
Zhu G. and McArthur J.J. (2020). "Automatic generation of architectural layouts using Genetic Algorithms
in BIM" In: Proc. 37th CIB W78 Information Technology for Construction Conference (CIB W78), São
Paulo, Brazil, pp. 17-26. DOI: http://dx.doi.org/10.46421/2706-6568.37.2020.paper002

AUTOMATIC GENERATION OF ARCHITECTURAL
LAYOUTS USING GENETIC ALGORITHMS IN BIM

Garbo Zhu1 and J.J. McArthur 2

Abstract: Room layout is a complex problem for architects, who must consider
adjacencies, room sizes, site constraints, and circulation requirements. This re-
search applies genetic and stimulated annealing algorithms to optimize space layout
in two dimensions. Visual Programming Languages interfacing with BIM software
are used to allow semantic and topological qualities of each room to be imported to
develop complete floorplans. A series of case studies adopting different machine
learning techniques are presented to demonstrate the relative performance of each
approach, using the minimization of unusable space as a performance metric.
Previous research has considered purely mathematical solutions to support the
automation of these layouts, often resulting in irregular polygons or circular rooms;
from an architectural standpoint, this is undesirable and thus a rectangle-packing
algorithm has been developed and used. Future research to facilitate the adoption of
this approach in architectural practice, particularly for large and complex buildings,
is discussed.

Keywords: BIM, automatic floorplan generation, parametric model, genetic
algorithms.

1 INTRODUCTION
Space planning is one of the most crucial segments in construction projects, as it directly
affects the experiential quality, energy efficiency, and feasibility of the building. The
process is often time-consuming and labor-intensive since it re-quires logical senses and
previous work experience of the architects involved. However, with the rise of
automated design technologies, repetitive tasks such as floor layouts, can now be
assigned to computer, leaving creative works to designers. This research focuses on the
preliminary phase of a construction project - room planning, intending to generate
spatial relationship diagrams as the guidance for future architectural design. In this
exercise, the demonstration will be adopting the typology of a small-scaled shopping
mall and following the representational programs that are needed. This paper extends
upon previous work of this type by eliminating the irregular room shapes developed by
approaches such as circle packing and Voronoi, presenting instead a rectangle-packing
algorithm developed to optimize floorplans. Further, to permit its application in practice,
a BIM integration script is presented to create 3D rooms and map semantic data,
resulting in true architectural floorplans.

1 Research Student, Ryerson University, Toronto, Canada, garbo.zhu@ryerson.ca
2 Assistant Professor, Ryerson University, Toronto, Canada, jjmcarthur@ryerson.ca

mailto:garbo.zhu@ryerson.cay

Automatic generation of architectural layouts using Genetic Algorithms in BIM

18 | Proceedings CIB W78, August 2020 | São Paulo, Brazil

2 LITERATURE REVIEW
With developed technologies, the process of space planning has transformed into a
multi-objective optimization problem to not only satisfy the design constraints but also
achieve an optimal spatial configuration. There have been numerous studies conducted
on the topic of room placement using different mathematical formulas and algorithms,
for example (e.g., Merrell et al. 2010; Wong and Chan 2009; Nagy et al. 2017). Recently,
parametric approaches have leveraged Genetic Algorithms (GA) (e.g., Rebaudengo and
Reorda 1996), Simulated Annealing (SA) (e.g., Yi et al. 2014), and fixed grid/matrix
layout (e.g., Sharafi et al. 2017). These have been used with optimization rules for
minimum travel distances between room centroids (e.g., Liggett 2000), minimum dead
spaces and overlaps (e.g., Baušys and Pankrašovaite 2005), or optimized energy use (e.g.,
Du et al. 2018).

