
Model Checking on the Semantic Web: IFC Validation Using
Modularized and Distributed Constraints

Chi Zhang, c.zhang@tue.nl
Eindhoven University of Technology, The Netherlands

Jakob Beetz, j.beetz@tue.nl
Eindhoven University of Technology, The Netherlands

Abstract
In this paper we present a method for IFC instance validation based on semantic web technologies.
This method is designed to facilitate reusing rules in order to simplify rule structuring processes. It
aims to improve the modularity and reusability of validation constraints with an open and
expressive method. A prototype model checking environment is implemented based on open source
APIs and reasoning engines. Based on real BIM use-cases, requirement ontologies and related
inference rules are defined to derive information from IFC instances to make them suitable for
model checking. Checking constraints in these use-cases are classified according to their underlying
logics to build a set of templates. All the ontologies, templates, inference rules and checking
constraints are maintained as RDF graphs and can be published and distributed as web resources.
Based on these experiences, a detailed discussion about added values, limitations and application
strategies is also provided.

Keywords: Industry Foundation Classes, Ontology, Inference Rules, Constraints, Templates
SPARQL

1 Introduction
The building industry requires qualified information to facilitate collaboration and automation
between multiple domains and parties involved in construction projects. The Industry Foundation
Classes (IFC) are considered the most suitable standard to approach this objective (Eastman et al
2011). As a general data model, however, IFC provides the flexibility required across different
domains and processes but results in lacking constraints for specific tasks. The quality of building
models highly relies on knowledge and personal experiences of domain experts and software
implementers, which often results in models insufficiently rigid for computational environments.

In order to address this issue, additional rules need to be defined to check and validate IFC
models. These rules can be, from general to specific, constraints in model view definitions across
multiple domains e.g. the Coordination View, to company- and project-specific business rules. They
include constraints on explicit data captured in IFC instances e.g. required entities and properties, as
well as higher level constraints and regulations for modeling and buildings, which usually need
reasoning implicit information from static data. Interpreting these constraints initially provided in
natural languages and structuring them into computer-processable rules is a time-consuming
process that requires a profound technical understanding of the IFC model specification and
programing work. Therefore, developed rules should be easily reused to simplify this process,
which introduces additional demands for rule definition methods. These requirements for rule
languages can be categorized into two sub-issues: 1) in a functional aspect, the methods should
contain technical layers or special mechanisms to formally define and maintain sharable concepts,
constructs and rules; 2) concerning applications, they need to be open and platform-independent,
since they are much easier for reusing, public assessment and parallel working (Eastman et al 2009).

Zhang and Beetz. 2015 Model Checking on the Semantic Web

Proc. of the 32nd CIB W78 Conference 2015, 27th-29th 2015, Eindhoven, The Netherlands

In the research reported upon in this paper, we propose to use semantic web technologies to
achieve aforementioned objectives. In the following section, the background and a brief review of
related researches are provided. In section 3, the overall framework of this semantic web based
approach is presented. With use-case examples and implementations reported in section 4 and 5, a
detailed discussion about added value, limitations and future work concludes this paper.

2 Background and Related Work
In order to improve the interoperability for IFC-based working processes, the methodology of
Model View Definition (MVD) addresses the issues described in section 1 from the perspective of
software implementations (IUG, 2012). As a subset of the IFC data model, an MVD specifies the
needed information and its representations as agreements for multiple software vendors. The
export-import interfaces are developed between IFC models and BIM authoring tools according to
specific MVDs. To validate implementations, interfaces are tested against MVDs as a part of BIM
certification procedures (Hausknecht et al 2014). This approach evaluates and improves the quality
of IFC implementations, but the contents of models created by end-users still needs to be checked.

A number of BIM standards and company- or project-specific requirements have been
developed in parallel to the MVD approach. These documents are sets of business rules to specify
more detailed requirements for domain end-users. Some of these requirements are more related to
data representations, which are very specific in their demands regarding the existence or value
limitations directly on IFC entities and properties. Others contain regulations according to domain
knowledge. Both of these need to check IFC files against specific requirements and rules. Compared
to BIM certification services, which are often provided by international organizations and usually
focus on validations according to stable MVDs, regional, company- and project-specific BIM
standards and agreements are heterogeneous and diverse and require a higher level of
customization.

