Managing and publishing standardized data catalogues to
support BIM processes

Christian Clemen, christian.clemen@htw-dresden.de
Faculty of Spatial Information, University of Applied Sciences Dresden, Dresden, Germany

Benjamin Thurm, mail@bentrm.dev
Faculty of Spatial Information, University of Applied Sciences Dresden, Dresden, Germany

Sebastian Schilling, sebastian.schilling@htw-dresden.de
Faculty of Spatial Information, University of Applied Sciences Dresden, Dresden, Germany

Abstract

With every integration step between BIM data sources, there is a certain chance of introducing
semantic inaccuracy or losing information. While the Industry Foundation Classes (IFC) provide
a huge set of entity types, its semantic expressiveness is limited. The standardization of semantics
within a BIM project or an application domain must therefore take place outside of IFC.
[S012006-3:2007 and 1S023387:2020 describe a well-established, language-independent
taxonomy model. But due to the abstract nature of the definition, implementing a model is a
complex task that lacks tooling. We present our current research, designing a stack of opensource
service components. These enable a collaborative design of semantics between construction
expert groups. The catalogue itself is published via a application programming interface (API)
based on the GraphQL-specification. This APl aims to be easy to integrate into tools along the CDE.
A practical example of this integration with a customary BIM modeler will be given.

Keywords: data catalogue, data templates, data exchange, semantic web

1 Introduction

BIM aims to be a multilateral approach to optimize planning, execution and management of
construction works using software. Ideally, all parties of a construction project are supposed to
share a common data environment (CDE). But a CDE will never be one monolithic database but
rather a heterogenous collection of data services. With every integration step between these data
sources, there is a certain chance of introducing semantic inaccuracy or losing information
altogether.

While the Industry Foundation Classes (IFC), the most common openBIM exchange format,
provide a huge set of entity types to describe physical and functional components, its semantic
expressiveness is limited. With the user-defined property sets, IFC can be extended generically.
However, the semantic interoperability is then no longer guaranteed. The standardization of
semantics within a BIM project or an application domain must therefore take place outside of IFC.

ISO 12006-3:2007 describes a well-established and language-independent taxonomy model.
But due to the abstract nature of the definition, implementing a model is a complex task that lacks
tooling. Multiple publications aim to offer guidance in structuring data based on ISO 12006-
3:2007 e.g., in the form of data templates (EN ISO 23387:2020). Yet, even utilizing a small subset
of the given structural elements of these publications results in an interconnected graph of
concepts that is hard to reason about and impractical to work with using conventional software
tools like spreadsheets. This hinders knowledge transfer between specialists.

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

11

Clemen et al. 2021 Managing and publishing standardized data catalogues to support BIM processes

We present our current research, designing a stack of open source service components. These
components enable a collaborative design of semantics between construction expert groups. The
catalogue itself is published via a novel application programming interface (API) based on the
GraphQL-specification. This API aims to be easy to integrate into tools along the CDE and to be a
starting point to ontology export routines. A practical example of this integration with a
customary BIM modeler to retrieve properties of construction objects will be given.

We will discuss challenges implementing the persistence and API model adapting the
taxonomy model of ISO 12006-3:2007. Furthermore, we will present a user-friendly interface to
design data templates in a multi-user environment following the recommended structure of ISO
23387:2020, as it is being evaluated by the German buildingSMART e.V. specialist group
“Transport Routes”.

We present our current research on “datacat”, an open source software stack for managing
and publishing standardized data catalogues to support BIM processes. With datacat, data
catalogues can be collaboratively created, edited, checked and published using the 1ISO12006-
3/IFD standardized meta-concepts for classification systems such as properties, property sets,
objects and group of objects (Figure 1).

