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QUALITATIVE AND TRACEABLE CALCULATIONS FOR 
BUILDING CODES 

Beidi Li1, Johannes Dimyadi2, Robert Amor3, and Carl Schultz 4 

Abstract: We present a methodology and prototype software framework to 
formalise normative provisions related to building design and construction to 
support automated compliance audit processes of ISO-standard building information 
models (BIM). Our framework is based on the declarative Answer Set Programming 
(ASP) logic programming language that we extend to support optimised geometric 
and spatial reasoning. We address three key challenges in formalising building 
codes:  

(1) Ambiguity and qualitative aspects of modern performance-based building 
codes, e.g. "Essential information on wayfinding must be easy to see, read and 
understand (BR15)"; "There shall be no direct line of sight between an access route 
and a WC (NZBC-G1)". Our framework supports integrated layers of abstraction (in 
the context of ontologies and knowledge engineering) in order to ground how 
behavioural and human-centred terms such as "easy to see" and "access route" are 
ultimately defined based on results from cognitive psychology and declarative 
spatial reasoning.  

(2) Managing a relatively large code base that can support maintainability, 
extensibility, traceability, and transparency, i.e. a particular code definition can be 
easily traced back to research literature used for its formalisation, and indeed 
multiple alternative definitions can be implemented and checked simultaneously.  

(3) Keeping the computational runtime efficient for practical applications, 
despite processing a large number of codes and a large size of real-world building 
models.  

We present empirical results (including real building models from New Zealand) 
to demonstrate that formalised codes definitions can focus exclusively on the 
semantics without mixing in "tricks" to make them computationally faster for 
handling a large-scale BIM, which is often at the cost of clarity and code base 
maintainability, etc. Thus, we leverage the declarative character of ASP to achieve a 
total separation of (a) semantic definition from (b) computational runtime efficiency 
of conformance checking. 

Keywords: Building Information Modelling, Automatic Code Checking. 

1 PERFORMANCE-BASED BUILDING CODES 
Performance-based building codes aim to reduce unnecessary costs of conservatism in 
complying with a limited range of prescriptive design solutions but are challenging from 
both interpretation and implementation perspectives (Meacham et al. 2005). In addition 
to being conveyed in natural language intended for human interpretation, provisions in 
performance-based codes are often qualitative and descriptive in nature. In order to 
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translate a natural language statement into computer-readable codes, domain experts 
need to formalise them into logical propositions, deduce implicit properties from a 
building model, and apply formalised constraints to derived model parameters (Eastman 
et al. 2009). The manual process is not only time-consuming and fallible, but also hinders 
knowledge sharing and transfer in multi-platform, cross-disciplinary cooperation and 
collaboration in the Architecture, Engineering, Construction (AEC) industry (Dimyadi 
and Amor 2013). 

Our primary contribution in this research is a building code formalisation approach 
that facilitates automated compliance checking, as follows: 

 To separate the (formal) representation of a building code from its numerous 
disambiguating interpretations and enables every disambiguating interpretation 
to be traceable back to research literature. We achieve this by augmenting 
Building Information Modelling (BIM) models with spatial artefacts (Bhatt et al. 
2012a; Bhatt et al. 2010); 

 To separate the semantics of a formalised building code from computational 
(spatial) optimisations necessary for checking the code set against a large-scale 
BIM in practice. We achieve this by extending the code checking engine with in-
built spatial processing optimisation features that are applied automatically 
“under the hood”. 

2 CHALLENGES IN AUTOMATIC CODE CHECKING APPLICATIONS 
Consider the workflow illustrated in Figure 1 which reflects a common approach for 
formalising building codes (Yang and Xu 2004). This workflow firstly requires a 
systematic approach for mapping qualitative terms in a building code to instantiated 
building properties, and a systematic approach for executing the formalised rule and 
reporting the checking results. 

 
Figure 1. A common workflow for automated compliance checking of building 

codes. 

We argue that the following two properties are essential for the body of formalised codes 
to be usable in practice, on a large community-wide scale, over a long period of time. We 
will use the following provision from the New Zealand Building Code (NZBC) as an 
illustrative example:  

“There shall be no direct line of sight between an access route or accessible route 
and a WC, urinal, bath, shower or bidet”. 
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Desired property 1: Whenever any (natural language) term is disambiguated, the 
rationale should be justified, and the justification should be readily traceable (e.g. to 
research literature in psychology, ergonomics, etc.). 

