

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

Managing and publishing standardized data catalogues to
support BIM processes

Christian Clemen, christian.clemen@htw-dresden.de
Faculty of Spatial Information, University of Applied Sciences Dresden, Dresden, Germany
Benjamin Thurm, mail@bentrm.dev
Faculty of Spatial Information, University of Applied Sciences Dresden, Dresden, Germany

Sebastian Schilling, sebastian.schilling@htw-dresden.de
Faculty of Spatial Information, University of Applied Sciences Dresden, Dresden, Germany

Abstract
With every integration step between BIM data sources, there is a certain chance of introducing
semantic inaccuracy or losing information. While the Industry Foundation Classes (IFC) provide
a huge set of entity types, its semantic expressiveness is limited. The standardization of semantics
within a BIM project or an application domain must therefore take place outside of IFC.
ISO12006-3:2007 and ISO23387:2020 describe a well-established, language-independent
taxonomy model. But due to the abstract nature of the definition, implementing a model is a
complex task that lacks tooling. We present our current research, designing a stack of opensource
service components. These enable a collaborative design of semantics between construction
expert groups. The catalogue itself is published via a application programming interface (API)
based on the GraphQL-specification. This API aims to be easy to integrate into tools along the CDE.
A practical example of this integration with a customary BIM modeler will be given.

Keywords: data catalogue, data templates, data exchange, semantic web

1 Introduction
BIM aims to be a multilateral approach to optimize planning, execution and management of
construction works using software. Ideally, all parties of a construction project are supposed to
share a common data environment (CDE). But a CDE will never be one monolithic database but
rather a heterogenous collection of data services. With every integration step between these data
sources, there is a certain chance of introducing semantic inaccuracy or losing information
altogether.

While the Industry Foundation Classes ȋIFCȌ, the most common openBIM exchange format,
provide a huge set of entity types to describe physical and functional components, its semantic
expressiveness is limited. With the user-deϐined property sets, IFC can be extended generically.
However, the semantic interoperability is then no longer guaranteed. The standardization of
semantics within a BIM project or an application domain must therefore take place outside of IFC.

ISO ͳʹͲͲ͸-͵:ʹͲͲ͹ describes a well-established and language-independent taxonomy model.
But due to the abstract nature of the deϐinition, implementing a model is a complex task that lacks
tooling. Multiple publications aim to offer guidance in structuring data based on ISO ͳʹͲͲ͸-
͵:ʹͲͲ͹ e.g., in the form of data templates ȋEN ISO ʹ͵͵ͺ͹:ʹͲʹͲȌ. Yet, even utilizing a small subset
of the given structural elements of these publications results in an interconnected graph of
concepts that is hard to reason about and impractical to work with using conventional software
tools like spreadsheets. This hinders knowledge transfer between specialists.

11

Clemen et al. 2021 Managing and publishing standardized data catalogues to support BIM processes

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

We present our current research, designing a stack of open source service components. These
components enable a collaborative design of semantics between construction expert groups. The
catalogue itself is published via a novel application programming interface ȋAPIȌ based on the
GraphQL-speciϐication. This API aims to be easy to integrate into tools along the CDE and to be a
starting point to ontology export routines. A practical example of this integration with a
customary BIM modeler to retrieve properties of construction objects will be given.

We will discuss challenges implementing the persistence and API model adapting the
taxonomy model of ISO ͳʹͲͲ͸-͵:ʹͲͲ͹. Furthermore, we will present a user-friendly interface to
design data templates in a multi-user environment following the recommended structure of ISO
ʹ͵͵ͺ͹:ʹͲʹͲ, as it is being evaluated by the German buildingSMART e.V. specialist group
ǲTransport Routesǳ.

We present our current research on ǲdatacatǳ, an open source software stack for managing
and publishing standardized data catalogues to support BIM processes. With datacat, data
catalogues can be collaboratively created, edited, checked and published using the ISOͳʹͲͲ͸-
͵ȀIFD standardized meta-concepts for classiϐication systems such as properties, property sets,
objects and group of objects ȋFigure ͳȌ.

Figure 1. illustrates the usage scenario and information flow of a datacat instance. Please note, that this paper
mainly reports about the results of the datacat editor, datacat API, datacat business logic and the Neo4j persistence
layer.