o v/ v/ v/
0
[m] HTML/JS P GraphQL ~ GraphQL/REST ,,
(m—) A
O

. — = v ——————
@ Editor ~ - :
=
m &) |
£l '
=1 I
£l |
domain expert & GraphQL é: OWL L=
working groups r—— === N P > OE --—-1 8
| (ongoing work) | (ongoing work) ke : 5
| | 5
I Semantic Web : g
| GraphQL =
I v 3 |
exe/manually i |
— N - > | | BIM Authoring Tool :
Classification X (ongoing work) V4 : authoring semantics |
~F===| according to data |<«———-
z |
Lpaper” structured J 2 ! catalogue |
classifications classification files éc: /\ - :
: A [|
=i
| [
V4 ' CDE :
“—~=* | validating semantics |+ ———
v/ ... Source code implemented, validated and published according to data
catalogue

data catalogues for terminology potentially used in BIM vs. | actual model elements in PIM, AIM or GIS

Figure 1. illustrates the usage scenario and information flow of a datacat instance. Please note, that this paper
mainly reports about the results of the datacat editor, datacat API, datacat business logic and the Neo4j persistence
layer.

Data catalogues are created by domain experts in working groups for pre-standardization or
also by professional bodies in order to digitize existing “paper” taxonomies and classification
systems. A data catalogue provides a structured terminology that is potentially used in BIM
projects. The service may be consumed by BIM/GIS/CAD-software, aiming for “semantic
homogeneity”. With computer readable data catalogues, the “semantic model” is compatible
throughout software systems and along all phases of delivery: Even while executing very different
tasks, such as managing object type libraries, authoring BIM models, validating information
deliveries or publishing actual models of the built environment as project information model
(PIM) or asset information model (AIM), the terminology remains unchanged.

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

12

Clemen et al. 2021 Managing and publishing standardized data catalogues to support BIM processes

A “data catalogue” is used to file concepts as “catalogue records”. In related works, the terms
“data dictionary” or “property server” are used almost synonymously. We prefer the term
“catalogue” to demarcate systems whose primary focus is to link different records by means of
relationship and ID from systems whose main purpose is to list such concepts for advanced
querying and editing. The software datacat was developed in several working-package of publicly
funded research projects and is currently being validated in the pre-standardization work of the
“BIM traffic routes” specialist group of buildingSMART e.V. Germany.

In addition to the academic interest in data catalogues, we have developed datacat to offer
modular open source tooling for research and to fulfil our project requirements. Currently, the
buildingSMART data dictionary (bSDD) is predominantly used for commercial hosting of pre-
prepared data catalogues and possibly chargeable hosting of these. At bSDD, the international
publication and consumption is the main focus of operation. However, we are in the need of an
agile tool for the collaborative creation and validation of data catalogues. Established commercial
solutions such as BIMQ, e.g. described in (Hauer, 2020), or the cobuilder platform (Tune, 2017)
would simply be too expensive for our projects needs and could not be adapted for research
purposes. Alternatively, the Austrian FreeBIM server (Breuss and Lanzinger, 2021) is also
released under a permissive open source license and utilitzes Neo4j as persistence layer. FreeBIM
is an Austrian research project by the University of Innsbruck offering a property server to collect,
administer and link properties of structural elements and materials. Their goal is to compare
properties, e.g. from ONORM, with the bSDD and supplement missing properties. The properties
in the database then can be mapped to properties of BIM software. However, FreeBIM does not
provide a customized GraphQL API nor is it strictly based on the concepts from I[FD/IS012006-3.
The main administrative features of datacat are:

e GPLv3 License for source code on https://github.com/dd-bim/... (Thurm 2021a,b,c)

e strict orientation towards standardized meta-concepts for compatibility with the
bSDD and other catalogues not managed with datacat

e Functionality proven outside of academic projects

The main technical features of datacat are:

e Modularized and web-based-only software components

e Graph database (Neo4j) as persistence level

e datacat AP], a developer-friendly, self-documenting GraphQL interface for complex
queries on the data catalogue

e datacat editor, a browser-based user tool for navigating and editing the database

e Easy deployment as “docker application stack” to execute the datacat API and editor
client application on any server in federated environments

The datacat API is a thin server application that is designed to be hosted decentralized. We
believe that the need to maintain data catalogues will be omnipresent with the future application
of the BIM method. Also, while other developments focus on offering a centralized, well governed
data storage for large-scale operations, we foresee the need for local installations. Fundamental
task will be to draft and test new conceptual models, mirror existing data catalogues from official
read-only sources and to adapt coexisting models to the current project at hand.

