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AUTOMATIC GENERATION OF ARCHITECTURAL 
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Abstract: Room layout is a complex problem for architects, who must consider 
adjacencies, room sizes, site constraints, and circulation requirements. This re-
search applies genetic and stimulated annealing algorithms to optimize space layout 
in two dimensions. Visual Programming Languages interfacing with BIM software 
are used to allow semantic and topological qualities of each room to be imported to 
develop complete floorplans. A series of case studies adopting different machine 
learning techniques are presented to demonstrate the relative performance of each 
approach, using the minimization of unusable space as a performance metric. 
Previous research has considered purely mathematical solutions to support the 
automation of these layouts, often resulting in irregular polygons or circular rooms; 
from an architectural standpoint, this is undesirable and thus a rectangle-packing 
algorithm has been developed and used. Future research to facilitate the adoption of 
this approach in architectural practice, particularly for large and complex buildings, 
is discussed.  

Keywords: BIM, automatic floorplan generation, parametric model, genetic 
algorithms. 

1 INTRODUCTION 
Space planning is one of the most crucial segments in construction projects, as it directly 
affects the experiential quality, energy efficiency, and feasibility of the building. The 
process is often time-consuming and labor-intensive since it re-quires logical senses and 
previous work experience of the architects involved. However, with the rise of 
automated design technologies, repetitive tasks such as floor layouts, can now be 
assigned to computer, leaving creative works to designers. This research focuses on the 
preliminary phase of a construction project - room planning, intending to generate 
spatial relationship diagrams as the guidance for future architectural design. In this 
exercise, the demonstration will be adopting the typology of a small-scaled shopping 
mall and following the representational programs that are needed. This paper extends 
upon previous work of this type by eliminating the irregular room shapes developed by 
approaches such as circle packing and Voronoi, presenting instead a rectangle-packing 
algorithm developed to optimize floorplans. Further, to permit its application in practice, 
a BIM integration script is presented to create 3D rooms and map semantic data, 
resulting in true architectural floorplans. 
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2 LITERATURE REVIEW 
With developed technologies, the process of space planning has transformed into a 
multi-objective optimization problem to not only satisfy the design constraints but also 
achieve an optimal spatial configuration. There have been numerous studies conducted 
on the topic of room placement using different mathematical formulas and algorithms, 
for example (e.g., Merrell et al. 2010; Wong and Chan 2009; Nagy et al. 2017). Recently, 
parametric approaches have leveraged Genetic Algorithms (GA) (e.g., Rebaudengo and 
Reorda 1996), Simulated Annealing (SA) (e.g., Yi et al. 2014), and fixed grid/matrix 
layout (e.g., Sharafi et al. 2017). These have been used with optimization rules for 
minimum travel distances between room centroids (e.g., Liggett 2000), minimum dead 
spaces and overlaps (e.g., Baušys and Pankrašovaite 2005), or optimized energy use (e.g., 
Du et al. 2018).  

Two algorithms of interest to this paper are GA and SA. GA (e.g., Tate and Smith 
1995; Whitney 1994) is de-signed to speed up the solution-finding process to search for 
high-quality results under a confined framework. SA techniques (e.g., Van Laarhoven 
and Aarts 1987) help to eliminate and improve the common hill climbing problems faced 
by GA. Instead of being a population-based algorithm, SA uses an iterative single 
solution-based method, making it an exploitative algorithm. In standard result-mining 
algorithms, the new solution is accepted only if it meets the improved minimum value 
set by the selection mechanism. In SA, the indicator for an acceptable result can be based 
on a probability percentage, providing solutions that are more meticulous and closer to 
the global optima (e.g., Liggett 2000), and its use is recommended at the beginning of the 
search process (e.g., Liggett 2000; Szykman and Cagan 1997) 

A current gap in the literature is the lack of linkage between theories and 
architectural applications. Most of the researches conducted have only been implemented 
based on randomized room dimensions within arbitrary boundaries. To accurately 
examine and improve the usability of space planning optimization techniques, a 
controlled scenario with defined space programming information is adopted. 