Two algorithms of interest to this paper are GA and SA. GA (e.g., Tate and Smith
1995; Whitney 1994) is de-signed to speed up the solution-finding process to search for
high-quality results under a confined framework. SA techniques (e.g., Van Laarhoven
and Aarts 1987) help to eliminate and improve the common hill climbing problems faced
by GA. Instead of being a population-based algorithm, SA uses an iterative single
solution-based method, making it an exploitative algorithm. In standard result-mining
algorithms, the new solution is accepted only if it meets the improved minimum value
set by the selection mechanism. In SA, the indicator for an acceptable result can be based
on a probability percentage, providing solutions that are more meticulous and closer to
the global optima (e.g., Liggett 2000), and its use is recommended at the beginning of the
search process (e.g., Liggett 2000; Szykman and Cagan 1997)

A current gap in the literature is the lack of linkage between theories and
architectural applications. Most of the researches conducted have only been implemented
based on randomized room dimensions within arbitrary boundaries. To accurately
examine and improve the usability of space planning optimization techniques, a
controlled scenario with defined space programming information is adopted.

3 METHODOLOGY
A case study approach was used to explore room layout options using a six-step process.
First, a set of 17 rooms and the sample site of 35m x 35m (1225m2) are established, along
with the required adjacency relationships. Next, a circle packing algorithm is introduced
to place all rooms on site. Thirdly, the result generated is optimized through machine
learning techniques, including Genetic Algorithms and Simulated Annealing. Then, the
optimized output is transformed into realistic square geometries, following the original
spatial requirements. To eliminate overlapping boundaries, room outlines are shifted to
accommodate the appropriate dimensions. The final step is to define polygons as data
points to be input into BIM through Dynamo for Revit.

3.1 Room Datasheet
The proposed workflow starts with a spreadsheet (Table 1) containing spatial
requirements and adjacency relationships between rooms as the input. There are three
levels of spatial relationships between rooms: 1) adjacency, defining the requirement for
rooms to be next to one another; 2) proximity, indicating a preference for rooms to be
near one another, and 3) non-adjacency, indicating that rooms cannot share a common

Garbo Zhu and J.J. McArthur

19 | Proceedings CIB W78, August 2020 | São Paulo, Brazil

wall. To ensure interactivity and flexibility of the result, all information is linked back to
the spreadsheet in real time which minimizes lag time and errors caused by delays.

Table 1: Room Datasheet Sample (truncated)

Room ID Room Name Area Radius Diameter ADJ Proximity Non-ADJ

R0 Entrance 25 2.82 5.64 NA NA NA

R1 Service Room 30 3.09 6.18 R16 R6 R9

R2 Electrical
Room

30 3.09 6.18 R16 R1 R8

3.2 Room Planning Sequence
From the structured table, the data is then processed through a series of functions (Fig. 1),
coded using Python 3.6. The order within the list is determined by the number of
adjacent rooms those rooms acquired, arranged in descending order. All adjacency
relationships are captured in an ordered dictionary, with the key being rooms that were
placed last, and the values representing rooms that should be placed next.

Fig. 1. Room Plotting Order Sequence

3.3 Room Placing Function – Circle Packing Algorithm
Circles are chosen as the primary visual representation due to their flexible quality with
unlimited edges, giving more potential for spatial layouts. Stemming from the theory and
logic behind circle packing algorithms (e.g., Collins and Stephenson 2003; Castillo et al.
2008), the proposed function introduced room planning sequence that governs the order
and constraints of circle-plotting. Naturally, there will be dead spaces in-between each
circle due to the curved outlines. Therefore, the input dimensions are smaller by 10% of
the actual footprint required. Rooms are separated into three types of arrays for simple
identification: array N, rooms that are currently being placed; array P, rooms that were
placed prior to N; array D, rooms that are in the placed_rooms list. As each room (Ni) is
added to the diagram, there are two rules that the function needs to satisfy. First, Ni
cannot exceed the site constraints (Eq. 1-4). Where x/y superscript denote the x/y -
coordinate of the centroid, r superscript denotes the radius of the room, and subscript
denotes the item in the array (Fig. 2).