The common approach for automated model checking is to systematically compare the
information in models and the constraints in requirements (Dimyadi and Amor 2013). Since IFC
models are assumed as the input of building models, the challenges are a) how to properly derive
potentially non-explicit information from models and b) how to digitally represent checking
requirements. In the tools’ realm, many researchers have suggested that the digital representations
of requirements should be separated from processing programs (Eastman et al 2009, Hjelseth 2010).
There are very few open technologies to support this process. The EXPRESS and EXPRESS-X are
ISO standards, which can be used to define constraints for IFC. They have been implemented in
Jotne EDM Model Server and IfcCheckingTool from KIT, the latter of which is used for BIM
certification applied by buildingSMART (Hausknecht et al 2014). The evolving mvdXML
specification is currently the only open standard used to formally capture MVDs and validating IFC
instances (Chipman et al, 2013). Its built-in constructs and are used to
develop reusable subsets and constraints. However, these modelling constructs specify constraints
on low-level IFC entities and attributes in its underlying schema, which make them more suitable
for BIM certification and are not easily reusable by the general public.

Many concepts used in the checking requirements such as domain-specific relationships and
property sets are specified outside the scope of the IFC schema. Therefore, to make models suitable
for checking and facilitate structuring constraints, one of the critical questions is how to specify and
enhance the semantics for IFC models. Recent trends using ontology and semantic web approaches
to consistently embed domain knowledge into rule definitions is a step in the right direction
(Solihin and Eastman 2015). An ontological method is proposed by Venugopal et al 2012 to provide
a high level specification for IFC schema in the precast concrete domain. By converting IFC to OWL,
external semantics are embedded into IFC models by Beetz et al 2009. Based on this approach, a
prototype checking environment is presented by Pauwels et al 2011 with an example
implementation about acoustic performance checking. Some domains outside of the building
industry have also focused on this direction and have more standardized solutions. The ISO 15926-2
data model (also EXPRESS based), which is the IFC equivalent in the gas and oil industry, uses the
predicate logic to formalize its semantics by mapping the elements to external concepts and
templates in ISO15926-7. It is partly implemented by OWL constructs in ISO 15926-8.

Many of the existing efforts for semantic specification and enhancement in the building
industry did not consider on model checking. The checking environment proposed by (Pauwels et al

Zhang and Beetz. 2015 Model Checking on the Semantic Web

Proc. of the 32nd CIB W78 Conference 2015, 27th-29th 2015, Eindhoven, The Netherlands

2011) presented the expressivity of semantic web technologies but did not consider on maintenance
and reusability of constraints and is based on an initial set of limited use-cases. The ISO 15926
provided an example for officially formalizing semantics and constraints for EXPRESS based models,
which is very important for their reusability. Some of its basic ideas and technologies used can be
reused by the building industry.

3 Methodology
The model checking process provides rules and “asks” questions to knowledge systems to get pass
or fail answers. Many of these rules are shared by different rule-sets. Each of the rules can be
interpreted by predicate logic with specific concepts and underlying logics, which are often
referenced and shared by other rules. For example, the requirements “a building should contain at
least one storey” and “a storey should have at least two exits” share the concept “storey” and the
same logic. This example shows that not only the rules themselves should be reusable, but that all
concepts and logics should be reusable across different rules. The concepts are used to encapsulate
derived information from IFC instances, and the reusable logics are to simplify structuring rules.
The presented method defines concepts and logics into separate structures. The framework has five
conceptual layers (Fig. 1). In the following part of this paper, “rules” only represents inference rules
that are used to derive new facts before the checking execution, while setting restrictions for the
checking process is described as “constraints”.

- Layer 1: the IfcOWL ontology as the baseline. To utilize the semantic web technologies, the
EXPRESS schema of IFC is converted to OWL, and the IFC instances are converted to RDF
triples (Beetz et al 2009, Törmä 2014). The IfcOWL ontology supports inferences based on a
subset of the semantics in IFC schema to generate new facts from IfcRDF instances. For
example, an will also be interpreted as an .