Terms such as “direct line of sight” are qualitative and require disambiguation. 
Consider, for example, the range of eye heights of various occupants such as wheelchair 
users, walking children, walking adults, etc. Moreover, consider the possibility of visual 
reflections, the relevance of peripheral vision, whether a person using a bathroom facility 
should also be occluded, the visual system of a stationary versus a moving person, the 
precise definition of an access route, etc. 

A comprehensive approach would be to provide numerous alternative (disambiguated) 
definitions of what “direct line of sight” means, with respect to a range of user groups, 
and maintain meta-data on the provenance of each definition. Compliance and non-
compliance are then justified and traceable back to research literature. In contrast, ad 
hoc definitions, algorithms, and “magic numbers” used in disambiguation that are not 
clearly justified result in obscured deontic constraints and arbitrary evaluation criteria. 

Our approach for systematic disambiguation, rather than to capture it at the code 
formalisation stage, is to extend instances of BIM with spatial artefacts, i.e. regions of 
empty space that carry information about human behaviour and experiences (Bhatt et al. 
2012a; Bhatt et al. 2010; Bhatt et al. 2012b; Schultz and Bhatt 2013; Bhatt et al. 2014). 

Example: Consider the region of empty space around an object such as a washbasin - 
this region is meaningful because a person must be located in that region to perform a 
particular act (e.g. washing hands). The geometry of this functional space region depends 
on properties of the person (consider wheelchair users, children, etc.), the task, and the 
object. Doors have an operational space required for opening and closing; people and 
sensors have range spaces (which can be further refined: visibility space, hearing space, 
etc.), and so on. These are examples of spatial artefacts (Bhatt et al. 2012a): regions of 
empty space that are rich with perceptual-locomotive semantics. 

In our approach, the geometry of spatial artefacts is directly based on research 
literature in psychology and ergonomics (Kondyli et al. 2017; Kondyli et al 2018). This 
also enables the formalised code itself to remain closely aligned with the original natural 
language code. 

 

Desired property 2: The formalised rule should, as closely as possible, reflect the source 
provision in the building code with no additional relational clauses added to facilitate the 
computational task of checking the code. 

The computational task of checking a code provision against a BIM should not 
influence how the provision is represented formally in the code set. For example, 
suppose a first-order formalisation of the above NZBC provision is as follows, stating 
that it is a violation if bathroom object B is visible from corridor C: 
Exists B,C in Objects : 

  bathroom_object(B) and corridor(C) and visible_from(B,C) → 

  violation(code(nzbc, privacy)) 

Now suppose this provision is checked against a large multi-storey BIM consisting of n 
corridor sections and m bathroom facilities. A naive code checking engine 
implementation will result in n·m visibility checks which is prohibitively expensive to 
run on large, real-world BIMs. 
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One solution is to include additional information in the formalisation itself, e.g. that 
the corridor and bathroom object should be on the same floor, and in the same 
rectangular visibility quadrant from a top-down floor plan perspective, i.e. a quad-tree 
cell division of building objects, where cells are merged if they are mutually visible: 

Exists C,B in Objects : 

  corridor(C) and bathroom_object(B) and 

  same_floor(B,C) and same_2d_vis_quad_cell(B,C) and 

  visible_from(B,C) → 

  violation(code(nzbc, privacy)) 

While this provision can now be checked much faster, it has two serious drawbacks: 

 The intended purpose of the provision (its semantics) is obscured by the added 
clauses making it significantly less comprehensible and extensible; 

 The code set itself now depends on certain spatial data structures, and thus is 
significantly less portable, transparent, and maintainable. 

The solution we advocate is to keep the initial, simple formalised code as is, and instead 
enhance the code checking engine with spatial data structure optimisations that are 
applied automatically. 

2.1 Proposed framework and workflow 
In contrast with state-of-the-art code checking practices, our framework proposes to map 
semantic code definitions to augmented building objects at the domain level, i.e. from 
regulatory ontology domain (access route, line of sight) to building ontology domain 
(movement space, visibility space). The separation of code semantics from enhanced 
model generation ensures that the code interpretation is accessible to regulation experts, 
and the code compliance assessment is verifiable by building experts independently. 
Figure 2 presents our workflow of translating textual requirements into formal rules that 
can be checked with respect to building instances. 

