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Abstract

Model Predictive Control (MPC) has demonstrated great potential to improve the energy efficiency
of buildings. However, using MPC traditionally requires a comprehensive knowledge of building
construction to create dynamic models of buildings’ zones and energy systems. This research presents
a hybrid modeling approach as an alternative method. To this end, two and a half months’ worth of data
collected in a living lab test cell was used to develop black-box and grey-box models to characterize
zone-level thermal response and optimize its temperature setpoints. The simulation results emphasized
the necessity of considering flexible schedules and temperature setpoints based on occupancy, weather,
and zone-level thermal response over a prediction window rather than standard fixed schedules and
temperature setpoints. Moreover, the proposed hybrid modeling approach can be used for model-based
predictive control in operating existing buildings.
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1. Introduction

In recent years, there has been a considerable movement in improving the energy efficiency of
heating, ventilation and air conditioning (HVAC) systems, as a significant proportion of building energy
use is because of the HVAC systems (Pérez-Lombard, Ortiz, & Pout, 2008). Advanced control systems
have emerged as effective ways in this regard. For instance, model predictive controls (MPCs) have
demonstrated great potential to improve building systems’ performance (Privara, Vana, Cigler,
Oldewurtel, & Komarek, 2011; Oldewurtel et al., 2012). MPC in building energy management
facilitates periodic adaptation of building systems to intermittent indoor (e.g. occupancy, electric
equipment) and outdoor conditions (e.g. weather). Using a prediction window, MPC tackles the time
lag in buildings’ responses to intermittent conditions.

Achieving the benefits of MPC requires a dynamic model of buildings’ zones and energy systems
that best represents thermal responses of a zone and system. The three modeling approaches that can be
used are white-box, grey-box, and black-box models (Li & Wen, 2014). White-box models (e.g.
mathematical-physical models used in building performance simulation tools) are based on detailed
modeling of a building and its systems. For instance, the lumped capacitance method is considered as a
white-box model (Kramer, van Schijndel, & Schellen, 2012). Black-box models deal with the
relationship between operational data where no knowledge about buildings’ thermal properties is
required (Harb, Boyanov, Hernandez, Streblow, & Miiller, 2016). Grey-box models use both physical
models and operational data (e.g. Jiménez, Madsen, & Andersen, 2008). Hence, implementation of
white-box models in existing buildings requires a comprehensive set of as-built construction
information. However, such information may not be easily available in existing buildings. In contrast,
black-box and grey-box models can deal with this drawback of white-box models.

Previous research aimed at optimizing HVAC systems to reduce energy input and provide
comfortable environment (Wang & Ma, 2008). MPC has been widely used to optimize HVAC system
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controls (Killian & Kozek, 2016). For instance, Corbin et al. (2013) incorporated a MPC environment
that integrated a white-box model (using EnergyPlus) to optimize building control systems. The present
research developed a hybrid model that combined grey-box with black-box modeling approaches to
optimize the energy performance of a building system. Data collected over 2.5 months during the
heating season in a full-scale living lab test cell was used to model thermal dynamics of the test cell as
well as the HVAC system (i.e. heat pump) provided the heating demands of the test cell. Based on the
developed grey-box and black-box models, the optimal control setpoints for MPC of the heat pump
serving the test cell were identified to reduce heat pump’s energy use while maintaining comfort
conditions.

The test cell and collected data used to develop grey-box and black-box models are described in
Section 2. Section 3 explains the methods of developing black-box models using artificial neural
network (ANN), grey-box model, and the optimization process using multi-objective genetic algorithm
(GA). Section 4 presents the simulation results and discussion of the results, followed by Section 5
which outlines the findings and limitations of the current study and necessary future work.