- Layer 2: Ontologies which define concepts used in requirements. The terminologies used in
checking rules are categorized and structured as ontologies, including classes, relationships
and properties. These ontologies are developed in OWL and can be distributed and
interlinked as web resources with different URIs and namespaces according to the authors’
policies and requirements.

- Layer 3: Inference rules that reference concepts in Layer 1 and 2. They are used to convert
data captured by IfcRDF instances to information represented by concepts in Layer 2. This
layer ensures that Layer 1 and 2 can be developed independently from each other, and any
updates in one of them only affects rules in Layer 3.

- Layer 4: Constraint templates. All the requirements have two parts: 1) the context the
constraints should be applied to, and 2) the properties to which the constraints should be
applied (Eastman et al 2009). These if-then logics are encapsulated as reusable templates
with arguments in this layer.

- Layer 5: Constraint instances. This layer contains constraint instances which are derived
from respective natural-language documents. Each of them has an “is-a” relationship with a
template in Layer 4, and the arguments of the template are replaced either by specific
concepts in Layer 2 and 1 or by simple data values and are then maintained as constraint
instances. This layer ensures that constraints can be reused across different rule sets.

Each of the five layers are represented in RDF, and all the concepts, rules, templates and
constraints are maintained as web resources with their own URIs so they can be referenced,
interlinked and reused. Layer 1, 2 and 4 are developed independently from each other. With
inference rules and reasoning engines, data within IfcRDF instances is partially converted to
information represented by concepts in Layer 2 to be more suitable for model checking. End-users
can (re-)use concepts in Layer 2 and 1 and constraint templates in Layer 3 to develop specific
constraints, which are also shared by different rule-sets.

 Besides these five layers, existing vocabularies from RDF, OWL, SPARQL and SPARQL
Inferencing Notation (SPIN) are used. SPIN is currently a W3C submission used to represent
SPARQL rules on the semantic web (SPIN, 2011). It captures SPARQL queries as RDF
representations, and also enhances the expressivity by a meta-modelling vocabulary which supports
defining additional operators, functions and query templates. In this framework, Layers 3, 4 and 5
are developed using this technology. The requirements in Statsbygg BIM manual (Statsbygg 2011)
are used as use-cases and validation in the research presented here.

Zhang and Beetz. 2015 Model Checking on the Semantic Web

Proc. of the 32nd CIB W78 Conference 2015, 27th-29th 2015, Eindhoven, The Netherlands

3.1 Layer 2: Requirement ontologies
The Statsbygg BIM manual consists of 131 requirements in total. In our experiments, we manually
interpret the requirements to semi-structured sentences to markup the “if-then” structures, classes,
properties, value limitations and operators. The classes and properties are categorized to structure
an ontology. We manually interpreted their semantics from natural language to decide on the types
for the concepts. For example, most relationships such as “has_Aggregation_Of” are defined as
object properties instead of objectified relationships as they are defined in the IFC schema e.g.

. Statsbygg is a standard that already specifies many requirements using
explicit IFC entities and attributes, but still many additional concepts e.g. “external wall”, “fire
compartment” are used that have no immediate equivalent in the IFC model. To explicitly formalize
these additional concepts is the main purpose of the ontology on Layer 2. To handle of property sets
used by many requirements across different use-cases we have opted for the following modeling
constructs: to define them as classes that have local names starting with upper case in our ontology,
and each of them also has a lower case version as a data type property. An example of the

 property is presented in equations (2) and (3).

3.2 Layer 3: Inference rules
The inference rules are built up between requirement ontologies and IfcOWL ontology. These rules
are used to convert IFC data to models that are suitable for checking. The purpose is specified as
follows. In the logic formulas of this subsection, the concepts in Layer 1 are set in bold to
differentiate them with concepts in Layer 2, which are set in italic.