Data catalogues are created by domain experts in working groups for pre-standardization or
also by professional bodies in order to digitize existing ǲpaperǳ taxonomies and classiϐication
systems. A data catalogue provides a structured terminology that is potentially used in BIM
projects. The service may be consumed by BIMȀGISȀCAD-software, aiming for ǲsemantic
homogeneityǳ. With computer readable data catalogues, the ǲsemantic modelǳ is compatible
throughout software systems and along all phases of delivery: Even while executing very different
tasks, such as managing object type libraries, authoring BIM models, validating information
deliveries or publishing actual models of the built environment as project information model
ȋPIMȌ or asset information model ȋAIMȌ, the terminology remains unchanged.

Neo4j

datacat
API

datacat
Buisness Logic

 bSDD

Semantic Web

BIM Authoring Tool
authoring semantics

according to data
catalogue

CDE
validating semantics

according to data
catalogue

datacat
Editor

Classification X

Cypher

GraphQL GraphQL/REST

OWL

GraphQL

data catalogues for terminology potentially used in BIM vs.

(n
ot

 im
pl

em
en

te
d!

)

(ongoing work)

HTML/JS

(o
ng

oi
ng

 w
or

k)

(not im
plem

ented!)

(ongoing work)

exe/manually

domain expert &
 working groups

 paper
classifications

structured
classification files

GraphQL

(ongoing work)

߭߭ ߭

߭

߭

߭

߭

߭ Source code implemented, validated and published

actual model elements in PIM, AIM or GIS

12

Clemen et al. 2021 Managing and publishing standardized data catalogues to support BIM processes

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

A ǲdata catalogueǳ is used to ϐile concepts as ǲcatalogue recordsǳ. In related works, the terms
ǲdata dictionaryǳ or ǲproperty serverǳ are used almost synonymously. We prefer the term
ǲcatalogueǳ to demarcate systems whose primary focus is to link different records by means of
relationship and ID from systems whose main purpose is to list such concepts for advanced
querying and editing. The software datacat was developed in several working-package of publicly
funded research projects and is currently being validated in the pre-standardization work of the
ǲBIM trafϐic routesǳ specialist group of buildingSMART e.V. Germany.

In addition to the academic interest in data catalogues, we have developed datacat to offer
modular open source tooling for research and to fulϐil our project requirements. Currently, the
buildingSMART data dictionary ȋbSDDȌ is predominantly used for commercial hosting of pre-
prepared data catalogues and possibly chargeable hosting of these. At bSDD, the international
publication and consumption is the main focus of operation. However, we are in the need of an
agile tool for the collaborative creation and validation of data catalogues. Established commercial
solutions such as BIMQ, e.g. described in ȋHauer, ʹͲʹͲȌ, or the cobuilder platform ȋTune, ʹͲͳ͹Ȍ
would simply be too expensive for our projects needs and could not be adapted for research
purposes. Alternatively, the Austrian FreeBIM server ȋBreuss and Lanzinger, ʹͲʹͳȌ is also
released under a permissive open source license and utilitzes NeoͶj as persistence layer. FreeBIM
is an Austrian research project by the University of Innsbruck offering a property server to collect,
administer and link properties of structural elements and materials. Their goal is to compare
properties, e.g. from O NORM, with the bSDD and supplement missing properties. The properties
in the database then can be mapped to properties of BIM software. However, FreeBIM does not
provide a customized GraphQL API nor is it strictly based on the concepts from IFDȀISOͳʹͲͲ͸-͵.
The main administrative features of datacat are:

x GPLv͵ License for source code on https:ȀȀgithub.comȀdd-bimȀ... ȋThurm ʹͲʹͳa,b,cȌ
x strict orientation towards standardized meta-concepts for compatibility with the

bSDD and other catalogues not managed with datacat
x Functionality proven outside of academic projects

The main technical features of datacat are:
x Modularized and web-based-only software components
x Graph database ȋNeoͶjȌ as persistence level
x datacat API, a developer-friendly, self-documenting GraphQL interface for complex

queries on the data catalogue
x datacat editor, a browser-based user tool for navigating and editing the database
x Easy deployment as ǲdocker application stackǳ to execute the datacat API and editor

client application on any server in federated environments
The datacat API is a thin server application that is designed to be hosted decentralized. We

believe that the need to maintain data catalogues will be omnipresent with the future application
of the BIM method. Also, while other developments focus on offering a centralized, well governed
data storage for large-scale operations, we foresee the need for local installations. Fundamental
task will be to draft and test new conceptual models, mirror existing data catalogues from ofϐicial
read-only sources and to adapt coexisting models to the current project at hand.