Automatic generation of architectural layouts using Genetic Algorithms in BIM

20 | Proceedings CIB W78, August 2020 | São Paulo, Brazil

Second, cannot overlap with any existing circles in the array . The logic adopts

the Pythagorean theorem to determine whether two circles collide (Eq. 5).

The positioning for is dependent on the location of (Eq. 6 & 7), where
represents the angle between the centroid of and .

At the beginning of the room plotting function, placement angle α is set equal to zero,

resulting in
 being set equal to

 . To ensure that each fulfils the two constraints
listed above, an increment of 0.01 (in radians) is added to α, causing to rotate around
 until both rules are satisfied.

Fig. 2. Room plotting sequence sample

3.4 Machine Learning Algorithms for Space Optimization
To optimize the output and to transform the results to be more spatially efficient,
theories of machine learning was applied to determine the optimal placement angle.

The method adopted is a common approach to Genetic Algorithm, where
chromosomes of two parents are selected to produce children containing genes from
both parties. To start off the search, a population {- π<α<π} is defined. In this scenario,
the genes are represented by all α that were implemented in the plotting function and
are stored in an array that can be mutated in increments of +/- 0.01. Since the goal is to
achieve the smallest footprint while placing all rooms within the site, the fitness
calculation is based on the bounding area that the current configuration. The smaller the
area is, the higher the fitting score, and the more likely it is for its genes to be copied
down. Conversely, if the total bounded area is larger than the previous generation, it is a
less ideal candidate for reproduction.

To refine the mating pool, Elitism (e.g., Deb et al. 2007) is performed, meaning that
the top 10% of the fittest population α goes to the next generation. Then, two parents are
generated, through both selecting 50% each from the previous array randomly. The same
logic applies to mating, where the child adopts 50% of the array from each parent
randomly to produce the next generation. However, this optimized algorithm was stuck
in the local minimum between two iterations, one that has excess dead space, and the
other having overlapping polygons.

Garbo Zhu and J.J. McArthur

21 | Proceedings CIB W78, August 2020 | São Paulo, Brazil

To achieve global optima efficiently, SA is introduced to improve the current
circumstances. For a finite set of iterations, the value of bounding area is used to
compare with its previous iteration. The objective is consistence with GA listed above, if
the fitness score is higher, meaning that the bounding area is smaller, the value of the
previous array α will take on the current array α', which is chosen randomly. Inversely,
if the fitness score is lower, whether α will take on the value of α' is dependent on the
rate of probability p, which is calculated through Boltzmann probability factor (e.g.,
Ingber 1993). The benchmark for acceptance probability p is also randomly generated
between ∅<p<1.0 to avoid termination at local minima (e.g., Ingber 1993).

3.5 Room Squaring
Circle diagrams are the schematic representations for room layouts. To generate a
workable floor plan, the graphic must be transformed through shape-finding functions.
The goal is to create realistic geometries that are pragmatic for construction. Since the
centroids of each room, all required dimensions and adjacency relationships are stored in
a central database, the process of producing straight-edged spaces is straightforward.

For each room , the existing centroid is maintained and the bottom, top, left, and
right edges of the room polygon

 are defined by adding or
subtracting the radius

 from the centroid as appropriate, for example (Eq. 8). This
increases the room area but provides flexibility when overlapping walls are resolved in
the next step. Overlapped edges are detected by looping through all rooms and
comparing to the remaining rooms , where j=i+1 to the total number of rooms and
checking whether top right, top left, bottom right, or bottom left corners overlap with
any of the other rooms . The rules (Eq. 9a & b) and resolution (Eq. 10) for a clashing
top (of) and bottom (of) edges are shown below; identification and resolution of all
other overlaps follow this logic. Finally, once all overlaps have been resolved, each room
is tested (Eq. 11) to ensure that the area is maintained within acceptable tolerance.

.

Finally, rooms not achieving the area tolerance were adjusted (Eq. 10).