 
Figure 2. Proposed code checking workflow. 

Firstly, code engineers enrich code provisions with meta-data, to capture the 
underlying semantics. This provides a unified, coherent way of interpreting qualitative 
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terms, based on the chosen quantification of human experiences (vision, access) from 
legislative documents or literature research.  

Secondly, the provision is translated into a predicate rule in the following form 
stating that all objects X satisfying preconditions P must demonstrate properties Q: 

For all X in Objects: P(X) → Q(X) 

Thirdly, object geometries, properties, and relationships are extracted from the building 
instance and declared as facts in the knowledge base. We then apply evidence-based 
deductive rules from literature (cognitive psychology, ergonomics) to enhance the 
building’s representation with numerous modalities of actions permitted in the 
environment (hearing, viewing, manipulating, moving), captured through spatial 
artefacts.  

Finally, we check the formalised rule against enhanced building objects using logic 
satisfiability solver extended with space, ASPMT(QS), and assess regulatory compliance 
(satisfiable, unsatisfiable). 

Independent formulations of model facts, regulatory constraints, and deductive rules 
provide traceable rationales (“why”), transparent numerical computations (“how”), and 
rapid identification of code violations (“where”). 

In this paper we utilise the logic programming language Answer Set Programming 
extended to natively support spatial reasoning, ASPMT(QS) (Wałega et al. 2017; Wałega 
et al. 2015; Schultz et al. 2018), to implement our code compliance checking engine via 
automated non-monotonic reasoning. The declarative character of ASP allows the code 
formalisation to be open to alternative interpretations and user-defined rules, so that the 
checking system is portable and customisable.  

In order to reduce runtime, we have further developed the core functionality of 
ASPMT(QS) with a general theory and framework of integrated spatial data structures 
for pre-processing building models and subsequently compute volumetric and topological 
relations of comparable objects. Examples of pre-processed spatial data structures 
include quad trees, R-trees, total orderings, containment hierarchies, etc. Spatial data 
structures are exploited in the form of additional constraints and optimisation techniques 
that are employed automatically by ASPMT(QS) as an integral part of its numerical and 
geometric computations used to determine spatial relationships. This enables building 
code experts to focus exclusively on the semantics of rules during code formalisation, 
and to ignore any computational runtime issues. 

Our framework captures the general, abstract concept of spatial data structures (i.e. 
we do not commit to any particular data structure at this general level), and the general 
way in which they are exploited for more efficient geometric processing. Through this 
general framework we then define “instances” of spatial data structures that are actually 
employed during runtime – that is, our framework provides an extensible, flexible 
mechanism for incorporating a range of new spatial data structures in a uniform, 
mathematically rigorous manner. 

3 EXTENDING BIM WITH SPATIAL ARTEFACTS 
While BIM provides an annotated, relational structure representing a building’s physical 
manifestation, building ontologies deal with physical, perceptual, and cognitive 
affordances of objects, e.g. a door is a place-transitioning object, a glazed panel permits 
mutual visibility, a wall is a place-delimiting object, etc. Such information is reflected in 
empty spaces, regions demarcated by theoretical limits of a user being able to interact 
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with a given object. Driven by the NZBC code, we demonstrate the creation of three 
types of artefacts: movement space, visibility space, and functional space. 

Movement spaces are series of rooms, corridors, and stairways connected by place-
transitioning objects (doors, openings), conditioned by user-specific body schema, e.g. a 
door with a clear opening less than 760mm is considered non-transitable to a wheelchair 
user (DBH 2015). Movement spaces further depend on intrinsic properties of building 
components (slab inclination, floor-intersecting obstacles) that can be derived 
systematically and unequivocally from IFC-compliant components (Figure 3). 

 
Figure 3. Construction of movement spaces from standardized physical 

representation of a real building. 

The visibility space of an object is a closed, simple polyhedral region from which the 
object is viewable, depending on the observer’s visual abilities (similar to the notion of 
isovists and viewsheds). We compute the unobstructed lines-of-sight from the object’s 
boundaries as if seen by a person with perfect visual acuity and clip the region by an 
actual observer’s visual range (Figure 4.a). Alternatively, Gibson’s ecological theory 
suggests that visual perception depends on locomotion, i.e. the direction the observer is 
facing and the speed at which the observer is moving (Gibson 1954). This latter 
definition can be used to construct visibility spaces from an egocentric perspective, 
emphasising the effects of peripheral vision and vertical visual field.  