Following this mindset, we decided against a full-ϐledged versioning and governance scheme,
as it would be needed for a centralized service. We aim to realize a service that can be easily
adopted during the on-boarding phase of a project, is interoperable with existing authoritative
sources and can be easily integrated into a broad BIM-infrastructure.

To ensure interoperability with current and future developments, the fundamental base of
our work is the adoption of ISO ͳʹͲͲ͸-͵ and the design considerations modelling data templates
according to ISO ʹ͵͵ͺ͹. We followed the guidelines of these standards rather closely, adapting
the standards as an implementation speciϐication for the underlying domain layer of the
application. This has some inϐluence on the architecture as a whole, as well as on the technologies
that we choose as our implementation framework.

As described above, the taxonomy model presented by ISO ͳʹͲͲ͸-͵ is highly generic and
allows to nest concepts and relationship concepts nearly arbitrarily. This means, that a

13

Clemen et al. 2021 Managing and publishing standardized data catalogues to support BIM processes

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

fundamental, highly connected concept of a domain might be included in a vast number of
relationships. This interconnectedness exceeds the complexity of a tree structure rather quickly
resulting in a hard to maintain graph structure. In fact, our practical experience cooperating with
the buildingSMART Germany specialized group ǲTransport routesǳ has shown, that even a very
small draft of a catalogue consisting only of construction subjects that are grouped by domains
resulted in a graph structure. This graph will become much more complicated if more complex
concepts like property inheritance and composition are included in the domain model.

2 Related Standards
The openBIM standard IFC (ISO 16739-1:2018) includes a vast number of IFC entities that
describe real-world concepts and their properties. These entities can be decorated with instances
of the type IfcPropertySet, ǲa container that holds properties within a property treeǳ. While the
IFC specification includes a number of IfcPropertySet-definitions, the main purpose of this entity
is to allow users to define custom groups of properties that can be assigned to object occurrences
and object types, the latter designating static attributes.

Furthermore, IFC includes the deϐinition of an IfcPropertySetTemplate that can be used to
deϐine the underlying structure of an IfcPropertySet. Since IFC follows an inheritance strategy, all
entities descend from the most general type IfcRoot, itǯs possible to describe properties and
groups of properties by name, type and identiϐier. This allows to cross reference the deϐinition of
these concepts with data catalogues. Additionally, IfcClassiϐication allows to cross reference local
and external classiϐication systems to IFC object occurrences. While this offers insights into the
semantics of a modelǯs object, no further practical implications are described.

ISO ʹ͵͵ͺ͸, ϐirst released in March ʹͲʹͲ, offers a ǲMethodology to describe, author and
maintain properties in interconnected data dictionariesǳ. Its main focus concerns the description
of properties and group of properties. Groups of properties can be further categorized as class,
domain, composed property and reference document and can be nested into a tree structure,
which makes the design of basic inheritance possible. As the main focus is offering a methodology
to be adapted by various data catalogue vendors, the standard includes no implementation
speciϐication, nor does it deϐine an exchange format but rather a tabular overview of metadata
that is needed to administer data dictionary entries. Furthermore, the standard describes an
elaborate governance process and dedicated user roles to handle change requests in a
coordinated manner. Its main target is to ǲensure the quality and the unicity of property
descriptions and avoiding the creation of duplicatesǳ. The existence of codependent data
dictionaries is embraced as a given. Therefore, to achieve unicity, every entry in a data dictionary
is not identiϐied by a language dependent string that names the concept but a globally unique
identiϐier. A basic inheritance between groups of properties is supported.