3.6 Room Import to BIM
To transform the room data developed above to architectural floor plans, visual
programming language, Dynamo, was used to allow users to access the results through
BIM software. Due to the fundamental deviation in programming languages – Dynamo
uses IronPython and cannot recognize the more standard CPython – the polygons were
extracted as a list that can then be read by Dynamo.

Automatic generation of architectural layouts using Genetic Algorithms in BIM

22 | Proceedings CIB W78, August 2020 | São Paulo, Brazil

Fig. 3. Creation of rooms and generated polygons and mapping of room numbers

using Dynamo.

4 RESULTS
The sequence of images shown (Fig. 4) highlights the results of each step in the room
placement sequence. The result for attempt #1 (Fig. 4a) has the following errors:
overlapping polygons, dead spaces, and circles that have exceeded the site boundaries
(square in red). The total footprint of the bounded area is 792m2. The optimization
algorithm achieved a footprint of 730m2 while satisfying both requirements of within site
boundaries and having zero overlapping circles. Initially, only GA was for optimization,
however, the proposed function was trapped in two local minima between two iterations:
one with excess dead space, and the other having over-lapping polygons. To resolve this,
SA was introduced, and its logical randomization approach assisted the searching
process to be more accurate and efficient and resulted in a fully resolved and optimized
layout (Fig. 4b). During squaring (Fig. 4c), significant overlaps were noted between all
rooms and had to be resolved. Applying Eq. 8-11, 15 of 17 rooms achieved the 5% area
tolerance, with the remaining two rooms at 6.50% and 7.25% above the required area,
which is within the 10% tolerance typically used in practice. This resulted in a final, fully
resolved layout (Fig. 4d) with a total room area of only 2% above the required area
presented in the room datasheet.

The final floor plan (Fig. 5), implemented in Revit achieved all desired adjacencies, as
it follows the adjacency matrix and size constraints of the original data input yet
remaining a buildable geometry.

Garbo Zhu and J.J. McArthur

23 | Proceedings CIB W78, August 2020 | São Paulo, Brazil

Fig. 4. Room placement and optimization sequence: Circle packing before (a; top
left) and after optimization (b; top right); squared rooms with (c; bottom left) and

without overlap (d; bottom right)

Fig. 5. Creation of rooms from polygons generated and mapping of room numbers

using Dynamo

Automatic generation of architectural layouts using Genetic Algorithms in BIM

24 | Proceedings CIB W78, August 2020 | São Paulo, Brazil

5 DISCUSSION AND CONCLUSIONS
From room datasheet to BIM, this researched has achieved a streamlined approach to
room-planning under the assistance of visual programming language and two automated
optimization algorithms. The current gap in existing studies is the disconnection
between research and applications. Most of the functions have only been tested within
the research team, since examples such as circle-packing and GA/SA optimization
algorithms were initially developed to solved mathematically problems. Without
considering room-planning in a real-life setting, the logic developed cannot be proven to
be reliable and beneficial within the industry. In this paper, techniques were refined and
tested using a small-scaled architectural prototype. The results obtained have shown the
realistic performance of the approaches adopted, displaying the adaptability of this
research and the great potential it acquires.

By combining the circle room plotting sequence with machine-learning algorithms,
the intention to achieve the most compact configuration was realized. Through the room
datasheet, users had absolute control over the required rooms, dimensions, and the
adjacency matrix, while retaining the benefits of an algorithm-assisted decision-making
design. The room plotting sequence provides architects with an accurate visual
representation of the most spatially efficient layout within a shorter timeframe,
particularly when designing large-scaled projects with repetitive unit types. With the
assistance of automated design tools, laborious tasks can be relinquished to computer
programs, freeing designers to focus on creative ventures.

A limitation of this approach is that it is not yet seamless. This is primarily be-cause
machine learning packages are not usable within Dynamo and required the use of
Python and export of polygon coordinates to for import into Dynamo. A second
limitation is the rigidity of the fitting function. Since the bounding area is the only
measure of success, outcomes of the optimization had omitted other aspects of the space.
Finally, consistent with the majority of previous studies, this algorithm considered only a
single level. The extension of this work to multiple floors is desirable and should be
developed in future research. Future research should also focus on holistic approaches
when applying generative design tools for construction projects, such as incorporating
circulation spaces and building code compliance evaluation. Alternative fitting functions
and multi-objective should be considered to suit different needs depending on the
functionality of space, for example, energy optimization and/or minimized travel
distances.