The functional space of an object refers to the minimum clearances required for a 
human’s physical activities in relation to the object (using a washbasin, grabbing 
handrails, opening a drawer, etc.). We infer the shape and position of functional spaces 
based on the object’s geometry, the occupant’s anthropometric properties, universal 
design guidelines, and ergonomics studies (Neufert and Neufert 2002). Such artefacts are 
represented as transparent blobs surrounding bathroom objects in Figure 4.e. 
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Figure 4. a) Visibility space of object O intercepted by the observer’s visual range 

(green region); b-e) Spatial requirements for bathtub, basin, and toilet, figures 
taken directly from (Neufert and Neufert 2000); e) Visualization of functional 

spaces of bathroom objects. 

Eliciting these spatial artefacts, the NZBC code is now translated into:  
“The visibility space of the functional space of a WC, urinal, bath, shower or bidet 

must be (topologically) disconnected from the movement space.” 

Such formalisation focuses exclusively on the semantics of the code provision, and 
systematically maps qualitative terms to classes of augmented building objects 
(IfcSpatialArtefact, a subtype of IfcSpace). Instances of IfcSpatialArtefact are then 
uniformly derived from a building’s geometry based on empirical and experiential 
findings from the literature. In this way, we ensure a clear separation of rule 
interpretation, rule implementation, and rule execution.  

4 EXTENDING LOGIC PROGRAMMING WITH NATIVE SPATIAL 
OPTIMISATION SUPPORT  

In prominent collision detection algorithms such as Q-tree and R-tree (Winter 1999), the 
algorithm recursively restricts the conditions for interferences so that at each step, the 
algorithm retains false positives (potential clashes) and discards all true negatives (no 
clashes).  

Using the same principles, we present a general spatial data structure framework that 
automatically generates necessary and sufficient conditions to a given "target” relation R, 
respectively denoted as RNEC and RSUFF, that are less costly to evaluate than the exact 
definition RDEF. In terms of material implication: 

(1) RSUFF  → RDEF (a sufficient relation implies the target relation) 

(2) RDEF  → RNEC (a necessary relation is implied by the target relation) 

(3) ¬RNEC  → ¬RDEF (contrapositive of necessity) 

Therefore, RSUFF gives a shortcut to determine that RDEF holds, and the negation of RNEC 
gives a shortcut to determine that RDEF does not hold. From a set theoretic perspective, 
RSUFF represents all true positives, the complement of RNEC represents all true negatives, 
and the difference between RNEC and RSUFF represents undecidable cases that require a 
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series of more refined sufficient and necessary conditions, the difference of which 
eventually, finally requires numerical evaluation with RDEF (Figure 5). 

 
Figure 5. Boolean representation of relations RNEC and RSUFF. 

Answer Set Programming: ASP is a logic-programming paradigm developed within the 
artificial intelligence community that has its foundations in first-order logic (Brewka 
2011). We use ASP by encoding a building as ASP facts, encoding building code 
compliance rules as ASP rules and constraints, and code compliance checking is 
implemented via ASP answer set search5.  Our general formulation for spatial data 
structures is expressed in ASP as the follow logic programming rules and constraints: 

R :- R_suff. 

-R :- not R_nec. 

R :- R_def. 

:- R, -R. 

4.1 Empirical test with circles 
Now we test the operational aspects of our proposed spatial data structure framework 
with n randomly generated circles in a delimited rectangular region of the 2D plane. The 
goal is to enumerate all pairs of circles that overlap with each other as fast as possible.  

The following is a simple demonstrative example of a particular spatial data structure 
that is used by following the general structure defined in our framework. We partition 
the region into k equisized clusters that are jointly exhaustive and pairwise disjoint, so 
that each circle is assigned to exactly one cluster containing its centre. If two circles are 
contained in non-adjacent clusters, they are necessarily disconnected. If two circles are 
concentric, they necessarily overlap. 