2. Description of the collected data

The data used for developing the black-box models were collected in an east-facing private office
space in an academic building located on a dense urban campus in Toronto, Canada. The office test cell
was a single faculty office adjacent to similar conditioned private offices to the north and south, and
surrounded by a large student teaching space (above) and shared office (below). As the studied office
was surrounded by other buildings, it received little direct solar radiation. A water-source heat pump
delivered the heating and cooling demands of the office through a dedicated duct and adjacent offices
on the same HVAC zone. A radiant heater also provided the heating demands to the office when the
outdoor air temperature fell below 15°C in the heating season. An air handling unit delivered tempered
fresh air to the office through a dedicated outdoor air system with dedicated ductwork.

A local weather station on the roof of the building recorded outdoor air temperature and relative
humidity, wind speed and direction, and solar radiation. The data collected in the test cell throughout
the study were: occupancy, door position, use of lights and electric equipment, air temperature of the
office, discharge air temperature and flow rate of the air handling unit and heat pump vents to the office.
Table 1 presents a summary of the sensors used in the test cell to measure the aforementioned variables.
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Table 1: Summary of the sensors used in the test cell.

Data collected Sensor model Description

The sensors had an accuracy of
+0.4°C with a resolution of
0.1°C and data collection
frequency of 5-6 minutes.
The sensors detected the
velocity of the incoming air.
Wind Sensor Rev P data loggers The accuracy of the sensors
was not provided by the
vendor.

The sensor was installed
HVAC input within the HVAC ducts
leading to the test cell reading
the temperature (with the
accuracy of £0.5°C) and
relative humidity (with the
accuracy of £2-5%) of the
incoming air.

Occupancy The occupancy and light state
of the test cell were recorded

Indoor air temperature | OmniSense S-10 Ambient Sensors

AM2302 Temperature/humidity Sensor

Lights Toggle switch as occupants used the manual
toggle switches.
The reed switch installed on
the door frame of the test cell
Door position Reed switch opened and closed a circuit

based on proximity to a
magnet installed on the test
cell’s door.

The power consumption of
electric equipment was
measured by a wattmeter at the
power bar. The data logger
was set to collect data at every
3 minutes.

Electrical equipment Watts up? PRO

3. Modeling and simulation

In this research, black-box models were developed to characterize a full-scale test cell’s response
to indoor and outdoor conditions. Using the developed black-box models, the thermal response of the
test cell to varying inputs from the heat pump was simulated. This section presents the methodology
used to develop black-box models followed by an explanation of the MATLAB-based simulation
process to optimize the heating setpoints of the test cell.

3.1 Black-box and grey-box models

Prior to data modeling, the collected data from multiple data acquisition systems (i.e. sensors and
weather station) from 22 November 2017 to 7 February 2018 were cleaned and organized. Due to the
heterogeneity of the data, both in terms of type and sampling frequency, pre-preocessing was required
to develop a coherent dataset. The collected data were averaged across each S5-minute timestep.
However, for the occupancy, lights, and door states, the obtained averaged values were rounded to have
an integer for these variables at each 5-minute timestep. Figure 1 presents the probability density of the
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outdoor air temperature and relative humidity as well as indoor air temperature measured in the test cell
(Tin) during the data collection period. The relative frequency of the collected data indicates a wide
range of indoor and outdoor conditions in the data collection period.
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Figure 1: Probability densities of the indoor and outdoor conditions in the data collection
period.

The distribution of the hourly occupied duration and the corresponding hourly occupied duration
averaged across each hour on weekdays during the data collection period are shown in Figure 2. In
general, the studied office had low occupied duration than standard occupancy schedules. It was
occupied mostly between 9 am and 5 pm. In total, the office was occupied about 132 hours on weekdays
during the data collection period. As shown in Figure 2, the test cell was mostly not occupied for the
whole hour during business hours. There were a few days that the test cell was occupied for the whole
hour during the data collection period.
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Time of day [h]
Figure 2: Distribution of hourly occupied duration (boxplot and outlier +’s) and mean hourly
occupied duration (filled circles) on weekdays during the data collection period.