- Shortcut for commonly used IFC structures. In the IFC 4 documentation, commonly used
IFC structures have been listed as “fundamental concepts”, which are recommended for use
in IFC models for general scenarios. Applying inference rules, these structures can be
encapsulated into simplified structures to make them closer to natural language descriptions
and more convenient for querying data. A typical example is the construct,
which is simplified to a triple relationship from the object to an , which is
further converted to a data type property in equations (1), (2) and (3). Other common
structures which are related to our use cases are also encapsulated.

- Classifying IFC elements according to domain concepts and knowledge. Many checking
requirements regulate constraints with domain concepts e.g. external wall, entry point,
which are not typed in the IFC schema. Inference rules identify these concepts in IFC
instances to make them suitable for model checking. An example is presented in equations
(4) and (5).

- Reasoning new facts from data captured in IFC instances to enhance objects with additional
properties and relationships. The derivation of new facts is based on the functions within

IfcOWL Ontology Requirement Ontologies Constraint Templates
Layer 1: Layer 2: Layer 4:

IfcWall Wall
External Wall

Existence Template
Statsbygg #9

...
Internal Wall

Inference Rules
Layer 3:

Cardinality Template
Uniqueness Template

...

#9.1

...

...
IfcDoor

IfcBeam
IfcBeam

IfcColumn

IfcPropertySingleValue

isDefinedBy

...
Statsbygg #10

...
Statsbygg #131

referencesreferences

(in RDF)

Classes:

Properties:
...

Constraint Instances
Layer 5:

references

references

Window
...
Space
 Functional space

Technical space...

Templates

isDecomposedBy

Classes:

Properties:
has Type Of
has Property Of
has Aggregation Of

Value Template

references

...
...

name

globalId...

Rules:
 rule 1
 rule 2
 rule 3

Figure 1 Conceptual architecture of proposed approach

Zhang and Beetz. 2015 Model Checking on the Semantic Web

Proc. of the 32nd CIB W78 Conference 2015, 27th-29th 2015, Eindhoven, The Netherlands

inference rules. Using e.g. arithmetic operations on numeral types or logic reasoning,
additional properties and relationships are inferenced to enrich objects.

 (1)

 (2)

 (3)

 (4)

 (5)

These rules are defined in SPARQL statements, converted into SPIN and associated
with specific types through construct.

3.3 Layer 4: Constraint templates
The constraint templates are used to encapsulate checking logics for rules. Each template has
arguments that can be substituted by concepts in Layer 2 and locally defined values to create
constraint instances. Many of the data is converted to triples in RDF and the checking process
becomes more straightforward. For each type of templates, a table is provided with description,
examples, logic semantics and SPIN templates in the SPARQL syntax. These templates are developed
with and statements, and maintained as instances of .

3.3.1 Existence and cardinality constraints
The constraints of this type are used to require the existence or quantities of properties or
relationships for specific classes. Some of the examples are specified in Table 1.

Table 1 Template table for existence and cardinality

 Existence Type Existence Cardinality

Description Check the existence of an
attribute/property for a
class

Check the existence of an
attribute/property which
belongs to a specific type for
a class

Check the quantities of an
attribute/property which
belongs to specific type for a
class.

Example “If it is a stair, then a
name attribute should
be provided”

“If it is a building, then it
should have a property
"GrossVolume”

“If it is an indoor space,
then it should be included
in 1 and only 1 fire
compartment”

Logic
semantics

SPIN
template
(SPARQL
syntax)

CONSTRUCT {
 _:b0 a
spin:ConstraintViolation .
}
WHERE {
 ?s a ?C .
 FILTER NOT EXISTS {
 ?s ?p ?o .
 } .
}

CONSTRUCT {
 _:b0 a
spin:ConstraintViolation .
}
WHERE {
 ?s a ?C .
 FILTER NOT EXISTS {
 ?s ?p ?o .
 ?o a ?D .
 } .
}

CONSTRUCT {
 _:b0 a
spin:ConstraintViolation .
}
WHERE {
 ?s a ?C .