Following this mindset, we decided against a full-fledged versioning and governance scheme,
as it would be needed for a centralized service. We aim to realize a service that can be easily
adopted during the on-boarding phase of a project, is interoperable with existing authoritative
sources and can be easily integrated into a broad BIM-infrastructure.

To ensure interoperability with current and future developments, the fundamental base of
our work is the adoption of ISO 12006-3 and the design considerations modelling data templates
according to 1SO 23387. We followed the guidelines of these standards rather closely, adapting
the standards as an implementation specification for the underlying domain layer of the
application. This has some influence on the architecture as a whole, as well as on the technologies
that we choose as our implementation framework.

As described above, the taxonomy model presented by ISO 12006-3 is highly generic and
allows to nest concepts and relationship concepts nearly arbitrarily. This means, that a

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

13

Clemen et al. 2021 Managing and publishing standardized data catalogues to support BIM processes

fundamental, highly connected concept of a domain might be included in a vast number of
relationships. This interconnectedness exceeds the complexity of a tree structure rather quickly
resulting in a hard to maintain graph structure. In fact, our practical experience cooperating with
the buildingSMART Germany specialized group “Transport routes” has shown, that even a very
small draft of a catalogue consisting only of construction subjects that are grouped by domains
resulted in a graph structure. This graph will become much more complicated if more complex
concepts like property inheritance and composition are included in the domain model.

2 Related Standards

The openBIM standard IFC (ISO 16739-1:2018) includes a vast number of IFC entities that
describe real-world concepts and their properties. These entities can be decorated with instances
of the type IfcPropertySet, “a container that holds properties within a property tree”. While the
IFC specification includes a number of IfcPropertySet-definitions, the main purpose of this entity
is to allow users to define custom groups of properties that can be assigned to object occurrences
and object types, the latter designating static attributes.

Furthermore, IFC includes the definition of an IfcPropertySetTemplate that can be used to
define the underlying structure of an IfcPropertySet. Since IFC follows an inheritance strategy, all
entities descend from the most general type IfcRoot, it’s possible to describe properties and
groups of properties by name, type and identifier. This allows to cross reference the definition of
these concepts with data catalogues. Additionally, IfcClassification allows to cross reference local
and external classification systems to IFC object occurrences. While this offers insights into the
semantics of a model’s object, no further practical implications are described.

ISO 23386, first released in March 2020, offers a “Methodology to describe, author and
maintain properties in interconnected data dictionaries”. Its main focus concerns the description
of properties and group of properties. Groups of properties can be further categorized as class,
domain, composed property and reference document and can be nested into a tree structure,
which makes the design of basic inheritance possible. As the main focus is offering a methodology
to be adapted by various data catalogue vendors, the standard includes no implementation
specification, nor does it define an exchange format but rather a tabular overview of metadata
that is needed to administer data dictionary entries. Furthermore, the standard describes an
elaborate governance process and dedicated user roles to handle change requests in a
coordinated manner. Its main target is to “ensure the quality and the unicity of property
descriptions and avoiding the creation of duplicates”. The existence of codependent data
dictionaries is embraced as a given. Therefore, to achieve unicity, every entry in a data dictionary
is not identified by a language dependent string that names the concept but a globally unique
identifier. A basic inheritance between groups of properties is supported.

Already released in 2007, ISO 12006-3 “consists of [a] specification of a taxonomy model,
which provides the ability to define concepts by means of properties, to group concepts, and to
define relationships between concepts”. Contrary to ISO 23386, it follows a much more object-
oriented approach which allows to describe real world phenomena as types like xtdActor,
xtdActivity, xtdSubject, xtdProperty and xtdValue. These singular types, relationship types, as
well as collection types thereof are all subtypes of the abstract class xtdRoot. The resulting
inheritance structure allows to describe all of these concepts by an ID, multilingual names and
descriptions.