The practical implications of this work are significant. For architects, layout
automation tools can increase the efficiency in the preliminary stage of design.
Traditionally, during massing studies, where building footprints are constantly under
revision, hours of works were poured into the monotonous routine of mapping out all
required programs within a confined space. With the assistance of optimized room-
planning technique, the most compact floor layouts can be created automatically, and
ready to be used in BIM right away. With the significant decrease in time spent on
repetitive tasks, architects can explore a broader range of potential building footprints
and floorplates to optimize energy performance, and focus on the occupant experience of
the space, thus enhancing overall design quality.

Garbo Zhu and J.J. McArthur

25 | Proceedings CIB W78, August 2020 | São Paulo, Brazil

6 REFERENCES
Baušys, R. and Pankrašovaite, I. (2005). Optimization of architectural layout by the

improved genetic algorithm. Journal of Civil Engineering and Management., 11(1), pp.
13-21. Available at: https://doi.org/10.1080/13923730.2005.9636328 [Accessed 8 Oct.
2019].

Bergmann, A., Fritz, G. and Glatter, O. (2000). Solving the generalized indirect Fourier
transformation (GIFT) by Boltzmann simplex simulated annealing (BSSA). Journal of
applied crystallography, 33(5), pp. 1212-1216. Available at:
https://doi.org/10.1107/S0021889800008372 [Accessed 16 Oct. 2019].

Castillo, I., Kampas, F. and Pintér, J., (2008). Solving circle packing problems by global
optimization: numerical results and industrial applications. European Journal of
Operational Research, 191(3), pp. 786-802. Available at:
https://doi.org/10.1016/j.ejor.2007.01.054 [Accessed 26 Oct. 2019].

Collins, C. and Stephenson, K. (2003). A circle packing algorithm. Computational
Geometry, 25(3), pp. 233-256. Available at: https://doi.org/10.1016/S0925-
7721(02)00099-8 [Accessed 20 Oct. 2019].

Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002). A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary
computation, 6(2), pp. 182-197. Available at: https://doi.org/10.1109/4235.996017
[Accessed 6 Nov. 2019].

Du, T., Turrin, M., Jansen, S., Van Den Dobbelsteen, A. and Biloria, N. (2018). A Review
on Automatic Generation of Architectural Space Layouts with Energy Performance
Optimization. Int. Conf. Build. Energy, Environ., pp. 856-861. Available at:
http://www.cobee2018.net/assets/pdf/p/283.pdf [Accessed 2 Nov. 2019].

Ingber, L. (1993). Simulated annealing: Practice versus theory. Mathematical and
computer modelling, 18(11), pp. 29-57. Available at: https://doi.org/10.1016/0895-
7177(93)90204-C [Accessed 10 Nov. 2019].

Liggett, R. S. (2000). Automated facilities layout: past, present and future. Automation in
Construction, 9(2), pp. 197-215. Available at: https://doi.org/10.1016/S0926-
5805(99)00005-9 [Accessed 20 Oct. 2019].

Merrell, P., Schkufza, E. and Koltun, V. (2010). Computer-generated residential building
layouts. In ACM SIGGRAPH Asia 2010, pp. 1-12. Available at:
https://doi.org/10.1145/1866158.1866203 [Accessed 25 Oct. 2019]

Nagy, D., Lau, D., Locke, J., Stoddart, J., Villaggi, L., Wang, R., Zhao, D. and Benjamin,
D. (2017). Project Discover: An application of generative design for architectural
space planning. In Proceedings of the Symposium on Simulation for Architecture and
Urban Design, pp. 1-8. Society for Computer Simulation International. Available at:
https://doi.org/10.5555/3289787.3289794 [Accessed 15 Nov. 2019]