FILTER (
(op:count(?s, ?p, ?D) > ?n) ||

(op:count(?s, ?p, ?D) < ?m)) .
}

Arguments C, p C, p, D C, p, D, m, n

3.3.2 Value constraints
This type of constraint is defined to restrict the value of a property. They usually restrict the value
range for numeric data, or format naming conventions for Strings. The “operator” in Table 2 is a

Zhang and Beetz. 2015 Model Checking on the Semantic Web

Proc. of the 32nd CIB W78 Conference 2015, 27th-29th 2015, Eindhoven, The Netherlands

function such as “equals” or “greater_than” for numeric data, “starts_with”, “contains” or “regex” for
strings etc. Some SPARQL implementations allow the extension of such operators with e.g. domain-
specific spatial reasoning functionality.

Table 2 Template table for value

 Value

Description Check the value of a simple data type attribute/property for a class

Example “If it is a site, then its ‘land title number’ shall contain a cadastral number”
Logic
semantics

SPIN
template
(SPARQL
syntax)

CONSTRUCT {
 _:b0 a spin:ConstraintViolation .
}
WHERE {
 ?s a ?C .
 FILTER NOT EXISTS {
 ?s ?p ?o .
 FILTER operator(?o, ?a) .
 } .
}

Arguments C, p, operator, a

3.3.3 Uniqueness
This type of constraints define global uniqueness for simple data type properties or local uniqueness
for aggregation type properties. The global uniqueness is specified in Table 3 with an example.

Table 3 Template table for global uniqueness

 Global Uniqueness

Description Check the global uniqueness of a simple data type attribute/property for a class in the
model.

Example “If it is a type object, then it shall have a unique name”
Logic
semantics

SPIN
template
(SPARQL
syntax)

CONSTRUCT {
 _:b0 a spin:ConstraintViolation .
}
WHERE {
 ?s a ?C .
 ?a a ?C .
 ?s ?p ?o .
 ?a ?p ?b .
 FILTER ((?o = ?b) && (?s != ?a)) .

}
Arguments C, p

3.3.4 Complex constraints
All of the aforementioned templates are constraints for single subject, predicate and object triple.
However, there are requirements that restrict data on more complex graph structures and have
more sophisticated logics (e.g. if-then conditional, exceptions) which cannot be covered by them.
There are two strategies to make templates for such requirements.
The first strategy is to make plain templates which encapsulate complex logics. Experiments with
the use-case showed that most complex templates are still reusable by many constraints using this
first strategy. For example, the checking logic “if some slabs are in the same type, then their
thicknesses and materials should be the same” is also reusable by checking the consistency for other
types of building elements. However, there are some examples like “if it is a ‘functional space’, then
its ‘height’ should be ‘smaller than’ the ‘distance’ between the ‘upper edge’ of the ‘floor slab’ of the
‘storey’ and ‘lower edge’ of the ‘floor slab’ of the ‘storey’ ‘above’,” which have 9 distinct concepts.

Zhang and Beetz. 2015 Model Checking on the Semantic Web

Proc. of the 32nd CIB W78 Conference 2015, 27th-29th 2015, Eindhoven, The Netherlands

This checking logic still can be defined as a plain template, which however is hardly reusable by
other constraints.
The second strategy is to use nested templates for this type of constraints, within which each
SPARQL subquery is defined by a simple template, which can be reused by other complex
templates. The second strategy needs further testing and require extensions on the current SPIN
implementation.

4 Implementation of a checking environment
The on-going implementation is based on the open source Apache Jena and SPIN libraries and APIs
(SPIN, 2011). The architecture and data flow of the checking process are illustrated in Fig. 2. Layers
are developed with different namespaces.

In this checking environment, end-users choose constraint templates in and arguments in
 and to define constraints. Each of the templates has a

property, which explains the checking logics in natural language. For example, the Type Existence
template specified in 3.3.1 has this property of “A {?C} should {?p} {?D}”, which is used for the user
interface and checking report format. These three arguments can be respectively assigned to
compose a constraint. For example, the requirement “Statsbygg 48” introduced in section 3.3.1 is
maintained in RDF (Turtle syntax) as follows.