The collected data were used to develop black-box models to estimate the air temperature of the
test cell. ANN method with one hidden layer was used to construct black-box models. The variety of
the collected data facilitated training black-box models under different conditions. The input dataset
and associated target outputs (i.e. indoor air temperature of the test cell) were used to train the ANN
models in MATLAB. The ANN models were constructed with the 11 variables measured in the test
cell, which resulted in the root mean squared error (RMSE) of about 0.6°C in predicting the indoor air
temperature. However, the input variables selected to train the ANN models were reduced afterwards.
For instance, since the test cell was shaded by surrounding buildings, using solar radiation as input did
not improve the accuracy of the models. Moreover, as there were relationships between occupancy and
use of lights and electric equipment, adding lights and electric equipment use as input did not improve
the accuracy of the models trained with the dataset included them. The input variables selected finally
to train the ANN models included: outdoor air temperature, outdoor relative humidity, occupancy (i.e.
number of occupants), door position, and air flow rate and temperature of the air handling unit and heat
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pump unit vents of the test cell. Using these variables resulted in the RMSE of about 0.6°C.

Similar to previous research, different prediction windows were used to estimate building spaces’
thermal behavior. For instance, Thomas and Soleimani-Mohseni (2007) stated that the minimum of 15-
30 minutes as the prediction window in MPC in building controls is required. Mustafaraj et al.’s (2011)
neural network-based models had a good performance in predicting air temperature of an open office
within 30 minutes to three hours. Similarly, Ferracuti et al. (2017) showed the good performance of
neural network-based models when the prediction window was shorter than three hours. In this research,
to assess the performance of the ANN models, the models were constructed under varying prediction
windows including 5, 30, 60, 90, 120, 150, and 180 minutes. For instance, for the prediction window of
30 minutes, an ANN model was developed using the input variables at each timestep to predict the air
temperature of the test cell in the next 30 minutes.

To develop the ANN models for each of the considered prediction windows, the dataset was
partitioned randomly using a stratified 10-fold cross-validation on the observations (i.e. 22464 data
points). Note that as the order of the dataset was not arbitrary (it was time series), the dataset was not
shuffled prior to splitting it into a training and test set. Each of the 10 partitions divided the data points
into a training set and a test set. The 10-fold cross-validation partitioned the data points as 90% of the
data points for training the ANN model and 10% of the data points for testing the corresponding
developed ANN model. The RMSE of the indoor air temperature averaged across the 10 subsamples
generated by the 10-fold cross-validation was almost identical (i.e. 0.6°C) for the considered prediction
windows. This error in short-term prediction of buildings’ thermal behavior is in line with previous
studies (e.g. Ferracuti et al., 2017). As an example, Figure 3 presents the measured air temperature
versus the predicted air temperature of the test cell using the ANN models with the prediction window
of 30 minutes for the training and test sets of the 10-fold cross-validation on the observations. The errors
of the ANN models indicated the good performance of the models considering the wide range of the
measured air temperature of the test cell during the data collection period.
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Figure 3: Five-minute time series of measured air temperature versus simulated air temperature
of the test cell using the ANN model with the prediction window of 30 minutes on: (left) training set,
and (vight) test set.

3.2 Simulation process

This research formulated the optimal setpoint controls with two objectives: (1) reducing occupants’
discomfort during occupied periods, and (2) reducing electricity energy use of the heat pump serving
the test cell. This multi-objective optimization targeted the minimization of the vector of these two
objectives.

In the simulation process, it was assumed that the test cell had a thermostat which was used to
control the heat pump states (i.e. ON and OFF). The heating operation mode of the heat pump was set
based on the test cell’s temperature setpoint and air temperature. To find test cell’s optimal setpoints
for reducing electricity energy use of the heat pump while maintaining the test cell’s temperature in the
comfort zone (i.e. between 21°C and 24°C), various heating setpoints at varying prediction windows
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were tested. Table 2 presents the range of the considered heating setpoints in the optimization process.
In total, the number of test cases were 14336.