Already released in ʹͲͲ͹, ISO ͳʹͲͲ͸-͵ ǲconsists of ȏaȐ speciϐication of a taxonomy model,
which provides the ability to deϐine concepts by means of properties, to group concepts, and to
deϐine relationships between conceptsǳ. Contrary to ISO ʹ͵͵ͺ͸, it follows a much more object-
oriented approach which allows to describe real world phenomena as types like xtdActor,
xtdActivity, xtdSubject, xtdProperty and xtdValue. These singular types, relationship types, as
well as collection types thereof are all subtypes of the abstract class xtdRoot. The resulting
inheritance structure allows to describe all of these concepts by an ID, multilingual names and
descriptions.

While the speciϐication itself is given in EXPRESS and EXPRESS-G notation, a concrete
implementation of a data structure needs to be derived. Also, due to the highly abstract nature of
some of the involved relationship types, itǯs hard to stipulate a consistent application between
data domains and domain users.

ISO ʹ͵͵ͺ͹ builds on top of ISO ͳʹͲͲ͸-͵ and uses the broad deϐinition of the speciϐicationǯs
entities to ǲset out principles and structure for data templates for construction objectsǳ. It is
meant as an implementation guideline for software developers to improve interoperability
between software systems that implement some kind of data templates based on ISO ͳʹͲͲ͵-͸.

14

Clemen et al. 2021 Managing and publishing standardized data catalogues to support BIM processes

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

Furthermore, additional rules for linking data templates to IFC classes and other classiϐication
systems design in data dictionary are provided.

The currently developed standard ǲIFCͶ.COD.ͳ Construction Objects Data View Part ͳǳ ȋCEN,
ʹͲʹͲȌ tries to connect data catalogues with actual IFC models. ǲThe standard deϐines the syntactic
characteristics of a generic structure to transport data about construction objects based on EN
ISO ͳ͸͹͵ͻ-ͳ:ʹͲͳͺ, prEN ISO ʹ͵͵ͺ͸ and prEN ISO ʹ͵͵ͺ͹ǳ ȋCEN, ʹͲʹͲȌ. The standard also
provides an developer friendly XML-Schema, EXPRESS and Java-classes similar to Model View
Deϐinitions ȋMVDȌ. In doing so, this standard will close the gap between the many generic
conceptual models ȋdata cataloguesȌ and the actual use of these models in openBIM projects using
IFC.

The most-related data catalogue solution might be buildingSMART data dictionary ȋbSDDȌ
which is offered by buildingSMART International and currently released as version Ͷ. The data
model follows ISO ͳʹͲͲ͸-͵ closely. The main focus of bSDD is to be a central data store for data
catalogues. A tenant system is in place, that allows different domain owners to host data records
isolated from all other domains. By linking concepts across data domains, a cross-catalogue
relationship can be established. bSDD offers a comprehensive RESTful-API to query and retrieve
catalogue records and relationships.

Since ʹͲʹͲ, a new version is announced as in active development. The main focus of version
ͷ will be to revise the API to be more developer friendly, integrate the possibility to publish linked
data and a new authorization layer based on the OAuth ʹ.Ͳ speciϐication. It is unknown to the
authors, if bSDD will support ISO ͳʹͲͲ͸-͵ to its full extent. The service will still be hosted
centrally by buildingSMART International as a data-catalogue-as-a-service. This means,
publishers and domain owners pay to host their data catalogue with buildingSMART
International and can choose to make it available to the public. Currently, multiple well-known
collections are hosted publicly including OmniClass, IFCͶ properties sets and also some national
classiϐication systems.

3 Methods - datacat solution
The datacat software stack is currently divided into the core components datacat API (Thurm,
2021a), a developer-friendly, self-documenting GraphQL interface for complex queries on the
data catalogue and the datacat editor (Thurm, 2021b), a browser-based user tool for navigating
and editing the data stock. The datacat API is a thin server application that is designed to be
hosted decentralized.