5 Discussion

5.1 Added value of presented research
In this method proposed here, all the ontologies, inference rules, constraint templates and instances
are maintained as distributed web services, represented in RDF/XML or other RDF notations and
published as linked data (Heath and Bizer 2011). It provides a web-based environment to make
sharable rules for model checking. It improves the granularity from the constraint level to the level
of concepts and logics within constraints. All these resources can be reused by referencing their
URIs. All the rules and constraints are completely declarative, so it is relatively easy to create a user
interface close to natural language representations. Domain end-users can use the concepts and

Prefix:ifc
IFC schema formatted

in OWL

IFC RDF Individuls

IFC Schema

IFC Instances

Prefix:statsbygg,
requirement ontology,

 containing concepts used
in Statsbygg BIM manual

Prefix: bsdd
Declares concepts and

 relations in buildingSMART
 Data Dictionary

Prefix:temp,
containing constraint

templates

Prefix:statsrule,
constaining constraint

instances

Prefix:inf,
containing inference rules

Converted RDF Individuls Checking report

instantiate

convert

instantiate

convert

reference to

reference to

instantiate

interpreted by

reference to

reference to

reason

check

instantiate

instantiate

generate

Figure 2 Implementation of a prototype model checking environment

Zhang and Beetz. 2015 Model Checking on the Semantic Web

Proc. of the 32nd CIB W78 Conference 2015, 27th-29th 2015, Eindhoven, The Netherlands

constraint templates to define their own rules, but defining inference rules and new templates still
need technical knowledge about SPARQL and the IFC schema. As the OWL version for IFC 4 has
been proposed as a standard, this approach could be a use-case for this ontology (replace the current
Layer 1) and be more standardized in the future (Pauwels 2014).

The existing SPARQL vocabularies and built-in functions make this method highly expressive.
Additional domain specific functions can be developed through with SPARQL and
JavaScript. In our current experiments, around 80 percent of the requirements in Statsbygg BIM
manual are covered.

The modularity of the proposed method reduces the redundancy in the system and simplifies
the verification work for checking results. The inference rules and constraints can be tested
independently. In the constraint aspect, once a constraint template is verified, it will not be modified
and its instances do not need verification again.

To standardize the terminologies and relationships in the Statsbygg requirements ontology, a
potential extension of current framework is to use a standard library such as bSDD as the external
references for these concepts (Fig. 2). For example, the has an

 relationship with the buildingSMART Data Dictionary concept
(BuildingSMART 2014). Other requirements ontologies can

reference to the same standard to align them in order to make more consistent representations for
concepts.

5.2 Limitations and lessons learned
The current implementation aims to set up a platform, which still needs extensions of additional
inference rules, templates and functions. For example, as described in section 3, an external wall is
mapped to the explicit “IsExternal” property in the respective PSet, but is not based on reasoning of
topological relationship between the wall and the building. Similar examples like the relationship
“has_upper_floor” are based on relatively explicit information defined in IFC instances, but not
directly based on geometry and location data. This part needs further investigation and will be
enhanced in the inference rules in Layer 3.

The implementation is based on the reasoning engines of Jena and Topbraid SPIN. The SPIN
implementation uses a forward chaining approach, which draws all inferences it can from rules.
However, it does not automatically isolate rules which are not needed for the constraint checking.
Considering performance, backward chaining approaches are needed. This results in a dilemma that
either using another technology which brings better performance in the inference part or limiting it
to a single platform.

Another issue arises for complex constraints, which are mentioned in 3.3.4. Only very few of
our use cases need complex constraints. Plain templates may have issues concerning reusability for
such constraint templates. A potential solution is to use nested templates, which need extensions for
the SPIN platform. More use-cases are needed for evaluation and testing.

6 Summary and Future Work
In this paper, we present the use of semantic web technologies to check and validate IFC models. It
aims to improve the modularity and reusability of validation constraints with an open, sharable and
expressive approach. Three directions to extend the current work have been identified: We are
going to expand the scope of use-cases and apply more domain-specific requirements to further
validate this method. More domain functions, templates and inference rules will be added. Another
direction is to simplify the development for inferencing rules by providing templates for inference
rules using the same method in Layer 4. A classification for inference rules should be developed.
The third direction is to further investigate the technical potential for addressing the issues
regarding performance and complex constraints specified in subsection 5.2. Validation of this
method will be conducted by domain end-users to reuse developed concepts and templates.