Table 2: List of adjusted heating setpoints for each of the considered prediction windows
(i.e. 5, 30, 60, 90, 120, 150, and 180 minutes).

Heating setpoint Minimum Maximum Increment
[C] ['C] [C]
Occupied periods (Tp,h0cc) 18 25
Unoccupied periods after the first
arrival and before the last departure times 10 25
on occupied days (T punoce.d) 1
Unoccupied periods before the first
arrival and after the last departure times
. 10 25
on occupied days; and
Unoccupied days (T punocen)

Figure 4 presents a summary of the rule-based control strategy to find the optimal heating setpoints.
For each test case of the heating setpoints, as the test cell’s air temperature fell below the adjusted
heating setpoint, the heat pump delivered the heating demand of the test cell; otherwise, the heat pump
did not deliver any heating demands to the test cell. As shown in Figure 4, three variations of the heating
setpoints were set: (1) on unoccupied days and occupied days before the first arrival time and after the
last departure time (7,4, unoce,n), (2) during unoccupied times after the first arrival time and last departure
time on occupied days (Tsp,hunoce.a), and (3) during occupied times on occupied days (Tsp,40cc). In addition
to the rule-based control strategy to optimize control setpoints, a baseline case was simulated. The
control strategy for the baseline was on the basis of the standard practice in existing buildings. It was
assumed that between 7am-7pm on weekdays, the heating setpoint was set to 21°C. On weekends and
before 7 am and after 7 pm on weekdays, the heating setpoint was set to 10°C.

T
If Tio= Tephoce: HP OFF

elseif Tin < Tepnoce: HP ON heating mode

End

T 1]
If Tin = Tephnunoced: HP OFF

elseif Tin < Tepnunocc.s: HP ON heating mode

End

If Tin 2 Tephunocen: HP OFF

Day
I
- 1 v
Occupied Unoccupied
{—
v v v
a?r?\?gle :r? dﬁ‘r: ;t Before first After last
departure arrival departure
I
1 - 1 .
Occupied Unoccupied

elseif Tin < Tephunocen: HP ON heating mode

End

Figure 4: Rule-based control strategy to optimize temperature setpoints.

Optimizing control setpoints was based on the dataset which was used to construct the ANN
models. Indoor and outdoor conditions were set to the measured data for each timestep (i.e. five
minutes). However, the supply air temperature of the heat pump was calculated based on the air
temperature of the test cell assuming the heat pump delivered the energy demands of the test cell at its
maximum capacity and the return air vent was located in the test cell. A water-source heat pump model,
which was almost identical to the one provided the heating and cooling demands of the test cell, was
considered for the simulation process. The heating capacity of the considered heat pump was 5393 W,
whereas its cooling capacity was 6887 W. Its energy efficiency ratio was 13.4 and the coefficient of
performance was 4.4. The heat pump delivered an air flow rate of 0.3 m®/s at the external static pressure
of 0.20” (inches of water column). To avoid short cycling in the operation of the heat pump, it was
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assumed that it can slow down to a cruise control mode. The minimum air temperature supplied from
the heat pump vent was set to be at the minimum of 10°C lower than the air temperature of the test cell.

At each timestep, the air temperature of the test cell (7i,) was calculated using the black-box ANN
models based on the inputs from the dataset, except for the air temperature and flow rate of the heat
pump vent. Once the air temperature of the test cell was calculated, the air temperature and flow rate of
the heat pump vent were calculated using the grey-box model (Figure 5) and the rule-based control
strategy to optimize the control setpoints (see Figure 4). Note that the initial values of the air temperature
and flow rate of the heat pump vent were assigned to be identical to the dataset. Moreover, as the heat
pump delivered the energy demands of multiple rooms, the air flow rate from the heat pump vent to the
test cell was calculated based on the average measured values.