In traditional applications, the persistence layer is based on a relational database. The most
prevailing query language to interact with such storage engine is SQL. On the most basic level,
this means, that the data storage of such is ǲtable orientedǳ. Entity attributes as the ID are typically
represented as columns of these tables. To represent relationships between different entities the
ID is referenced either from one side of the relationship or from a designated lookup table. In
most cases, querying this store for relationships means to lookup the owning side of the
relationship, ϐind all related entity IDs and read all those entities into memory as well. For data in
tables with a graph structure, this quickly becomes an expensive operation, as there might be an
unknown number of relationships that follow the starting point of a SQL query. While this
problem is in part mitigate by some modern implementations supporting recursive queries, a
graph structure still is a second-class abstraction for typical relational databases. This is why we
choose to favor a graph database to implement the persistence layer of datacat.

In a graph database, more speciϐically, in a property graph database, the basic storage
abstraction are nodes and edges. Both types are identiϐied by an ID and might carry additional
arbitrary properties. For our use case, this allows to store administrative data with every edge
between data nodes. Also, instead of using SQL to query the data store, weǯre able to use Cypher,
a graph querying language that make it comparably ease to wander and aggregate sub-views of
the data catalogue ȋFrancis et al., ʹͲͳͺȌ. A good example where this comes in handy, is a query
that aims to aggregate all inherited properties along a nested inheritance tree. Also, since the
actual relationship is a ϐirst-class citizen of the querying logic, it is possible to deϐine queries based

15

Clemen et al. 2021 Managing and publishing standardized data catalogues to support BIM processes

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

on properties of the relationship itself. For example, its trivial to query for all relationships of type
COMPOSES without deϐining a concrete type that this relationship originates from.

Our main focus is to offer versatile querying capabilities to application developers to request
sub-views of the data catalogue. In many cases, this means to export a data template of a selected
concept or a list of concepts Ȃ maybe construction objects. To aggregate such data view, many
relationships originating from a catalogue record needs to be queried at once, recursively along
the user-deϐined inheritance structure. Practically, this could be achieved through a RESTful
interface that offers a representation for each of the participating entity types as a HTTP resource.
This may pose some practical difϐiculties consuming the API: The resources follow a predeϐined
structure determined by the interface developer. If the predetermined server response does not
satisfy all data requirements for the use case of the requesting application, more requests need
to be sent to the serverǯs API to retrieve the missing information. This lays a burden on the server
hardware that needs to handle additional requests as well as on the application developer who
needs to combine multiple roundtrips in the application logic. If the API developer foresees this,
one might be inclined to include more information in the most prominent resources of the service.
But this bares the risk to process information on the server side that might never be used on the
client. Since datacat does not dictate a schema for any data catalogue other than the rules deϐined
by ISO ͳʹͲͲ͸-͵, itǯs impossible to predetermine the shape of all HTTP resources needed for all
use-cases.

To compensate for this, we implemented the datacat API following the GraphQL-speciϐication
as it has been published by Facebook. A GraphQL-API allows the application developer to deϐine
type-safe queries along the published domain model. ǲ‘Plain GraphQL is both a query language
and a speciϐication. It focuses on minimising and optimising data loads over the web, by
connecting to a GraphQL APIǳ ȋWerbrouck et al.,ʹͲͳͻȌ. An example is given in Figure ʹ.
Incidentally, this model resembles the taxonomy of the underlying ISO speciϐication, improving
interoperability and understanding.

Figure 2. A simple GraphQL-query (left) selecting id, name and related collections of a construction object. The
term Äsubject³ is derived from the ISO 12006-3 entit\ ÄxtdSubject³. More properties can be selected b\ extending

the query structure. The server response (right) includes the fields selected by the query.

The datacat software stack is organized into components. Main focus of our research has been
the development of the datacat API ȋFigure ͵ Ȍ. The datacat API is based on a NeoͶj graph database
in which all data is stored. Among other things, the API consists of components of the Spring
Framework, the GraphQL API and its integrated development environment ȋIDEȌ GraphiQL,
which provides a graphical interface for interaction. Through the datacat API, users can directly
make complex queries or make changes to the data with the appropriate permission.
Alternatively, the datacat API can be accessed via a client, for example the datacat editor
developed for this purpose. In the future, BIM authoring systems will also be able to access
datacat via plug-ins.

16

Clemen et al. 2021 Managing and publishing standardized data catalogues to support BIM processes

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

Figure 3. Basic software packages of the datacat API component.