References
Beetz, J., van Leeuwen, J.P. and de Vries, B. (2009). "IfcOWL: A case of transforming EXPRESS schemas into

ontologies." Artificial Intelligence for Engineering Design, Analysis and Manufacturing. vol. 23. no.

Zhang and Beetz. 2015 Model Checking on the Semantic Web

Proc. of the 32nd CIB W78 Conference 2015, 27th-29th 2015, Eindhoven, The Netherlands

Special Issue 01. 89-101.

BuildingSMART. (2014). buildingSMART Data Dictionary. http://bsdd.buildingsmart.org/.

Chipman T., Liebich T. and Weise M. (2013). mvdXML: Specification of a standardized format to define and
exchange Model View Definitions with Exchange Requirements and Validation Rules. Model Support
Group (MSG) of buildingSMART International Ltd..

Dimyadi J., Amor R. (2013). Automated building code compliance checking –where is it at?. Proceedings of the

19th CIB World Building Congress, Brisbane 2013: Construction and Society. 172-185. 2013.

Eastman C., Lee J., Jeong Y. and Lee J. (2009). Automatic rule-based checking of building designs, Automation

in Construction, 18 (2009) 1011-1033.

Eastman C., Teichol P., Sacks R. and Liston, K. (2011). BIM handbook –a guide to building information modeling

for owners, managers, designers, engineers, and contractors, 2nd edition, John Wiley & Sons Inc.

Hausknecht K., Liebich T., Weise M., Linhard K., Steinmann R., Geiger A., Hafele K.-H. (2014). BIM/IFC
software certification process by buildingSMART, eWork and eBusiness in Architecture, Engineering and

Construction, CRC Press, 129-133.

Heath T. and Bizer C. (2011) Linked Data: Evolving the Web into a Global Data Space (1st edition). Synthesis
Lectures on the Semantic Web: Theory and Technology, 1:1, 1-136. Morgan & Claypool.

Hjelseth E., Nisbet N. (2010). Overview of concepts for model checking. CIB-W078 Conference in Cairo, pp. 16-
18. 2010.

IUG, International User Group of buildingSMART International Ltd. (2012). An integrated process for
delivering IFC based data exchange. http://iug.buildingsmart.org/idms/methods-and-
guides/Integrated_IDM-MVD_ProcessFormats_14.pdf/view, accessed December 2012.

Jeong Y.-S., Eastman C. M., Sacks R. and Kaner I. (2009). Benchmark tests for BIM data exchanges of precast
concrete, Automation in Construction, 18, pp469-484.

Pauwels, P., Van Deursen, D., Verstraeten, R., De Roo, J., De Meyer, R, Van de Walle, R., & Van Campenhout, J.
(2011). A semantic rule checking environment for building performance checking. Automation in

Construction, 20(5), 506–518.

Pauwels, P. (2014). ifcOWL ontology file added for IFC4_ADD1. Available on
https://www.w3.org/community/lbd/2014/12/12/ifcowl-ontology-file-added-for-ifc4_add1/.

Solihin, W., & Eastman, C. (2015). Classification of rules for automated BIM rule checking
development. Automation in Construction, 53, 69-82.

Statsbygg, (2011). Statsbygg Building Information Modelling Manual Version1.2. Available at:
http://www.statsbygg.no/bim, accessed January 2014.

SPIN. (2011). SPARQL Inferencing Notation. http://spinrdf.org/.

Torma, S. (2014). Opening BIM to the Web – IFC-to-RDF Conversion Software. Available at:
http://rym.fi/results/opening-bim-to-the-web-ifc-to-rdf-conversion-software/.

Venugopal, M., (2011). Formal Specification of Industry Foundation Class Concepts using Engineering
Ontologies. Ph.D. thesis, Georgia Institute of Technology, Atlanta.