Grey-box model:
If HP is in heating mode:
AFppyent = 0.06 m/s

Inputs Black-box model: Output/ Input : Thpvent = Tin + Q/(p.AFpvent.Cp) Qutput
else:
QAT, ORH, ANN model Ti AF tevent,
Occ, Door, " HP OFF Hva:m
AF ppyent, Trpuent, AFpvent = 0
AF auvent, TaHUvent Thpvert = Tin

? End

Figure 5: Inputs and outputs of black-box and grey-box models.

To find the optimal control setpoints among the considered ones, the multi-objective GA was
implemented in MATLAB to find a set of points that have the relative minimal fitness function values
(Pareto front) where reducing one fitness function (reducing electricity energy use) degraded another
fitness function (increasing discomfort hours). The two fitness functions in the current research were to
calculate: (1) the electricity energy use of the heat pump, and (2) the number of discomfort hours during
occupied periods for the whole simulation time period. The multi-objective GA was set to create
populations with 10 members per 10 generations. The sequence of generations was created based on
the children type of mutation. Using the mutation children, single members of the population of a
previous generation are randomly changed to form the population of the next generation.

4. Results and discussion

Table 3 presents the heating setpoints at Pareto front points obtained by the multi-objective GA.
The obtained prediction windows for the optimal cases were 60 and 90 minutes. This prediction window
means that for instance, the temperature setpoints of the test cell should be reset from the nighttime
setbacks one hour before the occupant’s first arrival time on an occupied day and one hour before the
occupant left the office for the rest of that day. This trend is due to that the fixed temperature setpoints
based on a standard occupancy schedule (between 7 am and 7 pm on weekdays) may not be applicable
regarding flexible work schedules. For example, the occupancy profiles (see Figure 2) of the test cell
shows that the office was in use mainly between 9 am and 5 pm during the data collection period. As
such, the building spaces may be conditioned much earlier than when an occupant arrives an office or
much longer than when an occupant leaves an office. Likewise, if an occupant arrives earlier than
standard schedules or stays after standard schedules, the occupant will feel uncomfortable.

Determining optimal prediction window is also important in controlling HVAC system output as
thermal response rates of buildings may not be as quick as what building operators assume in managing
temperature setpoints. Hence, an occupant may feel uncomfortable when the occupant arrives an office.
For instance, Dobbs and Hencey’s (2014) study showed that controlling HVAC systems purely based
on occupancy led to the reduction in energy use, however it increased occupants’ discomfort upon their
arrival to a space. Moreover, due to the delay in buildings’ response because of their high thermal mass,
it may take time to restore an office’s temperature to a comfortable level once an occupant change the
temperature setpoint or building operators adjust temperature setpoints following receiving occupants’
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complaints. However, accurate information of an existing building for developing white-box model of
building thermal response may not be readily available. The current study used black-box models to
predict thermal responses of the test cell to indoor and outdoor conditions without the requirement to
go through detailed information of the thermal characteristics of the test cell.

In addition to the necessity of flexible schedules to reduce HVAC system output, the temperature
setpoint values should also be revisited. For instance, in the current test cell, the optimal nighttime
heating setpoints were 12-16°C, rather than the commonly used temperature setbacks of 10°C for the
heating demands during weekends and nighttime on weekdays. Furthermore, the results of the studied
test cell showed that on occupied days, the temperature setpoints should be adjusted during occupied
and intermediate unoccupied periods, rather than determining fixed temperature setpoints (e.g. 21°C for
heating) for the whole business hours on weekdays. For instance, in this study, the optimization
simulations yielded the optimal heating setpoint during occupied periods as 18-20°C, whereas the
optimal heating setpoint during unoccupied periods was 13-18°C on the days that the occupant was
present.

Table 3: Comparing Pareto front points with baseline.

