality

The cardinality checking evaluates the lower and upper bounds of values of an attribute. The IFC
schema declares cardinality for all attributes as a syntactic specification. Similar to entity data type
checking, model view definers can set appropriate lower and upper bounds for an attribute within the
available range of cardinality defined in the IFC schema.

4.2.7 Reference/Inverse relationship

An IFC instance file has a complex structure that consists of various references and inverse
relationships, allowing multiple inheritance. Within the limited range of the IFC schema
specifications pertaining to an allowable relational structure, each data exchange requires diverse
entity relationships and their different configurations. Thus, an attribute must refer to correct entities
and be referred by acceptable inverse relationships as defined in a model view.

4.2.8 Fundamental syntactic checking

Because a model view is a subset of the IFC schema, an IFC instance file must follow specifications
not only defined in a model view but also the IFC schema. Thus, if an IFC instance file has an entity,
an attribute, and a reference that are out of scope of a model view definition for a specific domain,
such validation should be reported as a syntactic error.

5 Implementation of MVD Rules

5.1 IfcDoc application

To implement the identified rule logic in Table 1, the rule types are coded for execution on the IfcDoc
tool and used for addressing diverse scenarios of a model view specifications. For utilizing and
combining rule logic, several checking algorithms and features were added on top of the IfcDoc tool.
Figure 2 shows the architecture of identifying the rule types of the PCI MVD and implementing them
on the IfcDoc tool. The initial objective of the IfcDoc tool was to help generate MVD documentation
automatically. Figure 3 is the user interface of the IfcDoc tool.

MVDs for Precast Concrete Industry IfcDoc Application

[T TTTTTTTTTTTTTT T -]
1 PCl Exchanges b !
C (hoa [N L
! consolidate ol)) i
! PC MVDs: | composed9s P MVD = Af‘i‘i'&gr;s;ec‘ég‘fj;”g |
i 46 distinct "] concept descriptions o documendation ~ g 1
1 1 to rule types !
| exchanges :, !
| & J 1 | . J 1
: |) : |
1 i 1 i
- v o v :
L N e N N !
i o Generating 96]
! About 480 attributes « | Identified 8 checking i ! . «| Validating aIFC |
! and rules ” rule types ! concepts n the instance file |
1 b IfcDoc tool !
AN J \ D N N N -
i Do :
L . ______________________________________ |

Figure 2 PCI MVD rules and implementation on the IfcDoc tool

454

X ™y
{®) IFC Documentation Generator @Eﬂ

File Edit View Insert Diagram Tools Help

DEWH R0 X=§E=EE 78)
5 Scope
5] Nomitive references
{5 Tems, definitions, and abbreviated
{59 Fundamental concepts and assump,
{5 Core data schemas
{1 Shared element data schemas
{5 Domain specic data schemas
{51 Resource defintion data schemas
L_] Computer intempretable listings
L_] Alphabetical listings
L_] Inhertance listings
L.] Diagrams
L.] Eamples
u Change logs
{} Bibliography
{} Coverpage Locale Mame Description
{} Contents
{} Foreword |Scape
{} Introduction - A

Figure 3 User interface of the IfcDoc tool

MVD validation is the second current use of IfcDoc. It addresses two broad categories: value and type
checking. The value checking includes the accuracy of an attribute value, the existence of attributes,
entities, and references, and the number of instances for an attribute. The type checking deals with
the super/subtype checking, relationships, data aggregation, enumeration, and the ratio of the
cardinality. Implementation of additional rule sets can be achieved by combining data correctness,
relationships, and conditional checking. The IfcDoc validation report represents errors in two types
of rules: a structure and a constraint. A structural rule can be defined for validating relationships and
references and a constraint rule can evaluate specific values and properties.

5.2 Implementation of validation process

Users can analyze an IFC instance file using IfcDoc according to corresponding concept descriptions.
User-defined concept templates embedded in the IfcDoc tool can be assigned and used multiple times
by several entities. Based on a mandatory and optional setting for data exchanges, assigned concepts
are executed or skipped for validating IFC instance files.