While the specification itself is given in EXPRESS and EXPRESS-G notation, a concrete
implementation of a data structure needs to be derived. Also, due to the highly abstract nature of
some of the involved relationship types, it’s hard to stipulate a consistent application between
data domains and domain users.

[SO 23387 builds on top of ISO 12006-3 and uses the broad definition of the specification’s
entities to “set out principles and structure for data templates for construction objects”. It is
meant as an implementation guideline for software developers to improve interoperability
between software systems that implement some kind of data templates based on ISO 12003-6.

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

14

Clemen et al. 2021 Managing and publishing standardized data catalogues to support BIM processes

Furthermore, additional rules for linking data templates to IFC classes and other classification
systems design in data dictionary are provided.

The currently developed standard “IFC4.COD.1 Construction Objects Data View Part 1” (CEN,
2020) tries to connect data catalogues with actual IFC models. “The standard defines the syntactic
characteristics of a generic structure to transport data about construction objects based on EN
ISO 16739-1:2018, prEN ISO 23386 and prEN ISO 23387” (CEN, 2020). The standard also
provides an developer friendly XML-Schema, EXPRESS and Java-classes similar to Model View
Definitions (MVD). In doing so, this standard will close the gap between the many generic
conceptual models (data catalogues) and the actual use of these models in openBIM projects using
IFC.

The most-related data catalogue solution might be buildingSMART data dictionary (bSDD)
which is offered by buildingSMART International and currently released as version 4. The data
model follows ISO 12006-3 closely. The main focus of bSDD is to be a central data store for data
catalogues. A tenant system is in place, that allows different domain owners to host data records
isolated from all other domains. By linking concepts across data domains, a cross-catalogue
relationship can be established. bSDD offers a comprehensive RESTful-API to query and retrieve
catalogue records and relationships.

Since 2020, a new version is announced as in active development. The main focus of version
5 will be to revise the APl to be more developer friendly, integrate the possibility to publish linked
data and a new authorization layer based on the OAuth 2.0 specification. It is unknown to the
authors, if bSDD will support ISO 12006-3 to its full extent. The service will still be hosted
centrally by buildingSMART International as a data-catalogue-as-a-service. This means,
publishers and domain owners pay to host their data catalogue with buildingSMART
International and can choose to make it available to the public. Currently, multiple well-known
collections are hosted publicly including OmniClass, IFC4 properties sets and also some national
classification systems.

3 Methods - datacat solution

The datacat software stack is currently divided into the core components datacat API (Thurm,
2021a), a developer-friendly, self-documenting GraphQL interface for complex queries on the
data catalogue and the datacat editor (Thurm, 2021b), a browser-based user tool for navigating
and editing the data stock. The datacat API is a thin server application that is designed to be
hosted decentralized.

In traditional applications, the persistence layer is based on a relational database. The most
prevailing query language to interact with such storage engine is SQL. On the most basic level,
this means, that the data storage of such is “table oriented”. Entity attributes as the ID are typically
represented as columns of these tables. To represent relationships between different entities the
ID is referenced either from one side of the relationship or from a designated lookup table. In
most cases, querying this store for relationships means to lookup the owning side of the
relationship, find all related entity IDs and read all those entities into memory as well. For data in
tables with a graph structure, this quickly becomes an expensive operation, as there might be an
unknown number of relationships that follow the starting point of a SQL query. While this
problem is in part mitigate by some modern implementations supporting recursive queries, a
graph structure still is a second-class abstraction for typical relational databases. This is why we
choose to favor a graph database to implement the persistence layer of datacat.