Case Optimal cases Baseline
Output 1 2 3
Prediction window [min] 60 60 90 5
Occupied periods 20 19 18 71
(T sp.h, occ)
Unoccupied periods
after the first arrival and
before the last departure 13 18 15 21
Heating times on occupied days
setpoint [oC] (Tsp,h,unocc,d) . .
Unoccupied  periods
before the first arrival and
after the !ast departure times 16 13 12 10
on occupied days; and
Unoccupied days
(T sp,h,unocc,n)
. Discomfort hours during occupied hours 36 37 76 96
Electricity energy use [MJ] 824 221 21 2660

Figure 6 presents the average hourly air temperature of the test cell where the temperature setpoint
was controlled based on the heating setpoints of the second optimal case compared to the baseline where
the heating setpoints were adjusted based on the standard operating practice. These profiles show the
hourly air temperature averaged across each hour during occupied periods, intermediate unoccupied
periods, and unoccupied periods excluding intermediate unoccupied periods. Using the optimal heating
setpoints, the average air temperature of the test cell was generally above 21°C during occupied periods,
whereas it was below 21°C during occupied periods when the heating setpoint was controlled based on
the standard practice in existing buildings. The simulation results showed that the fraction of occupied
periods when the heat pump was on while the indoor temperature was below 21°C reduced by 89%
during occupied periods with the second optimal case compared to the baseline.

The mean hourly heating setpoints and occupied fraction on weekdays are displayed in Figure 7.
As shown in this figure, the range of the average heating setpoint on the basis of the optimal heating
setpoints of the second optimal case (see Table 3) was from 13°C to 15°C, while the fixed standard
heating setpoints are 10°C and 21°C. During standard hours for resetting from setbacks, the average
heating setpoint based on the optimal heating setpoints was lower than the fixed standard heating
setpoint, whereas it was higher than the fixed standard heating setpoint during nighttime. This trend
indicates that on average, using the optimal heating setpoints, the heating system provided more output
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during nighttime, whereas it provided less output during daytime compared to the fixed standard heating
setpoints. Despite this trend, the heat pump electricity energy use and discomfort duration were lower
with the optimal heating setpoints than the baseline (see Table 3).
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Figure 6: Mean hourly indoor air temperature of the optimal case #2 (see Table 3) and the
baseline.
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Figure 7: Comparing optimal case #2 (see Table 3) with baseline on weekdays: (left) simulated
mean hourly heating temperature setback for the optimal case and baseline, (right) measured mean
hourly occupied fraction.

This study showed that while fixed temperature setpoint schedules is a common practice in
controlling HVAC systems, using a model predictive control and dynamic temperature setpoint control
system based on occupancy, weather, and thermal response of the test cell can reduce energy use while
keeping the air temperature of the test cell in the comfort zone. However, accurate prediction of
occupancy, weather, and thermal responses of a building zone are necessary to control temperature
setpoints properly. Moreover, the effectiveness of the proposed control system requires future real world
data and testing in a living lab where full HVAC system control is possible.

5. Conclusions

This research combined black-box and grey-box models to develop a hybrid model to characterize
thermal responses of a full-scale test cell without a requirement for a comprehensive knowledge of the
physical characteristics of the test cell. Using the hybrid model, the temperature setpoints of the test cell
for MPC of the heat pump delivered the heating demands of the test cell were optimized. The simulation
results showed that flexible schedules and temperature setpoints based on occupancy, weather, and
zone-level thermal response using MPC reduced energy use of the test cell compared to the standard
practice in defining fixed schedules and temperature setpoints.

The method developed in the present research is an efficient method that can be applied in existing
buildings where accurate as-built characteristics of a building space may not be readily available. Such
black/grey-box model-based predictive control using real-time data can be used for continuous
commissioning in existing buildings. This research had limitations that require future work. While this
research used data-driven models for modeling the relationship between inputs and target outputs, the
presented optimal temperature setpoints and control system were assessed using simulation. Further
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assessment of the control system necessitates a real test case. Generalization of the optimal control
setpoints requires data collection in various cases studies. Moreover, future work on developing
accurate models for predicting occupancy, weather, and thermal responses of the studied test cell is
necessary.