In fact, checking cluster IDs (i.e. comparisons of numbers) is computationally much 
less costly than directly evaluating the exact definition of circle-circle intersection (i.e. a 
polynomial inequality of degree 2), this provides a shortcut to symbolically identify circle 
pairs that display trivially topological relations. Having run a series of tests, we 

                                                           
5  Similar to Prolog, ASP has a knowledge base of facts and rules of the form: “Head :- Body.” meaning 

that if the Body is true, then the Head must also be true. Rules with no Head are ASP constraints, 
written: “:- Body.” meaning that the Body must not be true (i.e. as a logical expression: Body implies 
False). Head and Body expressions consist of literals, representing propositions that can be either True 
or False, and ASP reasoning engines are specifically designed to rapidly find combinations of deduced 
facts that are consistent with all given domain rules (referred to as models or answer sets). We have 
extended the base language of ASP beyond propositions so that a set of consistent facts must also be 
spatially consistent, e.g. a 2D point P can never be both inside, and outside, of a given circle C 
(Wałega et al. 2017; Walega et al. 2015; Schultz et al. 2018). In this paper we have further extended 
core functionality to automatically incorporate spatial data structures for efficient spatial reasoning. 
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empirically determine that the computational complexity decreases from C1·n
2 to C2·n

2/k, 
where C1 and C2 are some arbitrary constant factors. The ASP implementation is as 
follows: 

Sufficient condition: The following rule states that concentric circles overlap: 
overlap(C1, C2) :- 

  circle(C1), circle(C2), 

  centre(C1, (X1, Y1)), centre(C2, (X2, Y2)), 

  X1 = X2, Y1 = Y2. 

Negated necessity: The following rule states that circles in different clusters do not 
overlap: 

-overlap(C1, C2) :- 

  circle(C1), circle(C2), 

  cluster(C1, K1), cluster(C2, K2), 

  not adjacent(K1, K2). 

Relation definition: The following rule implements the exact inequality that decides the 
overlap relation between two circles: 

overlap(C1, C2) :- 

  circle(C1), circle(C2), 

  centre(C1, (X1, Y1)), centre(C2, (X2, Y2)), 

  radius(C1, R1), radius(C2, R2), 

  (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) < (R1+R2)*(R1+R2). 

We implement the simple cluster partitioning strategy in ASP (Figure 6). Our empirical 
experiments show that average runtimes rapidly decrease with large number of clusters6 
(Figure 7).  For 104 circles, clingo runtime drops from 17.1 seconds with no clusters (K = 
1) to 4.2 seconds with 10 clusters (K = 10); for 2·104 circles, runtime drops from 60.5 
seconds with no clusters to 18.7 seconds with 10 clusters; for 5·104 circles, runtime drops 
from 457.6 seconds with no clusters to 133.6 seconds with 10 clusters, resulting in an 
average decrease by factor 3. 

 
Figure 6. Horizontal clustering of circles with K = 1, 3, 5. 

                                                           
6  We ran our empirical experiments on a Mac Book Pro with Mac OS 10.13.6, processor 2.2 GHz Intel 

Core i7, and 16GB RAM. 
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Figure 7. Runtimes of the all overlapping circles test for K = 1, 2, 3, 5, 8, 10 and N = 

10000, 20000, 50000 with clingo.  

4.2 Scalability test with a real building model 
Now let’s take another look at the formalised NZBC rule asserting that there should be 
no direct line of sight between an access route or accessible route7 and the vicinity of a 
bathroom object that a user may occupy during its usage. Moreover, acceptable solutions 
allude to the procedural complexity in checking such requirement, e.g. a single use 
sanitary facility can be visually separated solely by an opaque door, whereas a space 
containing multiple cubicles should include additional screens for visual privacy.  

As seen Section 2 and 3, ambiguous terms (line of sight, access, vicinity) in the new 
code formulation require diligent consideration of every combination of user, activity, 
and situation. As the code introduces accessible route that is applicable to people with 
disabilities, we are further to incorporate physiological evidence of one’s body 
measurement (height, encumberment, etc.) into our semantic formalisation. Similarly, 
functional spaces and visibility spaces vary greatly depending on occupant’s perceptual-
locomotive abilities and are constrained by local spatial configurations (sloped roof, 
handrails, sanitary bins, etc.). We define the following predicates: 

Movement_Space(Occupant) 
One movement space predicate is defined for each Occupant value: “Children”, “Adults”, 
“People with dementia”, “Elderly people”, “Patients with crutches". 