In a graph database, more specifically, in a property graph database, the basic storage
abstraction are nodes and edges. Both types are identified by an ID and might carry additional
arbitrary properties. For our use case, this allows to store administrative data with every edge
between data nodes. Also, instead of using SQL to query the data store, we're able to use Cypher,
a graph querying language that make it comparably ease to wander and aggregate sub-views of
the data catalogue (Francis et al., 2018). A good example where this comes in handy, is a query
that aims to aggregate all inherited properties along a nested inheritance tree. Also, since the
actual relationship is a first-class citizen of the querying logic, it is possible to define queries based

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

15

Clemen et al. 2021 Managing and publishing standardized data catalogues to support BIM processes

on properties of the relationship itself. For example, its trivial to query for all relationships of type
COMPOSES without defining a concrete type that this relationship originates from.

Our main focus is to offer versatile querying capabilities to application developers to request
sub-views of the data catalogue. In many cases, this means to export a data template of a selected
concept or a list of concepts - maybe construction objects. To aggregate such data view, many
relationships originating from a catalogue record needs to be queried at once, recursively along
the user-defined inheritance structure. Practically, this could be achieved through a RESTful
interface that offers a representation for each of the participating entity types asa HTTP resource.
This may pose some practical difficulties consuming the API: The resources follow a predefined
structure determined by the interface developer. If the predetermined server response does not
satisfy all data requirements for the use case of the requesting application, more requests need
to be sent to the server’s API to retrieve the missing information. This lays a burden on the server
hardware that needs to handle additional requests as well as on the application developer who
needs to combine multiple roundtrips in the application logic. If the API developer foresees this,
one might be inclined to include more information in the most prominent resources of the service.
But this bares the risk to process information on the server side that might never be used on the
client. Since datacat does not dictate a schema for any data catalogue other than the rules defined
by ISO 12006-3, it’s impossible to predetermine the shape of all HTTP resources needed for all
use-cases.

To compensate for this, we implemented the datacat API following the GraphQL-specification
as it has been published by Facebook. A GraphQL-API allows the application developer to define
type-safe queries along the published domain model. “Plain GraphQL is both a query language
and a specification. It focuses on minimising and optimising data loads over the web, by
connecting to a GraphQL API” (Werbrouck et al,2019). An example is given in Figure 2.
Incidentally, this model resembles the taxonomy of the underlying ISO specification, improving
interoperability and understanding.

getSubject(id: "3mXYaZbdSFGPLqwUold3$5") { . "data": {
id . "getSubject": {
name "id": "3mXYaZbdSFGPLgwUold3$5",
assignedCollections { "name": "Abdeckung",
nodes { v "assignedCollections": {
relatedCollections { . "nodes": [
id v {

name v "relatedCollections": [

} {
} "id": "1f403c00-979a-4a46-93a9-da3624b91eb6",
} "name": "Abfallrecht, Entsorgung des Bodens"

Figure 2. A simple GraphQL-query (left) selecting id, name and related collections of a construction object. The
term ,subject® is derived from the ISO 12006-3 entity ,xtdSubject. More properties can be selected by extending
the query structure. The server response (right) includes the fields selected by the query.

The datacat software stack is organized into components. Main focus of our research has been
the development of the datacat API (Figure 3). The datacat APl is based on a Neo4j graph database
in which all data is stored. Among other things, the API consists of components of the Spring
Framework, the GraphQL API and its integrated development environment (IDE) GraphiQL,
which provides a graphical interface for interaction. Through the datacat AP, users can directly
make complex queries or make changes to the data with the appropriate permission.
Alternatively, the datacat API can be accessed via a client, for example the datacat editor
developed for this purpose. In the future, BIM authoring systems will also be able to access
datacat via plug-ins.

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

16

Clemen et al. 2021 Managing and publishing standardized data catalogues to support BIM processes

«subsystem»
datacat

O

/graphql

«service»
«framework» GraphQL API

spring-boot

----------------- > «framework»
graphql-java
«framework» «service»
spring-di Authentication layer| .| «framework»
. spring-security
«process» «process»
Application layer [""""""""""" Business layer
«service»
Data access layer ["""~--------2> «framework»
spring-data

%

"

Y v
«model»
Domain layer «framework»
H neo4j-ogm
[l 7
application «database system»
_______ configuration Neo4j
application.yml

Figure 3. Basic software packages of the datacat API component.