Nomenclature
Air flow rate of AHU vent Full capacity of HP in heating
AF AHUvent Q :
(m3/s) operation mode (W)
AFupvens  Air flow rate of HP vent (m3/s) Tarvvent é‘:g)temperature of AHU vent
. . . Air temperature of adjacent
AHU Air handling unit Thattway hallway (“C)
Specific heat capacity of air . .
Gy (J/ke.K) Trpvent Air temperature of HP vent (°C)
Door Door position Tin Indoor air temperature (°C)
Heating temperature setpoint
ap Heat pump Tsphoce during occupied hours (°C)
Heating temperature setback
0AT Outdoor air temperature (°C) Tsphunoce,a  during unoccupied hours on
occupied days ("C)
Heating temperature setback on
Occ Number of occupants Tsp,hunocen unoccupied days (C)
ORH Outdoor relative humidity (%) p Air density (kg/m?)

Acknowledgements

This research was financially supported by the BRAIN Alliance - Big Data Research, Analytics,
and Information Network, funded by the Ontario Research Fund Centres of Excellence program and
FuseForward.

References

Corbin, C. D., Henze, G. P., & May-Ostendorp, P. (2013). A model predictive control optimization
environment for real-time commercial building application. Journal of Building Performance
Simulation, 6(3), 159-174.

Dobbs, J. R., & Hencey, B. M. (2014). Model predictive HVAC control with online occupancy model.
Energy and Buildings, 82, 675—684.

Ferracuti, F., Fonti, A., Ciabattoni, L., Pizzuti, S., Arteconi, A., Helsen, L., & Comodi, G. (2017). Data-
driven models for short-term thermal behaviour prediction in real buildings. Applied Energy,
204, 1375-1387.

Harb, H., Boyanov, N., Hernandez, L., Streblow, R., & Miiller, D. (2016). Development and validation
of grey-box models for forecasting the thermal response of occupied buildings. Energy and
Buildings, 117, 199-207.

Jiménez, M. J., Madsen, H., & Andersen, K. K. (2008). Identification of the main thermal characteristics
of building components using MATLAB. Outdoor Testing, Analysis and Modelling of Building
Components, 43(2), 170-180.

Killian, M., & Kozek, M. (2016). Ten questions concerning model predictive control for energy
efficient buildings. Building and Environment, 105, 403—412.

146



Kramer, R., van Schijndel, J., & Schellen, H. (2012). Simplified thermal and hygric building models:
A literature review. Frontiers of Architectural Research, 1(4), 318-325.

Li, X., & Wen, J. (2014). Review of building energy modeling for control and operation. Renewable
and Sustainable Energy Reviews, 37, 517-537.

Mustafaraj, G., Lowry, G., & Chen, J. (2011). Prediction of room temperature and relative humidity by
autoregressive linear and nonlinear neural network models for an open office. Energy and
Buildings, 43(6), 1452-1460.

Oldewurtel, F., Parisio, A., Jones, C. N., Gyalistras, D., Gwerder, M., Stauch, V., ... Morari, M. (2012).
Use of model predictive control and weather forecasts for energy efficient building climate
control. Energy and Buildings, 45, 15-27.

Pérez-Lombard, L., Ortiz, J., & Pout, C. (2008). A review on buildings energy consumption
information. Energy and Buildings, 40(3), 394-398.

Privara, S., Vana, Z., Cigler, J., Oldewurtel, F., & Komarek, J. (2011). Role of MPC in Building Climate
Control. In E. N. Pistikopoulos, M. C. Georgiadis, & A. C. Kokossis (Eds.), Computer Aided
Chemical Engineering (Vol. 29, pp. 728-732). https://doi.org/10.1016/B978-0-444-53711-
9.50146-2

Thomas, B., & Soleimani-Mohseni, M. (2007). Artificial neural network models for indoor temperature
prediction: investigations in two buildings. Neural Computing and Applications, 16(1), 81-89.

Wang, S., & Ma, Z. (2008). Supervisory and Optimal Control of Building HVAC Systems: A Review.
HVAC&R Research, 14(1), 3-32.

147