Figure 4 represents a precast concrete garage model and Figure 5 and 6 shows reports in the user
interface and an HTML format. The IfcDoc tool provides two output formats for a validation: an
HTML format and an interactive validation report embedded in a user interface. With regard to a
visual validation report as shown in Figure 4, it is represented in the main window with a separate
pane to the right for debugging specific object instances. The objective of this visual report is not only
to efficiently represent a number of validation results for an IFC instance file that has a complex
structure and relationships, but also to
intuitively identify checking outputs
using an interactive validation feature.
To represent the results of validation, a
visual report employs a method of
color-coding, which efficiently
differentiates checking outcomes:
PASS, FAIL, NO INSTANCE, and NOT
APPLICABLE. Entities and attributes
satisfying rules defined in a concept are
represented as green. Any invalid
entities or attributes are flagged as red.
In addition, entities that do not have
relations or attributes are color-coded
white. If attributes do not have values defined as optional, these entities and attributes are color-coded

455

yellow. An HTML report typically includes the same information as the UI report, representing the
summary of the validation including the total number of passed and failed rules.

r N
18] 051815 IFC2:GTC1 Properties_Baseline fcdoc - IFC Documentation Generator =
File FEdit View Inset Diagam Tools Help
DEH A X2 §EER @EERE = @ @
» [scepe & IicBuldiniHemeniTyoo =
{5 Nommative references Globzlld (Globalld
{5 Tems, definitions, and abbreviated tems OwnerHistory \cRall |OwnerHistory 2 Type Name *
4 {7 Fundamental concepts and ssumptions e Cloballa Hiene T eSab sb |2
E Lo e 188 HoSab Seb |
Description 237 KcSlab Seb
neladOivers S 286 fcSiab Siab
T T i 935 KeSiab Siab
fid Name: ' S0y
ObjectPlacement ObjectTypelf 388 foSkb Siab
3 PCH48: Gid Representation Representation RepresentationMaps 433 feSiab Siab
a3 PCIH050: Grid Ads Assignment Referer Tog o= g
IE ElementType
531 feSiab Siab
PCH)54: Building Element Type Assignment 580 licSlab Slab
=3 PCI056: General Properties of Precast Element 629 oS Slabs
33 PCH57: Fabrication Properties of Precast Element 678 fcSiab Sizb
a3 PCIH058: Aggregation of Pieces in System 727 KeSkb Slab
a3 PCI-059: Assignment of Approval 776 licSiab Slab
33 PCI0B0: Assignment of Actor 825 ficSlab Siab
£ 874 ficSiab Sizb
923 feSiab Siab
972 fcSiab Sab
o i : 1021 HeSiab Siab
1070 HeSiab Slab
- | D | idertity | Templete | Opermtions | Usage | 1082 wal
=5 PCH68: Bxtruded Shape Geometry
3 PCL06S Ao Pofie [+ f=] iE A Eg: feWalStand :a::
a5 PCHI70: Atbitrary Precast Profile with Voids =% FcBuldngBlement 156 FeWallStand wau
a3 PCII71: Precast Blockout Attrbutes £1- @ IsDefinedBy fcWallStan: al
a5 PCHI72: Precast Rebar Assignment | B4 fcRelDefinesByType 1235 HeSab Siab
a5 PCHI73: Precast Embed Assignment H £~ @ RelatingType 3536 lfeStair Stair
a5 PCIHO74: Precast Blockolt Assignment -4 FoBuldingElement Type 2063 McStaiFight FStairF
a3 PCHI77. Precast Design Propeties i - @ EementType 3168 KcStarflight FcStair
=3 PCHOB1: Buiding Blement Type Representation { g Folabel 3535 ficSiab FeSizb
a3 PCI-086: Reinforcing Bending Properties % Globalld 3876 KcColumn fieColur
a3 PCH0BS: Extruded Shape Geometry of Reinforcing Eler i % feGloballyUniqueld 4847 lfcCovering fficCove
a3 PCH91: Embed Properties Assignment i =~ @ OwnerHistory
a5 PCH096: Site Geometric Curve Representation ¢ FcOwnerHistory 5834 KcCovenng FeCove
a3 PCI037: Component Set Assignment 3, £1- & ObjectType "
=B mmbnnd Timm. Sy s T a1y
e : : - ol ———

Figure 5 Report in the user interface

Instance File C:\YongCheol'\Project. Work\IfcDoc Extension\Sample files\garage syms 4.ifc

Project File C:\YongCheol'\Dropbox'\Dropbox\PCI-NBIMS\ifcDOC\051815 IFC2x3TC1_ Properties Baseline.ifcdoc
Model View PCI Model View Definition

Exchange [EM10] Final Precast Detailing and Coordination

Tests Executed |49

Tests Passed 36

Tests Ignored |0

Tests Percentage|73%

Figure 6 Summary report in the HTML format

5.2.1 Data accuracy and type checking

The PCI model view defines that IfcColumn must be related to IfcColumnType to represent the type
of a column. In addition, an IFC instance file must satisfy semantics defined in the ObjectType
attribute of IfcColumn and the ElementType attribute of IfcColumnType. Since the Garage sample
model has values, COLUMN, for ElementType and Column for ObjectType, the user interface report
represents them as pass as shown in Figure 7.