The datacat editor (Figure 4) offers an opinionated view to manage a data catalogue
structured after ISO 12006-3. With this browser-based editor the user can easily navigate
through the data catalogue and insert, update or delete data.

- .
& datacat editor | @ datacat editor Search. © cHRISTIAN B)

Allgemein Katalog durchsuchen ¥ Fachmodell bearbeiten
A Stensee L e o o Name
VA tydrogeologiaches M Teer

© Profilbesneiten

Q Katalog o her Bestand_Vermessung
atalog durchsuchen

- & Bestand_Vermessung P

% Exportieren @ Ausstattung T UBERSETZUNG HINZUFUGEN
- @ e
Katalog
. - @ ungsty Beschreibung
R Referenzéokumente ' @ e o rarakteiiotdos Konzept . -
[Y N Referenzdokumente, die diese Fachmodell beschreiben

& Fachmodete . Noch ke pande

@ & 004 iassen der Verkehrowege 1.0
B Gupen @
@ Mossen @

@ Version Metainformationen
" e @ or 0 2CCiym3eLCQOUDOIyTIUE.

(erkmalsgruppen " 101
150120063 xedBag

@ Merkmale]

a Schisguorte Fachmodel
@ Giesen a Im Fachmodel beschrisbene Gruppen 30.Jumi 20201631
M Matemeren - Collecte Zerdrms (of254e 408143009547 c1d0ctd -
W viene > B a 27.Jan 2021 1716

‘B

Atualislert durch Snam9s

B LOSCHEN

Figure 4. lllustration of the customized editor (German): (1) Meta-concepts of ISO12006-3 understandable for non-
IT-experts (2) a interactive tree-view on the catalogue graph (3) Ul for simple editing (4) some metadata (5) free
text search.

Using e.g. “pagination” the queries and Ul-updates after editing the catalogue are optimized
and user friendly. The authentication system controls who is allowed to perform which actions.
For a simple and complete installation, the datacat docker stack (Thurm, 2021c) can be used,
which combines the components datacat API, datacat editor and Neo4j database.

4 Conclusion
4.1 Discussion

As already mentioned, the relevant standards for data catalogues are very generic. Therefore,
numerous design decisions have to be made in the programmatic implementation:

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

17

Clemen et al. 2021 Managing and publishing standardized data catalogues to support BIM processes

GUID. While it is possible to use arbitrary unique identifiers specified while creating new
catalog records, in practice, most concepts will be assigned an auto-generated ID by the system.
We use a standardized UUID algorithm to generate IDs as 128bit-numbers. As of now, we do not
compress these IDs as defined in the IFC and ISO 12006-3 specification as the advantages in space
efficiency are marginal. Future plans include an encoding mechanism that allows to output
contemporary UUIDs in the compressed IFC identifier format for support with legacy systems.

Optional Properties. In ISO12006-3 there are no rules or attributes in place that allow to
designate optional properties and property groups. Until now this feature is also not
implemented in datacat because we need to check, if this would violate the compatibility with
other catalogue servers.

Inheritance of xtdRelationship. For usability reasons handling return types of APl methods,
datacat relationships do not inherit directly from xtdRoot as described in ISO 12006-3. All
properties of xtdRoot are also assigned to all relationship types, but -in contrast to the standard-
our relationship records cannot be a member of other relationship definitions. We did not find a
practical relevant application of this. Nevertheless, this might change in the future and would
mean only a rather small change in the codebase.

Multilingualism. One core feature of the ISO 12006-3 specification is multilingualism of
names and descriptions of all concepts. This allows to define a name of a concept even in closely
related language families like German, Austrian German or Swiss German. While a rather versatile
approach, this leads to complexity for application developers that consume the data catalog.
datacat implements this feature as specified but extends on this by offering additional API
methods to interact with language representations. In addition to querying all language
representations of a concept, a language priority list can be provided ([‘de-at’, ‘de’, ‘en’]) that will
be interpreted by the service selecting the most appropriate language representation.