The datacat editor ȋFigure ͶȌ offers an opinionated view to manage a data catalogue
structured after ISO ͳʹͲͲ͸-͵. With this browser-based editor the user can easily navigate
through the data catalogue and insert, update or delete data.

Figure 4. Illustration of the customized editor (German): (1) Meta-concepts of ISO12006-3 understandable for non-
IT-experts (2) a interactive tree-view on the catalogue graph (3) UI for simple editing (4) some metadata (5) free
text search.

Using e.g. ǲpaginationǳ the queries and UI-updates after editing the catalogue are optimized
and user friendly. The authentication system controls who is allowed to perform which actions.
For a simple and complete installation, the datacat docker stack ȋThurm, ʹͲʹͳcȌ can be used,
which combines the components datacat API, datacat editor and NeoͶj database.

4 Conclusion

4.1 Discussion
As already mentioned, the relevant standards for data catalogues are very generic. Therefore,

numerous design decisions have to be made in the programmatic implementation:

1

2

3

4

5

17

Clemen et al. 2021 Managing and publishing standardized data catalogues to support BIM processes

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

GUIDǤ While it is possible to use arbitrary unique identiϐiers speciϐied while creating new
catalog records, in practice, most concepts will be assigned an auto-generated ID by the system.
We use a standardized UUID algorithm to generate IDs as ͳʹͺbit-numbers. As of now, we do not
compress these IDs as deϐined in the IFC and ISO ͳʹͲͲ͸-͵ speciϐication as the advantages in space
efϐiciency are marginal. Future plans include an encoding mechanism that allows to output
contemporary UUIDs in the compressed IFC identiϐier format for support with legacy systems.

Optional	PropertiesǤ In ISOͳʹͲͲ͸-͵ there are no rules or attributes in place that allow to
designate optional properties and property groups. Until now this feature is also not
implemented in datacat because we need to check, if this would violate the compatibility with
other catalogue servers.

Inheritance	of	�tdRelationshipǤ For usability reasons handling return types of API methods,
datacat relationships do not inherit directly from xtdRoot as described in ISO ͳʹͲͲ͸-͵. All
properties of xtdRoot are also assigned to all relationship types, but -in contrast to the standard-
our relationship records cannot be a member of other relationship deϐinitions. We did not ϐind a
practical relevant application of this. Nevertheless, this might change in the future and would
mean only a rather small change in the codebase.

M�ltiling�alismǤ One core feature of the ISO ͳʹͲͲ͸-͵ speciϐication is multilingualism of
names and descriptions of all concepts. This allows to deϐine a name of a concept even in closely
related language families like German, Austrian German or Swiss German. While a rather versatile
approach, this leads to complexity for application developers that consume the data catalog.
datacat implements this feature as speciϐied but extends on this by offering additional API
methods to interact with language representations. In addition to querying all language
representations of a concept, a language priority list can be provided ȋȏ‘de-atǯ, ‘deǯ, ‘enǯȐȌ that will
be interpreted by the service selecting the most appropriate language representation.

Direct	relationsǤ ISO ͳʹͲͲ͸-͵ describes multiple ways to designate the relationship between
an arbitrary measure and the concept of values and units. The speciϐication is inconsistent by
including an optional unit component of type xtdUnit as well as a direct relation to a list of
xtdValue entities as entity properties of the type xtdMeasureWithUnit. This deviates from all
other relationship characterizations of the speciϐication that are reiϐied as instances of
xtdRelationship entities. Furthermore, the two concrete relationship types of name
xtdAssignsValues and xtdAssignsUnit can also be used to describe the very same concept and are
more in line with the rest of the spec. The datacat implementation of this concept follows the
latter, more consistent approach and ignores the entity components of xtdMeasureWithUnit.

Import	 and	E�portǤ Instead of implementing designated import and export routines, we
decided to lay focus on implementing a versatile API layer. Application and plug-in developers
can use this API to implement use-case oriented solutions that map their data format to the API
entities, hence to the underlying ISO speciϐications. However, a very simple export of the data as
CSV is also possible in datacat editor.