BuildingElement Type Blemert Type Object Type

3 FeColumn Type

+]

Figure 7 IfcColumn checking

5.2.2 Data existence checking

For IfcBuildingElement, the PCI model view requires an IFC instance file to have values for the
ObjectType and Tag attributes. Thus, if an IFC instance file does not comply with this specification,
the visual report shows a fail represented in red. Figure 8 shows fail reports red-highlighted for
instances and their attributes. These highlighted representations of errors help users to keep track of
causes and locations of errors in an IFC instance file, reducing effort and time to debug.

456

5.2.3 Data reference checking

Globalld
OwnerHistory
Name
Deescription

Has!
ObjectType
|sDiefinedBy
ObjectPlacement
Reprezentation
ReferencedBy

turalMember

ons
nStructures

e s « o i gy B 3 |

ings
nRezlization

undanes

W

(il

Owringllser
OwningApplication

State

Changelction
LastModifiedDate
LastModifyinglUser
LastModifyingApplication
CreationDate

4347

5894

FlacesObjec
ReferencedByPlacements
PlacementRelTo
RelativePlacement

Diescription

Representations
ShapeOfP) t
Has Sha

6369

STT:11 7844
51071

2319

9794

Figure 8 A visual report of IfcBuildingElement checking and instances of an IFC

Type
fcCovering

fcCovering

fcCovering

fcCovering

fcCovering

fcCovering

10770 HeCovering

MName
fcCovering

fcCovering

fcCovering

fcCovering

fcCovering

fcCovering

fcCovering

The reports in Figure 9 represent an error that IfcRelAssociatesMaterial has the wrong references of
the RelatedObjects attribute of IfcRelAssociatesMaterial. Since the PCI model view defines that
IfcElement must have a material association that refers to IfcMaterial as a RelatingMaterial attribute,
IfcDoc evaluates an IFC instance file regarding the material requirements and identifies an error as
shown in Figure 9. Using a relational diagram, references and inverse relationships can be defined

and used to validate IFC instance files.
i i

CrwnerHistory
Name
Description
RelztedObjects
RelztingMaterial

fcRelAssociales|
Globalld

Globalld
Name

SM:7]

Description
m

|IsDefinedBy
ObjectPlacement
Representation

eferencedBy

OwnerHistory

Structure

#

mn

lfcMaterial Select

/{coa.ad.gatech.edu/gtfs/Studer

Type

IfcRelAssociatesMaterial (4)

¥ PCI-061: Associate Material to Piece - [FAIL]

Instance Structure Constraints;
#5438 ||.RelatedObjects\IfcElement|+
#5439 |+ +
#5440 |+ +
#5441 |1+ +

Figure 9 References checking reports in the user interface and the HTML format

5.2.4 Conditional and parameter checking
Figure 10 is the validation report of property set checking. Since multiple property sets can be
assigned to an entity, their validation should be selectively achieved and reported based on the
accurate name of IfcPropertySet. The parameter for the name of IfcPropertySet plays a critical role to
determine whether the rule execution is needed or not. In other words, this property set rules are
conditionally implemented only if an instance satisfies the defined property set name defined in a
parameter. The relational diagram in Figure 10 represents that the instance of an IFC file has the
accurate name of IfcPropertySet. The parameter window, however, shows that an instance satisfies
only parts of listed property single values, resulting in showing a fail on the validation. Fulfilled
property single values are represented in green and others in yellow.

457

licObiect IfcRelDefinesByFroperties IfcPropertySet

Globalld Globalld Globalld

OwnerHistan, OwnerHistory OwnerHistony
I

Name Name

Description

RelatedObjects 517
RelatingPropertyDefinition

Unit

5 DefinedBy

| Documentation | Ident'rty‘ Concept |Requwremerﬂs|

BB ® 8 a Be@-

Name Properties Description

4

. [J

(63 Parameters ==
=]=1of a Be-

Name Value Description
Live Load FcValue

Seismic Load fieValue
Snow Load ficValue
IfeValue

Iaxdimum wind load fcValue:

Themal resistance feValue

Maximum creep ficValue

Meimium shrinkage IfeValue

Acoustic isolstion fFeValue
ficValue
fieValue

» e

< I] v

Figure 10 References checking reports in the user interface and the HTML format

6 Challenges and Limitations

The IFC schema was developed for data exchange, not for data modeling. In addition, IFC has been
developed and updated to efficiently address diverse exchange definitions based on multiple types of
domain knowledge. In other words, IFC should be able to represent and embrace diverse constructs
and representations used in several BIM authoring tools. Thus, it is open to different interpretations
and offers several methods that users refer to when they define a specific object. Another big challenge
resides in that users are not able to selectively apply concept rules based on the types of objects and
relationships. For example, IfcElementAssembly can be used for any type of an object, but because
users cannot know its usage, the general rules associated with the IfcElementAssembly concept
template are implemented by its own concept rules, not by a corresponding concept such as IfcSlab
concept. One possible solution is that users can define one attribute such as PredefinedType as an
identifier so that the IfcDoc tool can identify the type of an assembled object.