3 METHODOLOGY 
A case study approach was used to explore room layout options using a six-step process. 
First, a set of 17 rooms and the sample site of 35m x 35m (1225m2) are established, along 
with the required adjacency relationships. Next, a circle packing algorithm is introduced 
to place all rooms on site. Thirdly, the result generated is optimized through machine 
learning techniques, including Genetic Algorithms and Simulated Annealing. Then, the 
optimized output is transformed into realistic square geometries, following the original 
spatial requirements. To eliminate overlapping boundaries, room outlines are shifted to 
accommodate the appropriate dimensions. The final step is to define polygons as data 
points to be input into BIM through Dynamo for Revit. 

3.1 Room Datasheet  
The proposed workflow starts with a spreadsheet (Table 1) containing spatial 
requirements and adjacency relationships between rooms as the input. There are three 
levels of spatial relationships between rooms: 1) adjacency, defining the requirement for 
rooms to be next to one another; 2) proximity, indicating a preference for rooms to be 
near one another, and 3) non-adjacency, indicating that rooms cannot share a common 
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wall. To ensure interactivity and flexibility of the result, all information is linked back to 
the spreadsheet in real time which minimizes lag time and errors caused by delays. 

Table 1: Room Datasheet Sample (truncated) 

Room ID Room Name Area Radius Diameter ADJ Proximity Non-ADJ 

R0  Entrance 25 2.82 5.64 NA NA NA 

R1 Service Room 30 3.09 6.18 R16 R6 R9 

R2 Electrical 
Room 

30 3.09 6.18 R16 R1 R8 

 

3.2 Room Planning Sequence  
From the structured table, the data is then processed through a series of functions (Fig. 1), 
coded using Python 3.6. The order within the list is determined by the number of 
adjacent rooms those rooms acquired, arranged in descending order. All adjacency 
relationships are captured in an ordered dictionary, with the key being rooms that were 
placed last, and the values representing rooms that should be placed next. 

 
Fig. 1. Room Plotting Order Sequence  

 

3.3 Room Placing Function – Circle Packing Algorithm 
Circles are chosen as the primary visual representation due to their flexible quality with 
unlimited edges, giving more potential for spatial layouts. Stemming from the theory and 
logic behind circle packing algorithms (e.g., Collins and Stephenson 2003; Castillo et al. 
2008), the proposed function introduced room planning sequence that governs the order 
and constraints of circle-plotting. Naturally, there will be dead spaces in-between each 
circle due to the curved outlines. Therefore, the input dimensions are smaller by 10% of 
the actual footprint required. Rooms are separated into three types of arrays for simple 
identification: array N, rooms that are currently being placed; array P, rooms that were 
placed prior to N; array D, rooms that are in the placed_rooms list. As each room (Ni) is 
added to the diagram, there are two rules that the function needs to satisfy. First, Ni 
cannot exceed the site constraints (Eq. 1-4). Where x/y superscript denote the x/y -
coordinate of the centroid, r superscript denotes the radius of the room, and   subscript 
denotes the     item in the array (Fig. 2). 
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Second,    cannot overlap with any existing circles in the array  . The logic adopts 

the Pythagorean theorem to determine whether two circles collide (Eq. 5).   

    
    

       
    

       
    

        

The positioning for    is dependent on the location of    (Eq. 6 & 7), where   
represents the angle between the centroid of    and   . 

  
         

    
     

      

  
         

    
     

      
At the beginning of the room plotting function, placement angle α is set equal to zero, 

resulting in   
 being set equal to   

 . To ensure that each    fulfils the two constraints 
listed above, an increment of 0.01 (in radians) is added to α, causing    to rotate around 
   until both rules are satisfied. 

 
Fig. 2. Room plotting sequence sample 

 

3.4 Machine Learning Algorithms for Space Optimization  
To optimize the output and to transform the results to be more spatially efficient, 
theories of machine learning was applied to determine the optimal placement angle.  