Direct relations. ISO 12006-3 describes multiple ways to designate the relationship between
an arbitrary measure and the concept of values and units. The specification is inconsistent by
including an optional unit component of type xtdUnit as well as a direct relation to a list of
xtdValue entities as entity properties of the type xtdMeasureWithUnit. This deviates from all
other relationship characterizations of the specification that are reified as instances of
xtdRelationship entities. Furthermore, the two concrete relationship types of name
xtdAssignsValues and xtdAssignsUnit can also be used to describe the very same concept and are
more in line with the rest of the spec. The datacat implementation of this concept follows the
latter, more consistent approach and ignores the entity components of xtdMeasureWithUnit.

Import and Export. Instead of implementing designated import and export routines, we
decided to lay focus on implementing a versatile API layer. Application and plug-in developers
can use this API to implement use-case oriented solutions that map their data format to the API
entities, hence to the underlying ISO specifications. However, a very simple export of the data as
CSV is also possible in datacat editor.

4.2 Limitations of the technical solution
As already indicated in Figure 1, the datacat API and the datacat editor are already very mature
and can be used proactively. However, some “typical IT”-functionalities are still missing:

e Until now, a new instance of datacat had to be created for each additional data
catalogue to be managed. This will become obsolete with multi-catalogue support and
multi-tenant support.

e The user administration has to be done by GraphQL - there is no Ul in datacat editor.

e Until now users are registered by password and automatic but simple Email
authentication. A proper “Authentication as a Service” should be implemented.

e We have started with a continuous testing, integration and deployment pipeline
(CI/CD) but it is not yet fully operable until now.

e An activity feed (email notification, slack integration) would be very useful for the
domain expert groups, that are asynchronously editing data catalogues.

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

18

Clemen et al. 2021 Managing and publishing standardized data catalogues to support BIM processes

e Other components, not covered in this paper, are datacat CLI for using datacat via the
console and datacat explorer, an initial implementation of the datacat editor interface.
With the datacat importer excel templates can be imported via the CLI. However,
these components are currently not used nor maintained.

4.3 Future research work

Ongoing Validation. The user-facing Ul of datacat, datacat editor, has been a tremendous
success in user-communication and has allowed us to make more informed decisions in designing
the datacat platform as a whole. We will continue our efforts in supporting buildingSMART
Germany to improve this part of the system as well. Also, other domains (e.g. facilities
management, GIS) and other project types (project setup, existing paper standard, ...) will create
further demands on usability. We are currently investigating how datacat may be used to create
homogenous documents for building permit and landscape planning including BIM, GIS and
surveying information. To convince practitioners about the benefit of machine-readable data
catalogues we developed a rudimentary Plug-In for Autodesk Revit, that is able to query datacat,
annotated any Revit model element with a template for properties and allows the user to fill in
the desired values of any property.

Fry

Figure 5. lllustration of the datacat Revit Plugin: (1) connect “read only” to server and browse catalogue (2) link
xtdSubject catalogue element to a selected Revit element (3) and type in the desired properties (4) export
annotated model to IFC.

Import, Checking, Export. Many more standards of different domains and different standard
types should be analysed and imported to datacat. To prove the usability of datacat, the usage of
IfcPropertySetTemplate and Construction Objects Data View (CEN,2020) might be feasible to
exchange a subset of information that is stored in the datacat catalogue with a number of
modelling tools. It allows to delegate the test for validity of a model regarding property
assignment to external tools. We will also add checking tools for the catalogue.

Review conceptual model. The 1SO12006-3 is currently under development and will be
updated. Very similar, but until now, not part of our research is the 1S019110 “Geographic
Information - Methodology for feature cataloguing”. This standard is well integrated in the
[SO19xxx series but does not perfectly fit BIM requirements. However, its structure and technical
specifications on implementing catalogues is worth further investigation.