Functional_Space(Sanitary_Fixture) 
One functional space predicate is defined for each instance of sanitary fixtures taking the 
following type values: “WC with external cistern”, “Enclosed shower”, “Open shower”, 
“Bidet”, “Urinal”, “Wall-hung basin”. 

Visibility_Space(Object, Observer) 
One visibility space predicate is defined for each instance of Object and Observer, where 
Observer can take the values: “Fully-sighted”, “Children”, “People with peripheral vision 
loss”. 

In relation to particular building instances, we employ psychology findings to 
semantically enrich the building representation with spatial artefacts.  
                                                           
7  People whose ability to use buildings is affected by mental, physical, hearing or sight impairment. 
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In practice, we first identify bathroom objects labelled as IfcFlowTerminal and infer 
the shape of regions in which a user can engage in material contact with the object, 
characterised by action’s modality, e.g. approach, attainment, operation, manipulation 
(Ginnerup 2009), denoted as IfcFunctionalSpace. We then compute the regions visible 
from the outer boundaries of IfcFunctionalSpace, depending on individual occupant’s 
visual acuity, eye level, and head movement, denoted as IfcVisibilitySpace. After that, we 
extract access routes from the building’s walkable surfaces, floor-intersecting obstacles, 
and place-transitioning objects, denoted as IfcMovementSpace. Finally, we test 
intersections between IfcVisibilitySpace and IfcMovementSpace.  

A proof-of-concept implementation with a two-storey building in the city of 
Christchurch, New Zealand has identified 2 stairs, 1 atrium, and 2 corridors, 87 sanitary 
fixtures, of which 12 showers, 17 bathrooms, and 17 basins. We derive 245 functional 
spaces of bathroom objects, 490 visibility spaces of such functional spaces, and 100 
movement spaces, based on the building geometry and user-specific data. 

A naive approach for checking compliance attempts to compute the exact 
intersections between all pairs of comparable polyhedral meshes, which is laborious and 
subject to numerical instability issues. 

Based on our previous empirical test results, we propose a series of increasingly 
constricting necessary and sufficient conditions that efficiently prune the search space. 
Concretely: 

 Two meshes are necessarily disconnected if their axis-aligned bounding boxes 
(AABB) are disconnected; 

 Two meshes are disconnected if their 2D projections are disconnected; 

 Two polygons A and B are disconnected if A is a proper part of one of B’s holes; 

 Two polygons A and B overlap (not disconnected) if A contains one of B’s holes, 
etc. 

In the absence of obvious shortcuts, one may still apply advanced collision detection 
algorithms such as overlapping AABB (Luo et al. 2011) to shrink the region where 
interferences may occur. Exact calculations will be used as a last resort to decide if two 
meshes overlap. The ASP implementation is as follows: 

Relation R1 is implemented as: 
comparable(V, M) :- 

  bathroom_object(O), functional_space(O, F), 

  visibility_space(F, V), movement_space(M). 

 

Relations R2 are implemented as: 
overlap_(C1, C2) :- 

  axis_aligned_bounding_box(C1, (Xmin1,Xmax1,Ymin1,Ymax1,Zmin1,Zmax1)), 

  axis_aligned_bounding_box(C2, (Xmin2,Xmax2,Ymin2,Ymax2,Zmin2,Zmax2)),  

  Xmax2 > Xmin1, Xmin2 < Xmax1, 

  Ymax2 > Ymin1, Ymin2 < Ymax1, 

  Zmax2 > Zmin1, Zmin2 < Zmax1. 
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part_of(C1, C2) :- 

  axis_aligned_bounding_box(C1, (Xmin1,Xmax1,Ymin1,Ymax1,Zmin1,Zmax1)), 

  axis_aligned_bounding_box(C2, (Xmin2,Xmax2,Ymin2,Ymax2,Zmin2,Zmax2)),  

  Xmin1 >= Xmin2, Xmax1 <= Xmax2, 

  Ymin1 >= Ymin2, Ymax1 <= Ymax2, 

  Zmin1 >= Zmin2, Zmax1 <= Ymax2. 

 

disconnected(A, B) :- 

  comparable(A, B), not overlap_(BA, BB). 

 

disconnected(A, B) :-  

  comparable(A, B), hole(B, HB), part_of(A, HB). 

 

-disconnected(A, B) :-  

  comparable(A, B), hole(B, HB), part_of(HB, A). 