The method adopted is a common approach to Genetic Algorithm, where 
chromosomes of two parents are selected to produce children containing genes from 
both parties. To start off the search, a population {- π<α<π} is defined. In this scenario, 
the genes are represented by all α that were implemented in the plotting function and 
are stored in an array that can be mutated in increments of +/- 0.01. Since the goal is to 
achieve the smallest footprint while placing all rooms within the site, the fitness 
calculation is based on the bounding area that the current configuration. The smaller the 
area is, the higher the fitting score, and the more likely it is for its genes to be copied 
down. Conversely, if the total bounded area is larger than the previous generation, it is a 
less ideal candidate for reproduction.  

To refine the mating pool, Elitism (e.g., Deb et al. 2007) is performed, meaning that 
the top 10% of the fittest population α goes to the next generation. Then, two parents are 
generated, through both selecting 50% each from the previous array randomly. The same 
logic applies to mating, where the child adopts 50% of the array from each parent 
randomly to produce the next generation. However, this optimized algorithm was stuck 
in the local minimum between two iterations, one that has excess dead space, and the 
other having overlapping polygons. 
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To achieve global optima efficiently, SA is introduced to improve the current 
circumstances. For a finite set of iterations, the value of bounding area is used to 
compare with its previous iteration. The objective is consistence with GA listed above, if 
the fitness score is higher, meaning that the bounding area is smaller, the value of the 
previous array α will take on the current array α', which is chosen randomly. Inversely, 
if the fitness score is lower, whether α will take on the value of α' is dependent on the 
rate of probability p, which is calculated through Boltzmann probability factor (e.g., 
Ingber 1993). The benchmark for acceptance probability p is also randomly generated 
between ∅<p<1.0 to avoid termination at local minima (e.g., Ingber 1993). 

3.5 Room Squaring 
Circle diagrams are the schematic representations for room layouts. To generate a 
workable floor plan, the graphic must be transformed through shape-finding functions. 
The goal is to create realistic geometries that are pragmatic for construction. Since the 
centroids of each room, all required dimensions and adjacency relationships are stored in 
a central database, the process of producing straight-edged spaces is straightforward. 

For each room   , the existing centroid is maintained and the bottom, top, left, and 
right edges of the room polygon    

    
    

    
    

   are defined by adding or 
subtracting the radius   

  from the centroid as appropriate, for example (Eq. 8). This 
increases the room area but provides flexibility when overlapping walls are resolved in 
the next step. Overlapped edges are detected by looping through all rooms    and 
comparing to the remaining rooms   , where j=i+1 to the total number of rooms and 
checking whether top right, top left, bottom right, or bottom left corners overlap with 
any of the other rooms   . The rules (Eq. 9a & b) and resolution (Eq. 10) for a clashing 
top (of   ) and bottom (of   ) edges are shown below; identification and resolution of all 
other overlaps follow this logic. Finally, once all overlaps have been resolved, each room 
is tested (Eq. 11) to ensure that the area is maintained within acceptable tolerance.   
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Finally, rooms not achieving the area tolerance were adjusted (Eq. 10). 

3.6 Room Import to BIM 
To transform the room data developed above to architectural floor plans, visual 
programming language, Dynamo, was used to allow users to access the results through 
BIM software. Due to the fundamental deviation in programming languages – Dynamo 
uses IronPython and cannot recognize the more standard CPython – the polygons were 
extracted as a list that can then be read by Dynamo. 
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Fig. 3. Creation of rooms and generated polygons and mapping of room numbers 

using Dynamo.  