Besides, one of main concerns is the scope of defining a model view and validating an instance file
according to its specifications. Even though a model view is a subset of the IFC schema required for
data exchange, it is open to diverse interpretations and to various rules based on the specifications of
data exchange. That is, the types of data that can be defined as mandatory for an IFC instance file and
the types of rules that should be specified in MVD are obscure. From the National Building
Information Modeling Standard (NBIMS) process, which describes MVD documentation processes,
concepts and MVD have been defined by several approaches: a concept block, a concept template
used in the IFC 2x3 schema, and a concept template used in the IFC 4 schema. Different methods have
generated different structures, configurations, and contents of concepts, resulting in problems
designing rule logic and a validation process. This paper uses the IfcDoc v8.9, which is officially
approved as an MVD definition method by buildingSMART International, so it has a rule-checking
process embedded in the specific MVD definition method. If another approach is officially applied to
defining the IFC schema and MVD, the concepts and associated rules, including rule logic, would also
change.

7 Conclusion

With the growing requirements of a building project, a building design will encompass a significant
number of requirements and data demanded by diverse domain professionals. As a result, they will

458

become more keenly aware of the semantic integrity of building data. To ensure accuracy and
interoperability, this study formalizes the requirements of model view definitions and entails the
development of rule logic and a validation framework. As discussed in the Challenges and Limitations
section, however, the authors found that generalizing the specifications of model views and their rules
for addressing a wide range of distinct domain knowledge and encompassing diverse types of
modeling applications is not easily feasible. Even though the proposed rule logic and its
implementation addressed most of the requirements of model views, exceptional cases that cannot be
validated by the suggested framework exist. Hence, authors acknowledge such limitations of this
validation framework, but authors also expect that this effort at formalizing model view rule sets will
be a stepping stone because software vendors and end-users are experiencing numerous difficulties
in building model data exchanges. Thus, this validation application will enable them to verify building
model data pertaining to the conformity of MVD and guarantee the accuracy of data.

References

buildingSMART International Ltd. (2010). IFC CERTIFICATION 2.0: Specification of Certification Process,
http://www.buildingsmart-tech.org/certification/ifc-certification-2.0/ifc-certification-2.0-
announcement, Last accessed May 17, 2015.

Eastman C., Lee .M., Jeong Y.S., Lee J.K. (2009). Automatic rule-based checking of building designs. Automation
in Construction, 18(8), pp. 1011-1033.

Eastman C., Sacks R., Panushev I, Aram S., Yagmur E., (2010). Precast Concrete BIM Standard Documents:Model
View Definitions for Precast Concrete.

Hietanen J. (2006). S. Final, IFC model view definition format, International Alliance for Interoperability

IAL. (2003) Industry foundation class (IFC) data model, tech. rep., BuildingSMART-tech,
http://www.buildingsmart-tech.org/specifications/ifc-view-definition/summary, Last accessed May 19,
2015.

Karstila K., Serén K., Oy E., (2001). IFC Release 2.0 Certification testing - IFC Schema Refinement: IAI Forum
Finland, BLIS. pp. 35.

Lanning C. (2003). Express engine user guide, Express engine project,
http://exp-engine.sourceforge.net, Last accessed May 18, 2015.

Lee G. (2009). Concept-based method for extracting valid subsets from an EXPRESS schema. journal of
Computing in Civil Engineering, 23(2), pp. 128-135.

Lee G., Park Y.H., Ham S. (2013). Extended Process to Product Modeling (xPPM) for integrated and seamless
IDM and MVD development. Advanced engineering informatics, Vol. 27, Issue 4, pp. 636-651.

Lee Y.C., Eastman C., Solihin W., Richard S. (2015). Modularized Rule-based Validation of IFC Model View
Definitions, Automation in Construction. Under Review.

Lee Y.C., Eastman C., Lee J.K. (2014). Validations for Ensuring the Interoperability of Data Exchange of a
Building Information Model. Automation in Construction. Under Review.

Sacks R., Kaner L, Eastman C., Jeong Y.S. (2010). The Rosewood experiment-Building information modeling and
interoperability for architectural precast facades, Automation in Construction 19, pp. 419-432.

Venugopal M., Eastman C., Sacks R., Teizer J., (2012). Semantics of model views for information exchanges using
the industry foundation class schema. Advanced Engineering Informatics, 26(2), pp. 411-428.