4.2 Limitations of the technical solution
As already indicated in Figure 1, the datacat API and the datacat editor are already very mature
and can be used proactively. However, some ǲtypical ITǳ-functionalities are still missing:

x Until now, a new instance of datacat had to be created for each additional data
catalogue to be managed. This will become obsolete with multi-catalogue support and
multi-tenant support.

x The user administration has to be done by GraphQL - there is no UI in datacat editor.
x Until now users are registered by password and automatic but simple Email

authentication. A proper ǲAuthentication as a Serviceǳ should be implemented.
x We have started with a continuous testing, integration and deployment pipeline

ȋCIȀCDȌ but it is not yet fully operable until now.
x An activity feed ȋemail notiϐication, slack integrationȌ would be very useful for the

domain expert groups, that are asynchronously editing data catalogues.

18

Clemen et al. 2021 Managing and publishing standardized data catalogues to support BIM processes

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

x Other components, not covered in this paper, are datacat CLI for using datacat via the
console and datacat explorer, an initial implementation of the datacat editor interface.
With the datacat importer excel templates can be imported via the CLI. However,
these components are currently not used nor maintained.

4.3 Future research work
Ongoing	ValidationǤ The user-facing UI of datacat, datacat editor, has been a tremendous

success in user-communication and has allowed us to make more informed decisions in designing
the datacat platform as a whole. We will continue our efforts in supporting buildingSMART
Germany to improve this part of the system as well. Also, other domains ȋe.g. facilities
management, GISȌ and other project types ȋproject setup, existing paper standard, …Ȍ will create
further demands on usability. We are currently investigating how datacat may be used to create
homogenous documents for building permit and landscape planning including BIM, GIS and
surveying information. To convince practitioners about the beneϐit of machine-readable data
catalogues we developed a rudimentary Plug-In for Autodesk Revit, that is able to query datacat,
annotated any Revit model element with a template for properties and allows the user to ϐill in
the desired values of any property.

Figure 5. Illustration of the datacat Revit Plugin: (1) connect ³read onl\´ to server and browse catalogue (2) link
xtdSubject catalogue element to a selected Revit element (3) and type in the desired properties (4) export
annotated model to IFC.

Importǡ	Checkingǡ	E�portǤ	Many more standards of different domains and different standard
types should be analysed and imported to datacat. To prove the usability of datacat, the usage of
IfcPropertySetTemplate and Construction Objects Data View ȋCEN,ʹͲʹͲȌ might be feasible to
exchange a subset of information that is stored in the datacat catalogue with a number of
modelling tools. It allows to delegate the test for validity of a model regarding property
assignment to external tools. We will also add checking tools for the catalogue.

Re�ie�	 concept�al	modelǤ	The ISOͳʹͲͲ͸-͵ is currently under development and will be
updated. Very similar, but until now, not part of our research is the ISOͳͻͳͳͲ ǲGeographic
Information Ȃ Methodology for feature cataloguingǳ. This standard is well integrated in the
ISOͳͻxxx series but does not perfectly ϐit BIM requirements. However, its structure and technical
speciϐications on implementing catalogues is worth further investigation.

Semantic	WebǤ In the next stage of research, our main goal for datacat will be a more in-
depth examination of the feasibility of a Semantic Web export. We believe that our practical
approach in offering tools to amplify and collect expertǯs knowledge will be a good foundation in
converting this information into RDF graphs. Also, we would like to broaden our efforts in
integration of the datacat API in modelling tools to improve usability and performance of the
services and give further way for practical application of the components. As a ϐirst step we have
tested ϐirst ontologies using the concepts and OWL-ontologies from ȋBeetz and de Vries, ʹͲͲͻȌ.
In our approach the data is already available in a graph structure ȋlabelled directed graph, NeoͶjȌ

1

2

3
4

19

Clemen et al. 2021 Managing and publishing standardized data catalogues to support BIM processes

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

and can be used in the Semantic Web as an ontology to describe real objects. Therefore, a ϐirst
OWL exporter was written that queries the data from the database via the datacat API and stores
it as an ontology in the Turtle syntax. For example, in the context of transport routes, the ontology
provides a knowledge base for semantic description and linking of roads and trafϐic facilities and
enables the practical application of the data catalogue.