Semantic Web. In the next stage of research, our main goal for datacat will be a more in-
depth examination of the feasibility of a Semantic Web export. We believe that our practical
approach in offering tools to amplify and collect expert’s knowledge will be a good foundation in
converting this information into RDF graphs. Also, we would like to broaden our efforts in
integration of the datacat API in modelling tools to improve usability and performance of the
services and give further way for practical application of the components. As a first step we have
tested first ontologies using the concepts and OWL-ontologies from (Beetz and de Vries, 2009).
In our approach the data is already available in a graph structure (labelled directed graph, Neo4;)

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

19

Clemen et al. 2021 Managing and publishing standardized data catalogues to support BIM processes

and can be used in the Semantic Web as an ontology to describe real objects. Therefore, a first
OWL exporter was written that queries the data from the database via the datacat API and stores
itas an ontology in the Turtle syntax. For example, in the context of transport routes, the ontology
provides a knowledge base for semantic description and linking of roads and traffic facilities and
enables the practical application of the data catalogue.

Acknowledgements

The development of datacat has been financially supported from Federal Ministry for Economic
Affairs and Energy (BMWi) during the project “LandBIM” and the project “TerrainTwin”. We
would also like to thank the German buildingSMART e.V. specialist group “Transport Routes” for
insights into their domain model and their continued interest in datacat during this first stage of
research and development.

References

Beetz, Jakob and Vries, Bert de (2009): Building product catalogues in the semantic web, 26th International
Conference on Information Technology in Construction CIB W78 (pp. 221-226)

Breuss, Raine and Lanzinger, ASI - Propertyserver Patrick (2021): https://github.com/asi-propertyserver/

CEN - European Committee for Standardization (2020), [FC4.COD.1 Construction Objects Data View Part -
Candidate, Link: buildingSMART.github.io/ProductData

Francis, Nadime, Alastair Green,Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor Marsault, Stefan
Plantikow, Mats Rydberg, Petra Selmer, Andrés Taylor, Cypher (2018), An Evolving Query Language
for Property Graphs, SIGMOD’18, June 10-15, 2018, Houston, TX, USA

FreeBIM (2021): https://www.freebim.at

Thurm, Benjamin, DD-BIM (2021a): https://github.com/dd-bim/datacat

Thurm, Benjamin, DD-BIM (2021b): https://github.com/dd-bim/datacat-stack

Thurm, Benjamin, DD-BIM (2021c): https://github.com/dd-bim/datacat-editor

Tune, Nick (2017). “Manufacturers: BIM objects don't make you BIM ready.” Bimplus.co.uk. Chartered
Insitute of Building, Bracknell, U.K. Link: https://www.bimplus.co.uk/people/manufactu6rers-bim-
objects-dont-ma5ke-bi4m-ready/

Hauer, S.; Murschetz,].; Bres, A.; Sporr, A.; Schony, M.; Monsberger, M. (2020) metaTGA: a chance for BIM
in the field of MEP. Bau-physik 42, no. 6, pp. 345-351.

International Organization for Standardization (2007). Building construction — Organization of
information about construction works — Part 3: Framework for object-oriented information (ISO
standard no. 12006-3:2007)

International Organization for Standardization (2016). Geographic information - Methodology for feature
cataloguing (ISO standard no. 19110:2016)

International Organization for Standardization (2020a). Building information modelling and other digital
processes used in construction — Methodology to describe, author and maintain properties in
interconnected data dictionaries (ISO standard no. 23386:2020)

International Organization for Standardization (2020b). Building information modelling (BIM) — Data
templates for construction objects used in the life cycle of built assets — Concepts and principles
(ISO standard no. 23387:2020)

Werbrouck, J., Senthilvel, M., Beetz,]., Bourreau, P., & Van Berlo, L. (2019). Semantic query languages for
knowledge-based web services in a construction context. In P. Geyer, K. Allacker, M. Schevenels, F.
De Troyer, & P. Pauwels (Eds.), Proceedings of the 26th International Workshop on Intelligent
Computing in Engineering (EG-ICE) (Vol. 2394). Leuven, Belgium.

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

20