4 RESULTS 
The sequence of images shown (Fig. 4) highlights the results of each step in the room 
placement sequence. The result for attempt #1 (Fig. 4a) has the following errors: 
overlapping polygons, dead spaces, and circles that have exceeded the site boundaries 
(square in red). The total footprint of the bounded area is 792m2. The optimization 
algorithm achieved a footprint of 730m2 while satisfying both requirements of within site 
boundaries and having zero overlapping circles. Initially, only GA was for optimization, 
however, the proposed function was trapped in two local minima between two iterations: 
one with excess dead space, and the other having over-lapping polygons. To resolve this, 
SA was introduced, and its logical randomization approach assisted the searching 
process to be more accurate and efficient and resulted in a fully resolved and optimized 
layout (Fig. 4b).   During squaring (Fig. 4c), significant overlaps were noted between all 
rooms and had to be resolved. Applying Eq. 8-11, 15 of 17 rooms achieved the 5% area 
tolerance, with the remaining two rooms at 6.50% and 7.25% above the required area, 
which is within the 10% tolerance typically used in practice. This resulted in a final, fully 
resolved layout (Fig. 4d) with a total room area of only 2% above the required area 
presented in the room datasheet.  

The final floor plan (Fig. 5), implemented in Revit achieved all desired adjacencies, as 
it follows the adjacency matrix and size constraints of the original data input yet 
remaining a buildable geometry. 
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Fig. 4. Room placement and optimization sequence: Circle packing before (a; top 
left) and after optimization (b; top right); squared rooms with (c; bottom left) and 

without overlap (d; bottom right)  

 
Fig. 5. Creation of rooms from polygons generated and mapping of room numbers 

using Dynamo 
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5 DISCUSSION AND CONCLUSIONS 
From room datasheet to BIM, this researched has achieved a streamlined approach to 
room-planning under the assistance of visual programming language and two automated 
optimization algorithms. The current gap in existing studies is the disconnection 
between research and applications. Most of the functions have only been tested within 
the research team, since examples such as circle-packing and GA/SA optimization 
algorithms were initially developed to solved mathematically problems. Without 
considering room-planning in a real-life setting, the logic developed cannot be proven to 
be reliable and beneficial within the industry. In this paper, techniques were refined and 
tested using a small-scaled architectural prototype. The results obtained have shown the 
realistic performance of the approaches adopted, displaying the adaptability of this 
research and the great potential it acquires.  

By combining the circle room plotting sequence with machine-learning algorithms, 
the intention to achieve the most compact configuration was realized. Through the room 
datasheet, users had absolute control over the required rooms, dimensions, and the 
adjacency matrix, while retaining the benefits of an algorithm-assisted decision-making 
design. The room plotting sequence provides architects with an accurate visual 
representation of the most spatially efficient layout within a shorter timeframe, 
particularly when designing large-scaled projects with repetitive unit types. With the 
assistance of automated design tools, laborious tasks can be relinquished to computer 
programs, freeing designers to focus on creative ventures.  

A limitation of this approach is that it is not yet seamless. This is primarily be-cause 
machine learning packages are not usable within Dynamo and required the use of 
Python and export of polygon coordinates to for import into Dynamo. A second 
limitation is the rigidity of the fitting function. Since the bounding area is the only 
measure of success, outcomes of the optimization had omitted other aspects of the space. 
Finally, consistent with the majority of previous studies, this algorithm considered only a 
single level. The extension of this work to multiple floors is desirable and should be 
developed in future research. Future research should also focus on holistic approaches 
when applying generative design tools for construction projects, such as incorporating 
circulation spaces and building code compliance evaluation. Alternative fitting functions 
and multi-objective should be considered to suit different needs depending on the 
functionality of space, for example, energy optimization and/or minimized travel 
distances. 

The practical implications of this work are significant. For architects, layout 
automation tools can increase the efficiency in the preliminary stage of design. 
Traditionally, during massing studies, where building footprints are constantly under 
revision, hours of works were poured into the monotonous routine of mapping out all 
required programs within a confined space. With the assistance of optimized room-
planning technique, the most compact floor layouts can be created automatically, and 
ready to be used in BIM right away. With the significant decrease in time spent on 
repetitive tasks, architects can explore a broader range of potential building footprints 
and floorplates to optimize energy performance, and focus on the occupant experience of 
the space, thus enhancing overall design quality. 
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