Acknowledgements
The development of datacat has been ϐinancially supported from Federal Ministry for Economic
Affairs and Energy ȋBMWiȌ during the project ǲLandBIMǳ and the project ǲTerrainTwinǳ. We
would also like to thank the German buildingSMART e.V. specialist group ǲTransport Routesǳ for
insights into their domain model and their continued interest in datacat during this ϐirst stage of
research and development.

References
Beetz, Jakob and Vries, Bert de ȋʹͲͲͻȌ: Building product catalogues in the semantic web, ʹ ͸th International

Conference on Information Technology in Construction CIB W͹ͺ ȋpp. ʹʹͳȂʹʹ͸Ȍ
Breuss, Raine and Lanzinger, ASI - Propertyserver Patrick ȋʹͲʹͳȌ: https:ȀȀgithub.comȀasi-propertyserverȀ
CEN - European Committee for Standardization ȋʹͲʹͲȌ, IFCͶ.COD.ͳ Construction Objects Data View Part Ȃ

Candidate, Link: buildingSMART.github.ioȀProductData
Francis, Nadime, Alastair Green,Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor Marsault, Stefan

Plantikow, Mats Rydberg, Petra Selmer, Andre s Taylor, Cypher ȋʹͲͳͺȌ, An Evolving Query Language
for Property Graphs, SIGMODǯͳͺ, June ͳͲ-ͳͷ, ʹͲͳͺ, Houston, TX, USA

FreeBIM ȋʹͲʹͳȌ: https:ȀȀwww.freebim.at
Thurm, Benjamin, DD-BIM ȋʹͲʹͳaȌ: https:ȀȀgithub.comȀdd-bimȀdatacat
Thurm, Benjamin, DD-BIM ȋʹͲʹͳbȌ: https:ȀȀgithub.comȀdd-bimȀdatacat-stack
Thurm, Benjamin, DD-BIM ȋʹͲʹͳcȌ: https:ȀȀgithub.comȀdd-bimȀdatacat-editor
Tune, Nick ȋʹͲͳ͹Ȍ. ǲManufacturers: BIM objects don̵t make you BIM ready.ǳ Bimplus.co.uk. Chartered

Insitute of Building, Bracknell, U.K. Link: https:ȀȀwww.bimplus.co.ukȀpeopleȀmanufactu͸rers-bim-
objects-dont-maͷke-biͶm-readyȀ

Hauer, S.; Murschetz, J.; Bres, A.; Sporr, A.; Scho ny, M.; Monsberger, M. ȋʹͲʹͲȌ metaTGA: a chance for BIM
in the field of MEP. Bau-physik Ͷʹ, no. ͸, pp. ͵ͶͷȂ͵ͷͳ.

International Organization for Standardization ȋʹͲͲ͹Ȍ. Building construction Ȅ Organization of
information about construction works Ȅ Part ͵: Framework for object-oriented information ȋISO
standard no. ͳʹͲͲ͸-͵:ʹͲͲ͹Ȍ

International Organization for Standardization ȋʹͲͳ͸Ȍ. Geographic information Ȃ Methodology for feature
cataloguing ȋISO standard no. ͳͻͳͳͲ:ʹͲͳ͸Ȍ

International Organization for Standardization ȋʹͲʹͲaȌ. Building information modelling and other digital
processes used in construction Ȅ Methodology to describe, author and maintain properties in
interconnected data dictionaries ȋISO standard no. ʹ͵͵ͺ͸:ʹͲʹͲȌ

International Organization for Standardization ȋʹͲʹͲbȌ. Building information modelling ȋBIMȌ Ȅ Data
templates for construction objects used in the life cycle of built assets Ȅ Concepts and principles
ȋISO standard no. ʹ͵͵ͺ͹:ʹͲʹͲȌ

Werbrouck, J., Senthilvel, M., Beetz, J., Bourreau, P., & Van Berlo, L. ȋʹͲͳͻȌ. Semantic query languages for
knowledge-based web services in a construction context. In P. Geyer, K. Allacker, M. Schevenels, F.
De Troyer, & P. Pauwels ȋEds.Ȍ, Proceedings	 of	 the	 26th	 International	 Workshop	 on	 Intelligent	
Computing	in	Engineering	(EG-ICE) ȋVol. ʹ͵ͻͶȌ. Leuven, Belgium.

20