... 

disconnected(A, B) :- 

  comparable(A, B), intersect(MA, MB, I),I = spatial_void. 

Relation R3 is implemented as: 
violation(NZBC, privacy) :- comparable(V, M), not disconnected(V, M). 

 

We now have a clear formulation of code semantics R1 that can take alternative 
definitions, a set of rules R2 that automatically integrates optimisation in numerical 
evaluation of fully grounded variables, and a rule R3 that indicates facts in the actual 
building contradict regulatory requirements. 

Table 1 shows runtime before and after introducing the data structure. The objects 
have been extracted from the IFC model and manually edited to resolve geometric 
discrepancies. For the sake of simplicity, we only show results from intersection checks 
between 2D projections of visibility spaces and movement spaces in a single storey. 
Figure 8 shows representative cases where visibility spaces and movement spaces match 
with necessary or sufficient conditions of “disconnected” so that exact computations of 
intersection can be avoided. 
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Table 1. Model specifications and runtimes in clingo of evaluating the building 
code visibility requirement on the two-story building in Christchurch.  

Average number of vertices in visibility spaces 61 

Average number of vertices in movement spaces 127 

Average runtime without spatial data structures 9.297 seconds 

Average runtime with spatial data structures 1.579 seconds 

 
Figure 8. Necessary contact between visibility space V and movement space M: a) 
V overlaps with a hole in M. Necessary disconnectedness between V and M: b) M 

contains no vertices in the overlapping AABB of V and M; c) V and M have 
disconnected axis-aligned bounding boxes. 

5 RELATED WORK AND CONCLUSIONS 
Regulatory compliance, as a major concern to professionals in the AEC industry, 
provides statutory, contractual performance objectives that building design must provide 
for a variety of occupant types and use cases (Beach et al. 2015). The task of automatic 
code checking requires encoding textual regulations as a constraint that is systematically 
checkable and verifiable with respect to digital information acquired about a building. 

However, the maintenance of a voluminous code base with respect to real world 
buildings is facing serious drawbacks in terms of insufficient deployment of industry 
standards and lack of adequate implementation support (Preidel and Borrmann 2016). 
Challenges in automatic and semi-automatic code checking include but are not limited to: 
conflicting shape representation, inconsistent object classification, rule abstraction and 
required tool complexity, obscure semantic mapping, continuous updates in legislative 
documents, etc. (Sacks et al. 2017; Dimyadi et al. 2016; Solihin and Eastman 2015). In 
addition, state-of-the-art automatic code checking software systems often embrace an ad 
hoc approach of deriving model views required to run an encoded query (Eastman 2009), 
which makes the checking results subject to obscured rule interpretation and untraceable 
numerical assumptions. Furthermore, most theoretical frameworks have been developed 
in a specific context targeting one single aspect of regulatory conformance (structural 
soundness, safety, thermal performance), this further prohibits rule sets to be reused and 
shared among different communities (Solihin and Eastman 2015; Zhang et al. 2013; 
Pauwels et al. 2011). Therefore, it has become evident that a modular, extensible, and 
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transparent system is needed for rule interpretation, and a reliable, coherent, operational 
logic-based system for rule checking. 

In this paper, we proposed to leverage the strength of a (pure) semantic code 
formalisation to maintain a clean, modifiable code base. To achieve this, we extended 
ASPMT(QS) with a framework for spatial data structures to embed optimisations directly 
within the reasoning engine. We demonstrated the operational aspects of our framework 
with an industry-scale building and a qualitative, descriptive constraint on bathroom 
user’s privacy from the NZBC. The ASP rule that was checked was a “pure” encoding of 
the original building code rule, containing no additional clauses concerning 
computational runtime and thus more closely aligns with the natural language code 
description. Our empirical results show a 4-factor speed up when the spatial data 
structure optimisations were built into the ASP search engine.  

This paper belongs to a series of research efforts specifically aiming to provide a 
standard-compliant code checking system that allows a regulation expert to define a rule, 
execute the rule, and explain how the rule is applied and why the rule has passed, failed, 
or inconclusive based on available information. As we quickly touched upon in 4.2, rule 
semantics are a complex subject that display layers of abstraction including procedural 
complexity, defeasible principles, tolerances, etc. (Sacks et al. 2017; Dimyadi et al. 2017), 
and we intend to meticulously address these issues in coming studies. 
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