Rebaudengo, M. and Reorda, M. (1996). GALLO: A genetic algorithm for floorplan area
optimization. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 15(8), pp. 943-951. Available at: https://doi.org/10.1109/43.511573
[Accessed 20 Nov. 2019]

Sharafi, P., Samali, B., Ronagh, H. and Ghodrat, M. (2017). Automated spatial design of
multi-story modular buildings using a unified matrix method. Automation in
Construction, 82, pp. 31-42. Available at: https://doi.org/10.1016/j.autcon.2017.06.025
[Accessed 12 Oct. 2019]

https://doi.org/10.1080/13923730.2005.9636328
https://doi.org/10.1107/S0021889800008372
https://doi.org/10.1016/j.ejor.2007.01.054
https://doi.org/10.1016/S0925-7721(02)00099-8
https://doi.org/10.1016/S0925-7721(02)00099-8
https://doi.org/10.1109/4235.996017
http://www.cobee2018.net/assets/pdf/p/283.pdf
https://doi.org/10.1016/0895-7177(93)90204-C
https://doi.org/10.1016/0895-7177(93)90204-C
https://doi.org/10.1016/S0926-5805(99)00005-9
https://doi.org/10.1016/S0926-5805(99)00005-9
https://doi.org/10.1145/1866158.1866203
https://dl.acm.org/doi/10.5555/3289787.3289794
https://dl.acm.org/doi/10.5555/3289787.3289794
https://doi.org/10.1109/43.511573
https://doi.org/10.1016/j.autcon.2017.06.025

Automatic generation of architectural layouts using Genetic Algorithms in BIM

26 | Proceedings CIB W78, August 2020 | São Paulo, Brazil

Szykman, S. and Cagan, J. (1997). Constrained three-dimensional component layout
using simulated annealing. Journal of Mechanical Design, 119(1), pp. 28-35. Available
at : https://doi.org/10.1115/1.2828785 [Accessed 23 Oct. 2019]

Tate, D. and Smith, A. (1995). A genetic approach to the quadratic assignment problem.
Computers & Operations Research, 22(1), pp. 73-83. Available at:
https://doi.org/10.1016/0305-0548(93)E0020-T [Accessed 23 Oct. 2019]

Van Laarhoven, P. and Aarts, E. (1987). Simulated annealing. In Simulated annealing:
Theory and applications, pp. 7-15. Springer, Dordrecht.

Whitley, D. (1994). A genetic algorithm tutorial. Statistics and computing, 4(2), pp. 65-85.
Available at: https://doi.org/10.1007/BF00175354 [Accessed 21 Oct. 2019]

Wong, S. and Chan, K. (2009). EvoArch: An evolutionary algorithm for architectural
layout design. Computer-Aided Design, 41(9), pp. 649-667. Available at:
https://doi.org/10.1016/j.cad.2009.04.005 [Accessed 23 Nov. 2019]

Yi, H., Yi, Y. and Chan, T. (2014). Performance Based Architectural design optimization:
Automated 3D space Layout using simulated annealing. In Proceedings of the 2014
ASHRAE/IBPSA-USA Building Simulation Conference, pp. 10-14. Available at:
https://www.researchgate.net/publication/288790548_Performance_based_architectu
ral_design_optimization_Automated_3D_space_layout_using_simulated_annealing
[Accessed 12 Nov. 2019]

https://doi.org/10.1115/1.2828785
https://doi.org/10.1016/0305-0548(93)E0020-T
https://doi.org/10.1007/BF00175354
https://doi.org/10.1016/j.cad.2009.04.005
https://www.researchgate.net/publication/288790548_Performance_based_architectural_design_optimization_Automated_3D_space_layout_using_simulated_annealing
https://www.researchgate.net/publication/288790548_Performance_based_architectural_design_optimization_Automated_3D_space_layout_using_simulated_annealing

